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A METHOD FOR A LINEAR PROGRAMMING PROBLEM BY MAXIMIZING
THE OBJECTIVE FUNCTION ON A REGION OF INFLUENCE

Shigemichi SUZUKI

Department of Mechanical Engineering, Sophia University
Kioi-cho 7-1, Chiyoda-ku, Tokyo 102, Japan

We propose two algorithms for a linear programming problem with a known
optimum value of the objective function by converting it to an optimization
problem in a region of influence. The feasible region of the linear program is
the intersection of the halfspaces of constraint inequalities. After
incorporating one more halfspace, i.e., the halhspace consisting of the points
for which the values of the objective function are greater than or equal to the
optimum value. We conside the region of influence of this added halfspace.

This region is a closed and convex set. An optimum solution of the original
linear program can be found by maximizing the objective function in the region
of influence. We employ a Newton-like method for maximization. The sequence of
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1. Introduction

Since the publication of Karmarkar's algorithm [1] for linear
programming, a lot of extentions and variations of his algorithm
have been attempted and some new ones have been proposed [2],[3],
[4],[5],and [6]. Most of these works employ nonlinear approaches
in a sense or another and devise iterative procedures to lead to
an optimum solution of linear programming. Introduction of
nonlinearity seems unnatural but gives a nice property of
computing complexity of polynomial order. The present author is
trying to establish a polynomial order algorithm for linear
programming using only  linear computation. The work is still on
the way. 1In this note we will show a method for linear
programming problems by converting them to optimization problems
in a region of influence. Simple illustrative examples are also
given.

2. Problem
Consider a linear programming problem:

PP t
Minimize 2z = c'x

subject to Ax b
) X 0 , (1)
where A is an m x m matrix, b is an m vector, c and x are n
vectors. After incorporating the nonnegativity constraint x 2 0
into the constraint matrix, we will denote the augmented matrix as
A again. Then the problem we will consider in the following will
become:

v v

RPN t
Minimize z = C X

subject to AxXxZ b, (.2)
where A is ( m+n ) x n, b is an ( m+n ) vector, c and x are n
vectors.
We will make the following assumptions:

* .
( A1 ) The set of optimum solutions S of linear program (2) is
not empty.

*
( A2 ) ﬁn Oﬂtimum value 2z of linear program (2) is known.
a.
i

( A3 ) < ” c “ (i=1, 2, «eo , m+n ), where "ai“ and

“c||are the Euclidean norms of the i-th row of A and c
respectively.

3. Region of Influence and Its Properties

*
After introducing a constraint ctx 2 z the distance between’
t. . _* t. o
x 2z, a;x2 b.

a point x € R® and the set of half-spaces H = { c i

(i=1,2, «c., mén ) } will be defined as
\ ; t t *
dH = min [ min a/x - bi’ cx -2 1. ( 3)
The region of influence of each half-space of H is the set of
points in R™ for which the half-space is the closest among H in

the sense of dH(x). Specifically, the region of influence Vi of

*
the half-space atx 2 bi and V0 of ctx 2z will be defined as

t t . .
v, = { x| xe¢ rR?, ajx - bi < ajx - bj (3 #1i),
*
atx - b < ctx - 2 1 ( 4)
i i
* t
vy = { x| x¢ R%,c%x - z s ajx - by,

i=1, 2,ee., m+n } . (5)

An example of regions of influence in R2 is shown in Fig.1.
Some of the properties utilized in the sequel will be stated:
Proposition 1 vy (i=0,1, 2, «ee, Mm + n) is a closed,

. n
convex set in R.
Proof Obvious. a
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Fig. 1 An Example of Regions of Influence

Proposition 2 Let xo be an arbitrary point in R™. Then
{x] x¢ R", x = x0 - Bc,B>0} V, o - (6)

Proof It is easy to verify the inequality ct( xo— g c) -

z < a?( xo
i

We will note that the assertion is true without assumptions
(A1) and (A2).
Proposition 3

*
Max { ty o:ox eVygl =2z . (7))

-Bgc) - b, for sufficiently large g. a

Q

~ *
Proof Let X e85 which is nonempty by assumption ( A1 ).
X

First note that

* . t * t * t
z . To prove this, suppose ¢ x > z . Then 0 <cx -2z = a;x

€ Vg Next we will show x ¢ V, implies ctx <

- bi (i=1,2, **¢, min ). This implies that x is an interior
point of the fesible region of linear program (2). Consider a ray

emanating from x in the direction - ¢. Let xband x© be the
intersecting points of the ray with the boundary of the feasible
% -
region and the plane ctx =z ., Let az xb = bi for some io, then
0 0
*
I x€ - x Il = « ctx - z )/ ”cl
b
Ix® - x|

t
( aiox - bio)/ 1 aiol

woon

v

. (8)

Since Jlc |I> | a; || from assumption (A3) we will have
*
ctx - z > aF x - b, . (9)
i, iy
This is a contradiction since x € V,. This establishes that x ¢

0
. . t * L t. .
V0 implies ¢'x £ z . Hence z is an upper bound of c x in VO.
Since x € V0 attains this upper bound assertion (7) is proved. [

4. A Method for LP by Optimization in Region of Influence
According to Proposition 3 an optimum solution of linear

program (2) can be found by maximizing ctx in VO.
We will employ a Newton-like method for maximization.
Suppose a point xk on the boundary of V, is found in the k-th

0
iterative cycle. The vector c is projected to the boundary
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~

hyperplane at xk. We proceed from xk in the direction of the
projected gradient to the point xk+1 where the ray meets the

*

hyperplane ctx =z xk+1 does not belong to V0 in general. By
taking appropriate step size in the direction -c from xk, xk+1 =
xk - B ¢ will be on the boundary of V0 again. If xk+‘| does

belong to V0 then it is a feasible solution of linear program (2).

*
Since Ct xk+1 =z it is an optimum solution. Otherwise we

continue the same procedure as we did at xk. We call the method
just described informally as Algorithm I. Algorithm I is
illustratively shown in Fig. 2.

After a finite number of iterations we can identify an active
constraint at an optimum solution. We can eliminate a variable
from the linear program using the active constraint. We will then
solve the derived linear program with one variable less than the
original one. Eventually we will come to either the situation in
which a linear program with one variable has been solved or one in

which xk is feasible and thus an optimum solution is obtained for
a reduced linear program. In either case an optimum solution for
linear program (2) can be easily obtained by back substitution.
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Fig. 2 Illustrative Explanation of Algorithm I

We call the second method as Algorithm II.
Befor we describe the algorithms we will introduce some
notations, Let

a, = a, - C
24 i
b, =b, -z (10
i i . . .
B, = max ( a B _p ) / a.tec
i T, T i
(2Kt ok okt
k t_k k
uk = 3 X - b
v, = ate (11)
@, = ||c||~2 B /1 Hc1|2 N AA P BES
P =T - ak ak t /| aF |12
(k=0,1, 2, *°* )

Algorithm I
step 0 ( Initialization ):

Choose x0 arbitrarily and let k = 0.
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Step 1:
If < € then

K
stop
else
= x5 - ge. : (12)
Step 2:
S 4Py © (13 )

and after incrementing k by 1 go back to step 1.

Algorithm ITI

Step 0 ( initialization ):
Choose x0 arbitrarily and let Xk = 0 and N = n ( the
number of variables ).

Step 1:
If Bk < ¢ then

if N < n then
determine all other variables which are not included
in the last reduced LP problem using the a set of
equations obtained in (15) in the past iterations and
stop
else stop
else go to next step.

Step 2:
If there exists only one index i0 such that
ait x5 - b, <0 . (14)
0 0 - :
then using the equation
a,"x -b, =0 (15 )
0 0

eliminate one of the variables from other constraints and
after decrementing N by 1 and then letting xo be the

restriction of xk to RN go to step 1
else go to next step.
Step 3:

xK = KF Bk C - (16 )

Step 4:
k+1 ~k
X = X + ooy Pk c (17 )

and after incrementing k by 1 go back to step 1.

5. Validity of Algorithms

Proposition 4 If xk is not a feasible point of linear
program (2) a step-size By 0 can be determined by the first

equation of (11).

Proof If xk is not feasible there exists at least one

constraint such that
~e ~
a; x° - bi < 0 .

~

In addition aE c < 0 since ||ai” <||c“ by assumption (A3).

Therefore g, > 0. a

Proposition 5 { <K } generated by Algorithm I is

convergent. Namely

¥ s x (k  ae ) (18 )
-~ *
for some x ¢ S .

Proof From (11)

k+1 k
X

27 2
=x -yl fef” a

k

~k 2
A A [ I DRI

(19)
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* *
Let x be a point of S , then after rather straightforward
computation we have

k+1 * 2 k * 2
TRl I | . .
+ [ ell el - e+ 2 a7x - b VI T eppaf2° - Ye 1e
. (20 )
t _k . k .
If p =0 then a; x” - b, 2 0 for every i and x is an
optimum solution of linear program (2). Hence the proposition is
proved in this case. If u # 0 then U = at xk - bk ¢ 0. Noting

that a® x* - b 2 0 we have
K+l 2 k%2 2 ~eo 2 2
f|= S xf|f o flxm = x |7 - Cleff w DT/TCfie] 2t 0T - vy 1.
( 21)

*
From (21) { "xk+1 - X " } is monotone decreasing and converges to
§ 2 0. There also holds My +0 (k + o ). Since { xk }
is bounded and My + 0 as k + o there éxists a unique
accumulation point x of { xk } . My + 0 further implies
AP x-b =0 (kK +o) ( 22)
and hence )
atx-b, z0 ( 23)
i i .
~ *
for every i together with ct x = z establishes that the
proposition is true in this case, too. 0]
Proposition 6 If there is only one i0 such that
a, b5 - b, <o ( 24)
0 0
in step 1 of Algorithm I. Then
< - ~
a, x - b, =0 ( 25 )
*o *o

~ *
for some x ¢ S .

*%
Proof Let x be an optimum solution which has the minimum
) ~ ~ *%
distance from the space A, = { x | a,tx-b, =0 }. If x is
iy i i,

*%
in this space we are through. So assume that x is not in this

e

* %k
space. Consider a line segment xk X and its projection on ctx =

* . . Kk ** . *k
z which is X~ x . Since x is the closest to Ai there exists
0
a constraipt such that
£t k%
a; x b, = 0 (26 )
1 1
and - ~
*k
R e O T W T e S I ( 27 )
i, : i
for 1 2 A > 0. This_implies
a.t - b, < 0 . ( 28 )
i, i,
Since i0 z i1 this contradicts (24). Therefore equation (25)
~ *%
holds for x = x . [n}

From Proposition 6 we do not have to continue the iteration
of Algorithm I when relation (22) holds for only one index io.

This leads to the construction of Algorithm II which takes into
account this situation. It is noted Algorithm II will terminate
in a finite number of iterations even if € = 0.
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6. Illustrative Examples

Example 1
Maximize z = - 3 Xy - 3 X,
subject to - Xt X, z
E
X - X, = 1
2 -
X, - 2 x, 5/2
z _
-2 Xy - x, = 5 (29)
>
-2 Xq - 3 X, -10
2
x1 ’ x2 o .
*
Assume here that z = - 10.5 is known.
Choose x0 =(2, 0 )t then the results of computation are as
follows.
Algorithm I: -
k Xk t xk t
0 ( 2,0) (19, 7)/6
1 (1.5, 2 )  ~ceceen optimum solution.
Example 2 [ 7 1
Minimize 2z = -3 x4 -2 x., -4 X3
subject to - X - X -2 xXq = -4
-2 X, -2 %q z -5 ( 30 )
2
-2 Xy - %y -3 X3 % 7
Xy Xy X3 z 0.
*
Assume also that z = -21/2 is known.
Choose x0 = (0, 0,0 )t then the results of computation are
as follows:
Algorithm I: N
k xk t ‘ / xk t "xk_x*HZ
0 ( 0 0, 0) ( 39, 26, 52 )/32 8.5
1« 5/2, 3/10, 3/5 ) ( 137, 23, 46 )/50 1.8
2 | 59, 37, 16 )/30 ( 121, 76, 36 )/60 0.64
3 ( 375, 161, 32 )/150 ( 5817, 2543, 736 )/2250 0.23
4 ( 3119, 1297, 256 )/1350 ( 3123, 1913, 288 )/1350 0.09
5 ( 16875, 9101, 512 )/6750 0.03
Algorithm II: .
*
k xk t xk t "Xk—x "2
0 ( 0, 0, 0) ( 39, 26, 52 )/32 8.5
L 5/2, 3/10, 3/5 ) ( 137, 23, 46 )/50 1.8
2 | 59, 37, 16 )/30 ( --, 29, 0 )/30 0.64
3 --, 3/2, 0 ) ---- optimum solution 0.00
At the start of Iteration 3 the constraint
- Xy - X, -2 X3 2 -4

is identified to be active at an optimum solution. Therefore from
the optimum solution of the reduced linear program with two
variables X, and Xy we can obtain the value of X4 at the optimum

solution. Namely
* *
1 =4 %
The optimum solution x* is therefore
x* = (5/2, 3/2, 0 )t.

X =4 - 3/2 =5/2,

7. Infeasible and Unbounded Problems

So far we have assumed that a linear program has an optimum
solution. There are, of course, linear programs with no feasible
solutions or unbounded values of objective functions. So we will
leave out assumptions (A1) and (A2) in this section in order to
show how to handle these situations.
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Consider a linear programming problem:

Minimize 2z = ctx

subject to Ax 2 b (31)
x 2z 0.
Insted of directly dealing with linear program (31) we will
consider the following linear program:

v v

Minimize w = ctx - bty
subject to A x 2 b, X20, (32)

-atyzc, vz 0.
Proposition 7

(i) Linear program (32) has either an optimum solution with
*

w = 0 or no fesible solutions, and
(ii) under assumption (A3)

Max { ctx - bty (Xt,Yt)t e Vy
{: 0 if there exists an optimum solution of (32)

of ctx - bty z 0}

< 0 if there does not exist feasible solutions of
(32).
Proposition 8 If there do not exist a bounded optimum
solution for linear program (31), then under assumption (A3)

Max { ctx | X € V0 of ctx > M for linear program (31) }

{< M if linear program (31) is infeasible,
> M if linear program (31) has an unbounded optimum
solutions,

for sufficiently small M.

Propositions 7 and 8 suggest some obvious ways of identifying
the existence of the optimum, the infeasibility, and the
unboundedness of linear program (31).

8. Conclusion
We proposed an approach for a linear programming problem by

maximizing z = ctx in a region of influence with a Newton-like
method. The convergence is proved but the method is not of
polynomial order.
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