7 N T Yy X A 1-5
(1988 5 23)

FE7 T I7TREZA4 T —HRERDBETNTY XA

SR FERE (i) 55 S

WEARE %8 EETEH

VLSIDF v 7" LO—BERBFOEBEIEIL, FTHRIEF) ST I7TRI4F—HERD 2
MEICRESNS. EHS 5 7GLGEICR Yy NOBAHE L bRk L 5i2, 2
GLT—2DFy FDLTOHRFERUVEVZKRDLLLWERL)ADESEZ XV 4
TFTHERE XBETE, GHEFE I 7 THYZFDZ20FEDELI2ETHA Y b
BHBBEIZONWT, X84 F—WHERODIPEDIWPNTY L2522, 7
TN XALDFERRENIIONgn)TH B. S TrliZ I3 76DERTH 5.

Algorithms for Finding Steiner Forests in Planar Graphs
Hitoshi SUZUKI, Takehiro AKAMA, and Takao Nishizeki

Department of Electrical Communications, Faculty of Engineering
Tohoku University, Sendai 980, Japan

Several routing problems such as VLSI river routing and single-layer routing can be formulated
as a problem for finding a Steiner forest in a planar (grid) graph. Given an unweighted planar
graph G together with nets of terminals, our problem is to find a Steiner forest, i.e.,
vertex-disjoint trees, each of which interconnects all the terminals of a net with each other.
This paper gives an efficient algorithm to solve the problem for the case all terminals lie on two
face boundaries of G. The algorithm runs in O(nlog n) time if G has n vertices.

1. Introduction

Given an unweighted planar graph G together with nets
of terminals, our problem is to find a Steiner forest, that is,
vertex-disjoint trees, each of which interconnects all the terminals of
a net with each other. Since the “disjoint path problem” is NP-hard
even for planar graphs [Lyn] or plane grids [KL, Ric], so is our
problem if there is no restriction on the location of terminals. This
paper presents a very efficient algorithm to solve the problem for the
case all the terminals lie only on two face boundaries B; and B; of a
planar graph G. Fig. 1 depicts a problem instance and a solution,
where all the terminals of ten nets lie on the outer face boundary B;
and an inner face boundary B, and a found Steiner forest of ten
disjoint trees is drawn in thick lines.

Our algorithm runs in O(nlogn) time or more precisely in
O(MIN {(k12 + 1)n,nlog n}) time, where n is the number of
vertices of G and kj, is the number of nets having both a terminal
on B; and a terminal on B;. In the example above ki = 3. Our
algorithm runs in O(7) time especially when all the terminals lie on
a single face boundary or kjz = O(1).

Robertson and Seymour [RS] have studied the problem from a
graph theoretic standpoint of view in an extended series of papers
on the topic of “graph minors,” and proved that the problem can
be solved in polynomial time. The proof yields a polynomial-time
algorithm, but the straightforward implementation requires o)
time.

On the other hand Baker and Pinter [BP] have studied a similar
problem from a standpoint of VLSI river-routing, and given an
algorithm for finding a Steiner forest in a plane grid. However
there are several restrictions: a grid must have a rectangular outer
boundary and exactly one nontrivial hole; and every net must consist
of exactly two terminals, one on the outer boundary and the other on
the boundary of the hole. The algorithm finds a Steiner forest, that is,
vertex-disjoint paths in this case, in O(k* + m?) time where k is the
number of nets and m is the number of segments on the boundary of
the nontrivial hole.

Our algorithm is much faster than Robertson and Seymour’s,
and can find a Steiner forest in general planar graphs unlike Baker
and Pinter’s. Thus it yields a more practical and flexible routing
algorithm applicable even to the case wires of 45° or unroutable
barriers are admitted in grids. In order to improve the time
complexity, we need several new ideas and careful treatment of
planar graphs. .

2. Preliminaries

Let G = (V, E) be an undirected planar graph with vertex set V'
and edge set E. We sometimes write V = V(G) and E = E(GQ).
Let n be the number of vertices in G, that is, n= |V|. Throughout
the paper we assume that G is connected and embedded in the plane
R?. The image of G on R? is denoted by Image(G). A face f
of planar graph G is a connected component of R? — Image(®).
Denote by V(f) the set of vertices on the boundary of £, and denote
by E(f) the set of edges on the boundary. For two graphs G and G',
G + G' means a graph (V(@ UV(G),E(®) UE(G)). G-V’
means a graph obtained from G by deleting all vertices in V' C V,
while G — E' means a graph obtained from G by deleting all edges
in E' C E. Let fi be the outer face of G and let f, be any inner
face of G. The boundary of face f; is denoted by B;. Throughout

- this paper [=1 or2, and we assume that a set of vertices in

V(fi) UV(f;) are designated as terminals. A net N is a set of
terminals that are all to be interconnected with each other. A net set
8 = {N1,Na, ..., Ni;} is a partition of the set of terminals. Then a
network N\ = (@, S) is a pair of a planar graph G and anet set S. A
Steiner forest of network N isaforest F=Ti+Th + ..+ T, in G
such that N; C V(T;) for each tree T} in F. For simplicity we often
call F a forest of A, and write T; € F, and say that tree T; spans
net N;.
The net set § is partitioned into three subsets S, S2 and Spz 50
that
(1) NeSi = NCV(H),
@) N€S, =N CV(f),and
B)NeSu=NNV(fi)#éand NNV(f2) #¢.
In Fig. 1 8 = {N2,Ns,Ng,N7,Ns}, S = {N3,Nyp}, and
Si2 = {N1,Ns,Ng}. Let k12 = [Si2]. We consider the following
three cases (i), (if) and (iii) separately:
(i) all the terminals lic on a single face boundary, that is, either
S=8 orS=8;;
(ii) there is no net intersecting with V(fi1) and V(f2), that is,
812 = ¢; and
(iii) there is a net intersecting with V(f;) and V(f), that is,
S12 # 4.

Fig. 1 A planar graph G and a forest F.

In the succeeding three sections we present algorithms for these
cases: an O(n) algorithm FOREST! for case (i) in Section 3,
an O(m) algorithm FOREST2 for case (ii) in Section 4, and
an O(MIN {ki;n,nlogn}) algorithm FOREST3 for case (i) in
Section 5. These algorithms necessarily find a Steiner forest
whenever there exists. It is easy to modify them so that they can
also check the existence of a Steiner forest. Hereafter we assume that
there exists a Steiner forest in a given network A(.

3, Case in which all the terminals lie on a single face boundary

This section deals with the easiest case in which all the terminals
of a network A = (@, S) lie on a single boundary. We may assume
that § = ;. The outer face boundary B; is not necessarily a simple
cycle, but is a closed walk. If such a network /] has a Steiner
forest, then there exist no two nets N, N’ € S such that t1,t3 € N,
12,14 € N', and the four terminals ?,, 2, t3 and ¢4 appear clockwise
on B in this order, and consequently B; has a subwalk Wi which
contains all the terminals of a single net, say N; € S, but does
not contain any other terminals. (An example of such walks for
the network in Fig. 2(a) is a single edge joining the two terminals
in net 1.) Clearly such a walk Wi includes a tree T spanning
Ni. A new network Al = (G = V(W1),58 — Ny) has a Steiner
forest F'; otherwise, A\’ would not have a Steiner forest. (A similar
argument was used by a classic flow algorithm, called the uppermost
path algorithm, for finding a maximum flow in a planar graph
with the source and sink both on the outer face boundary [FF].)
Clearly F' = Ty + F' is a Steiner forest of A. These observations
immediately yield an iterative algorithm to find a Steiner forest of A_
in O(n?) time. Note that W; and N; above can be found in O(n)
time.

The main result of this section is to improve the complexity
to O(n). We define some more terms before presenting a refined
algorithm. Let J C R? be a simple closed curve J passing through
all vertices in V(1) such that the closure of J’s inside includes
Image(G). In Fig. 2(a) J is drawn in dotted lines. Let vg be a
vertex on Bj, then the starting terminal s(N) of a net N € S (with
respect to) is the terminal of N appearing first on J clockwise
going from vo, while the ending terminal t(N) is the terminal
appearing last. The starting and ending terminals of nets are all
represented as double circles in Fig. 2. We assume that a planar
graph G is represented by embedding lists: a set of adjacency lists
{L(v)|v € V}; all edges incident to v appear in L(v) in clockwise
order with respect to a plane embedding of G. Especially if
v € V(f1), then edges in L(v) are ordered based on'J. That is, if
v € V(f1) is the vertex clockwise next to v on J, then the edge
embedded around v clockwise next to the v-v' segment of J first
appears in list L(v). We denote by W(N;) the walk which goes
clockwise on B; from s(N;) to t(N;), starting with the first edge in
list L(s(N;)) and ending with the last edge in L(#(N;)).

Our idea is very simple: let vo be an arbitrary vertex on B;, and
number the nets Ni, Nz, .., Ni in S so that the ending terminals
t(N1), t(N2), .., t(Ni) appear in this order on J clockwise
going from wo, as depicted in Fig. 2(a). Then walk W(N1)
satisfies the desired property as W; for A, and W(N,) does for
network (G — V(W(N1)),S — Ni1), and so on. This fact can be
proved by an easy induction. Therefore the following procedure
FORESTI1(A 1) finds a Steiner forest F = Ty + T3 + ... + Ty of AL.

(2]

Fig. 2(a) Forest F' of network A = (G, S), and
(b) network (G — V(W(Ny)), S — Ny).

procedure FOREST1(A ,w);
in

number the nets N1, Na, ..., N; in S with respect to vo as above;
fori:=1to k do
begin
let W(N;) be the walk on the outer boundary B; of G going
clockwise from s(N;) to t(N;);
G:=G—-W(Ny;
delete some redundant edges and vertices from W(N;) to
obtain a tree T; spanning N;
end
end;

Fig. 2(b) depicts a graph obtained from graph G in Fig. 2(a) by
deleting all vertices in W(N;). The walk W (N;) on a new graph is
drawn in thick solid and dotted lines. Thus W(N3) is not necessarily
a tree and may have a non-terminal vertex of degree one. Tree T,
drawn in thick solid lines in Fig. 2(b), is obtained from W(N2) by
deleting three edges drawn in thick dotted lines.

Clearly the desired numbering of nets can be found in O(n)
time. Since a planar graph G is represented by embedding lists,
one can execute the for loop in time proportional to the number of
deleted edges. Since a planar graph G has O(n) edges, the for loop
spends O(n) time in total. Therefore procedure FOREST1 runs in
O(m) time in total. Thus we have the following theorem.

THEOREM 1. A Steiner forest of network A = (G, S) can be found
in O(m) time for the case all the terminals lic on a single face
boundary of a planar graph G. n

4. Case in which there is no net intersecting with V'(f;) and V()

This section deals with the most difficult case in which Si2 = ¢.
Our algorithm FOREST?2 for this case is completely different from
one suggested in [RS]. In subsection 4.1 we define some more terms.
Then in subsection 4.2 we present a sequence of lemmas on which
FOREST? is based. Finally in subsection 4.3 we present FOREST2,
and show that it finds a Steiner forest in O(n) time.

roots

T T, T, T, Ty >

(b)
Fig.3(a) F = T1 + T2 + ... + T3, and (b) the genealogy.

4.1 Definitions. Since S12 = ¢, S= 851 US,. Let A[; = (G, S)
and N, = (G,82). Let Fy be a Steiner forest of Ay, and F, a
Steiner forest of A(;. Fy is drawn in gray thick lines and F in
black thick lines in Fig. 3(a). Note that F; and F, can be found by
procedure FOREST1 in Section 3. Let F'= Fy + F». Since Fi may
cross with F, as in Fig. 3(a), F is not necessarily a Steiner forest of
AL. So we must modify F; and F; in order to obtain a Steiner forest
of AL.
We define some more terms. Let N € S; be a net of m terminals,
and let T be a tree in F; spanning N, where [=1 or2. Assume
that the terminals t;,%3, ...,tm in N appears in this order clockwise
on the boundary B; of face f;, as in Fig. 4. For a terminal pair
pi = (i, 1), let Q; be a walk on B; clockwise going from #; to
tis1, and let P; be a path on T' connecting t; and t;,;, where
1<i<k and tyy1 =t;. We denote by in(T,p;) the inside of
a cycle Q; + P; (including the boundary). Exactly one of the m
insides in(T,p;), 1 < i < m, includes face f,. Without loss of
generality we may assume f2 C in(T, pn) . Then the path Py, drawn
in thick lines in Fig. 4, is called the trunk of tree T and denoted
by trunk(T). The inside in(T) of tree T, hatched in Fig. 4, is

}:{1 (T, p;) . The inside in(Fy) of forest F is UTE,;.l n(T). We
call ¢y the starting terminal s(T) of tree T, and t,, the ending
terminal t(T) of tree T'. The ordered pair p,, = (tm,t1) is called the
outer (terminal) pair of T, and denoted by p(T), while the ordered
pairs p; = (3;,%41),1 < i < m — 1, are called inner (terminal) pairs.
The set of all outer terminal pairs of trees in Fj is denoted by
Z(F): Z(F) = {p(T)|T € Fi}. Let uy,uz,...,u, be the vertices
on trunk(T) which are either terminals or have degree three or
more in T, and assume that these vertices appear in this order on
trunk(T) going from s(T) to ¢(T"). Note that r < m, u; = s(T)
and u, = t(T). We call a subpath of trunk(T) between u; and uj.y
an interval of trunk(T), where 1 < j < r — 1. Each interval U of
trunk(T) lies on one of paths P, P, ..., Pp,—;. If U lies on P;, then
p; is called an inner (terminal) pair p(T,U) of interval U. If T and
T are two distinct trees in a forest Fy and in(T") C in(T), then T
is an ancestor of T and T" is a descendant of T (See Fig. 3(b)). We
denote the set of ancestors of T by ANC(F;, T), and denote the set
of descendants of T by DES(F},T). A son of T is a descendant
of T whose inside is maximal. We denote by SON(F;, T) the
set of sons of T'. A wee T' € DES(F,T) is a descendant of an
inner pair p; (or an interval U) if in(T') C in(T,p;). The set of
descendants of p; is denoted by DES(F},T,p;). A root of forest
Fy is a tree T € F; which has no ancestors. The set of roots of F}
is denoted by root(Fy). We define the roots of F = Fy + F, by
root(F) = root(F1) Uroot(Fy). Denote by Z(F) the set of outer
terminal pairs of F: Z(F) = Z(Fy) UZ(F,).

Fig. 6 Non-tight forest F] of A(; obtained by FORESTL(A 1, vo)-

4.2 Lemmas. Clearly the following lemma holds.
Lemma 1. Let Fy and F{ be two distinct forests of network

A= (G,8), where I=1 or 2. Let T € F; correspond to T' € Fj,
and let Ty € Fy — T correspond to Tj € F{ — T'. Let p; be an inner
pair of T. Then (a)-(c) below hold.

(a) If p; is also an inner pair of 7" and Ty € DES(F,T,p;), then
T, € DES(F,T',p;) and p(Ta) = p(T)).

(b) If p; is the outer pair of ' and T; € Fi — T — DES(R,T,p;) —
ANC(F,,T), then T, € DES(F{,T") and p(Ty) = p(Ty) (see
Fig. 5).

©I T € root(F)), T' € root(F{) and p(T) = p(T"), then
Z(F) = Z(F)). []

We say that a tree T intersects with a face f if
V() NV(T) = ¢. Informally a forest F; of N, is tight if it is
compacted as close to B; as possible. Formally F; is tight if every
tree T € Fj satisfies the following condition.

ConpITION A. For each edge e on trunk(T), either e lies on the
walk on B; clockwise going from s(T) to t(T), or a son of T
intersects with the face (in in(T")) adjoining e. |
As shown later in Corollary 1, if F) is tight, then the inside
in(Fy) is minimal among all forests of A(; having the same set of
outer pairs. F = Fy + F, is tight if F| and F, are tight forests of
N1 = (G,81) and A, = (G, S2), respectively. F in Fig. 3(a) is
tight. One can easily observe the following lemma.
LeMMA 2. If network Al has a forest F', then A has a tight forest
F with Z(F) = Z(F"). L]
One can find a tight forest of A; by executing FOREST1
twice, as follows. First choose an arbitrary vertex vy on Bj,
and execute FOREST1(A(;,v) to find a forest F} of A[;. Here
F| is not necessarily tight, as depicted in Fig. 6. Then choose
the starting terminal v, of an arbitrary root of Fj, and execute
FOREST1(A(;,v1) to find a Steiner forest Fy; of A(;. One can
easily observe that F; is necessarily tight, because every tree in Fj is
constructed after all the descendants are constructed. The tight forest
F obtained in this way is drawn by thick lines in Fig. 3(a). Thus we
have:
LemMa 3. A tight Steiner forest F; of network A(; can be found in
O(n) time. |]
Using Lemma 1, one can prove the following lemma.
LemMa 4. Let F; be a tight forest of A(;, and let F] be an arbitrary
forest of A[;. Let T € F; correspond 10 T' € F}, and let U be an
n'll(te}'xal ())f T. If p; = p(T,U) is an inner pair of 7", then U is in
(T, p;) .
Proof. We shall show that every edge e on U is in in(T",p;) . If
e lies on the walk on B; clockwise going from s(T) to t(T), then
e lies on the walk on B; clockwise going from t; to t;,; where
pi = (t;,ti+1), and hence e is in(T', p;) since p; is also an inner pair
of T'. Thus we may assume that e is not on the walk from s(T") to
t(T) and that the claim holds true for all descendants of T. Since F}
is tight, a son T, of T intersects with the face f (in in(T’)) adjoining
e at a vertex v on trunk(T.). By Lemma 1(a), the tree T, € F
corresponding to T, is a descendant of T”, and p(T:) = p(TY).
Therefore by the assumption trunk(T,) is in in(T7). Therefore v
is in in(T!), and hence f is in in(T",p;). Consequently e is in
(T, p). QE.D.
Lemma 4 immediately yields the following corollary.
CoroLLARY 1. Let F} and F} be two Steiner forests of A(;.
@ If F is tight and p(T) = p(T") for two comesponding trees
T € Fand T' € F, then in(T) C in(T").
(b) If F is tight and Z(Fy) = Z(F}), then in(F) C in(F)).
(c) If both F; and F] are tight and p(T") = p(T") for T' € F; and
T' € F|, then trunk(T) = trunk(T").

Proof. (a) By Lemma 4, trunk(T) is in in(T'). Therefore
in(T) C in(T").
(b) immediate from (a) above. v
(©) Since in(T) C in(T") and in(T) C in(T), trunk(T) =
trunk(T") . QE.D.

The elementary operation to modify Fj is “opening an interval.”
Assume that T' € root(Fy) spans N € Sy, U is an interval of T', and
p; = p(T,U). Suppose further that G has a tree T’ with p(T") = p;
which spans N and does not cross with F; — T, as depicted in Fig. 5.
Replace the root T in F; with T”, and let F] be the resulting forest of
N;. that is, let F{ = Fy — T + T'. Then Z(F}) = Z(F) — p(T) + p;.
Let G = G- V(F — T — DES(F, T,p))), and Iet] be the face
of G' such that f; C f]. Let p; = (t;,%+1), and let W be the walk
on the boundary of f; clockwise going from t;; to t;. Let Q; be
the walk on B; clockwise going from ¢; to t;,;. Then clearly the
necessary and sufficient condition for G to have T' above is :
ConprTioN B. Face f, is included in the inside of cycle Q; + W. =
We say that interval U (or inner pair p;) can be opened if
Condition B holds. A tree T which spans N and is contained in
W is said to be obtained from T by opening U or p;. Note that
if F} is tight then F} = Fy—T —T' is also tight. One can easily
check Condition B and find 7V in O(n) time. Furthermore one can
find T" without deleting the vertices in V(F; — T — DES(F,, T,p:))
from G if each vertex on a tree is marked with the net number of
the tree. That is, one can find 7' simply by traversing edges in
in(T") ~ Ur.esonc R in(T.) . Denote by m(F},T") the number of
these edges, and by time(F},T") the time needed to construct T"
from T, then we have:

LEMMA 5. time(F|,T') = O(m(F],T")).]

Using Lemmas 1, 2 and 4 and Corollary 1, one can prove the
following lemma.

(4]

LeEMMA 6. Let F} be a Steiner forest of network A(;, and let p; be
an inner pair of T' € root(Fy). If A(; has a Steiner forest F] with
pi € Z(F}), then p; can be opened and A(; has a Steiner forest F}'
with Z(F''y = Z(F}) — p(T) + pi. (See Fig. 5.)

Proof. We may assume without loss of generality that [=1,
trees T € F; and T’ € F{ span a net N € 8;, and p(T') = p;.
Furthermore by Lemma 2 we may assume that Fy is tight. Let
P; be the path on T connecting ¢; and ¢;,;. We first claim that
T has an interval U such that p; = p(T,U). Suppose otherwise,
then E(P;) N E(trunk(T)) = ¢, and hence p(T,U;) # p; for every
interval U; of T'. Since p(T',U;) is an inner pair of T', by Lemma 4
Uj is in in(T") . Consequently ¢runk(T") is in in(T") , contradicting
to the assumption that p; = p(T").

Since p; = p(T"), the inside of cycle Q; + trunk(T") includes
f2. Let T! be a son of T' € F{, and let T. € F correspond
to T!. Then by Lemma 1 p(T!) = p(T.), and by Corollary 1(a)
in(T:) C in(T}). Therefore Condition B above holds. QE.D.

We sometimes call a vertex set X CV a cut. The
capacity of a cut X is |X|. For X CV and net N € S, let
d(X,N) = MINz |V(T) N X|, where T runs over all trees in G
spanning N. The demand d(X) of a cut X is } . od(X,N).
We say that network Al = (G,S) satisfies the cut condition if
d(X) < |X| for every cut X C V. Clearly the following lemma
holds.

LemMA 7. Network A = (G, S) satisfies the cut condition if A has
a Steiner forest. | |

The converse of Lemma 7 does not necessarily hold, because
there exists a network which satisfies the cut condition but has no
Steiner forest. We are now ready to present the key lemmas on which
our algorithm FOREST?2 is based.

LEMMA 8. Let Fy be a tight forest of A, and let F> be a tight
forest of A(,. If an interval U; of T} € root(F;) crosses with an
interval Uz of Ty € root(F), then (a)-(g) below hold true.

@) If T, € root(Fy) — Ty and T} € root(F) — T;, then T, and T}
do not intersect with the same face f of G.

(b) None of trees in root(Fi) — T1 crosses with the path on B;
clockwise going from t(T3) to s(T2).

(c) None of trees in root(F,) — Th crosses with the path on B;
clockwise going from t(T}) to s(T1).

(@) Either p(T1,U1) € Z(F,) or p(T:,U2) € Z(F,) for an
arbitrary Steiner forest F, of A.

(e) Either p(T1,U1) or p(T2,U2) can be opened, and either A(; has
a tight forest F| with Z(F}) = Z(F1) - p(T1) + p(T1,U1) or AL,
has a tight forest Y} with Z(F3) = Z(F,) — p(T3) + p(T2,U3).

() If A(; has F| above, then tree T] € F| obtained from T; by
opening p(T1,U;) crosses with none of trees in root(F2) — Th, that
is, T{ may cross only with T3 or T3’s descendants. If A(, has Fj,
then tree Tj € Fj obtained from T5 by opening p(T2,U,) crosses
with none of trees in root(Fi) — Ti.

(g) Assume that p(T,U;) can be opened, and let F{ and T} be as
above. Let U, be the set of inner terminal pairs of 75 whose
intervals cross with Uy. Let Uj be the set of inner terminals pairs of
T, whose intervals cross with runk(T}) . Then | U, N US| < 1.

Proof. (a) Since Fy and F, are tight, there exist two maximal
sequences of vertices X = {r1,z;,..., %} and Y = {w1,¥2,...,9r}
such that

(1) 21 =y € V(U1) NV(U2), 7 € V(f1), and yr € V(f2):

(2) the tree in Fy containing vertex z;, 2 < i < g, is a son of the
tree in F} containing x;_;, and both z; and z;_; lie on the same
face boundary of G; and

(3) the tree in F» containing y;, 2 < i < 7, is a son of the tree in
F, containing y;_,, and both y; and y;_; lie on the same face
boundary of G.

Suppose for a contradiction that T, and 7, intersect with

face f. Then there exist vertices v, € V(T,) NV(f) and

v € V(T3) NV(f). We may assume that v, € V(trunk(T,)) and

vy € V(trunk(T})). Similarly as above, there exist two maximal

sequences of vertices X' = {},...,zp} and Y’ = {y1,...,4,} such

that =} = vo,), € V(f1), 9§ =w, ¥ € V(f2) and X' and Y’

satisfy conditions similar to (2) and (3). Let [W| =X uY uX'uY’,

then |W| < d(W), because

W< IX|+ 7]+ X'+ Y] -1,

and
dW) 2 X[+ Y|+ |X'| + [Y'].

Thus A’ does not satisfy the cut condition, and hence by Lemma 7
AL has no Steiner forest, a contradiction.

The proofs of (b) and (c) are similar to (a) above.

(d) Let T} € F, comrespond to T} € Fi, and let Tj € F,
correspond to Th € F». Suppose that p(TY) # p(T1,U:1) and
p(Ty) # p(T2,Uz) although intervals U; and U, cross at vertex
v. Then p(T1,U1) and p(T3,U>) are inner pairs of T{ and T3,
respectively. Therefore by Lemma 4 v € in(T}) Nin(T3), and hence
trees T} and T in forest F, would cross each other, a contradiction.

(e) By (d) above and Lemma 6 either F{ or F; exists.

(f) Using (a)-(c) above, one can easily verify the claim.

(g) Either p(T1,U1) € Z(F,) or p(T3,Uz) € Z(F,) for an
arbitrary forest F, of A. Therefore if p(Ti,U1) = p(T}) € Z(F,),
then by (d) above U; C Z(F,), and hence |Uz| = 1. Similarly,
if p(T1,Uh) = p(TY) € Z(F,), then |Uj| = 1. Therefore
|Uz N U, < 1 in either case. QED.

‘We denote by #(F1) the number of trees in F crossing with F5,
and by #(F,) the number of trees in F, crossing with F. Let
#(F1,) = #(F)) + #(F). By Lemma 8(g) | Uz N Uy| is either
1 or 0. For these two cases Lemmas 9 and 10 below show how
to modify Fy and F, to decrease #(Fi, 5). One can prove the
following two lemmas by using Lemmas 6, 7, and 8.

Lemma 9. Assume that p(Ty,U;) can be opened and Uy N U, =
{p'}, where p’ = p(T3,U2). Then p' € Z(F,) for an arbitrary forest
F, of Al. Let T} be a tree obtained from T, by opening p/,
and let F, = F, — T, +T;. If T, does not cross with Fy, then
#(F1,Fy) < #(F1, F,). On the other hand, if Tj crosses with Fy,
then (a)-(c) below hold:

(a) T crosses only with tree T} in Fi;

(b) trunk(T3) crosses with exactly one interval U] of trunk(T});
(© let T{ be a tree obtained from T; by opening U!, and let
Fl'= Fy — Ty + 17, then T} does not cross with F{, T{ does not
cross with F3, and hence #(FY', F}) < #(Fi, F»). | |

Lemma 10. Assume that p(T},U;) can be opened and U;NUY = 4.
Let Uz be an interval of T, with p(T3,Uz) € U,, and let U) be an
interval of T3 with p(T»,U}) € Uj.

Cask (a): Uy can be opened. Let Ty be a tree obtained from T
by opening U}, and let F} = F —~ Ty + T§. If T§ does not cross
with 7Y, then T does not cross with F}, T} does not cross with Fj/,
and hence #(F{, Fj) < #(F, Fy).

CasE (b): either U) cannot be opened or T crosses with T.
In this case U, can be opened. Let T} be a tree obtained from
T, by opening U, and let F) = B, — T3 + Ty. If T, does not
cross with Fy, then #(Fy, F3) < #(Fy, Fy). If Tj crosses with Fy,
then #(F{", F}) < #(F1, F,), where U!' is the interval of trunk(T})
crossing with trunk(T}), T} is a tree obtained from T} by opening

W and FY = Fy — T\ + TV n

4.3 Algorithm. Lemmas 8-10 immediately yields the following
iterative algorithm to find a Steiner forest of A_.

procedure FOREST2(N);
begin’
(1) find tight forests Fy of AL, and Fy of Al,;
(2) while #(F,, F,) > 0 do
begin
let an interval Uy of T} € root(Fy) cross with an interval Uy
of Ty € root(F);
(3) open intervals U; and U, and assume w.l.o.g. that U; can be
opened;
if T{ does not cross with F, then
@) (P, P,) = (F|, F) {replace F with F!}
else {T} crosses with T, by Lemma 8(f)}
if |U; N Uy| = 1 then {Lemma 9}
if T, does not cross with F; then
&) (Fy,Fy) = (F1,Fy)
else

(©) (P, F) = (F{,F)
else yuz N U, = ¢. Lemma 10}
if U5 can be opened and T4 does not cross with T} then
o (P, F) = (F|,F}
else {Case (b) of Lemma 10}
if T does not cross with F; then

®) (P, F,) = (P, F;)
else
) (P, F) = (F{",F})
end
end;

(5)

By Lemma 3 Statement (1) in FOREST2 can be done in O(n)
time. When the while loop (2) is executed once, #(Fy,F;)
necessarily decreases. Therefore the loop is executed at most k = ||
times. One execution of Statement (3) can be done in O(n) time.
At most two intervals of 7} are opened during one execution of the
loop, and each opening can be done in O(n) time. Thus one can
easily know that our algorithm runs in O(kn) time. (On the contrary,
Robertson and Seymour considered all possible O(n?) patterns of
“homotopy” (or Z(F)), so the straightforward implementation of
an algorithm whose existence was proved by them requires O(7)
time.)

We next give an O(n) time implementation of FOREST2. Let
Fi, be an initial tight forest of A, and Fy, of A(,, found by
Statement (1). Let Fj, be a final one of Al; and Fp. of A(,
obtained by FOREST2. When executing Statement (2) first, one need
to traverse all the edges in Ure out(muroct(1) trunk(T) to check
whether #(Fy, F>) = 0. However, when executing Statement (2)
later, one need not traverse all these edges but the edges on trees
which newly become roots. Therefore the total time needed to check
whether #(Fy, F») = 0 is

Y. OUE(runk(T))) = O(|E]) = O(n).

TeF,UR,

The straightforward execution of Statement (3) requires O(kn) time
in total as above. OQur idea to improve this to O(=n) is simply to
replace (3) with the following statement (3)':)

(3) open intervals U; and U, simultaneously, and when either U; or

U, say Uy, has been opened, terminate the operation for opening

Uz;

Statement (3) constructs F{ and F} from F; and P
simultaneously. By Lemma 5 time(F{,T{) = O(m(F{,T{))
and time(Fy,T3) = O(m(F;,T3)). We are assuming that
time(F{,T}) < time(F3,T3). Tree T{ € F{ found in Statement (3)
does not necessarily belong to Fi,. However if Tj ¢ Fy., then
T} € Fy.. Therefore, let T} € Fi.U Fae,i=10r 2, then the
execution time of Statement (3) is at most 2time(Fj,,77). Thus the
total execution time of Statement (3) is bounded above by the time
needed to modify trees.

Each execution of the while loop does either Statement (4),
(5), (6), (1), (8), or (9). In each case, the execution time of the
loop, excluding ‘the time needed to check whether #(Fy,F,) = 0, is
bounded by the following amount.

Case of (4). 2time(F},T}) =O(m(F{,T{)) = O(m(Fi,,T])). -
(Note that T{ € Fy. since every tree modified in an execution of the
loop (2) will never be modified in any later execution.)

Case of (5). time(F{,T}) + time(F3,T})

= O(m(F;,T3)) = O(m(Fz.,T3)) .

Case of (6). time(F{,T{) + time(F3,T3) + time(F{,T{)

= O(m(Fz,T3) + m(Fie, T7))-
Case of (7). 2time(F{,T{) + time(Fy,Ty)

= O(m(F|,T)) + m(F},T}))

= O(m(F1e, T}) + m(Fae, T3)).-

Case of (8). Since the outer pairs of T3, T}, and T are all
distinct, by Lemma 4 in(T3) C n(T3) U in(T3) . Therefore

m(Fy,T3) < m(F;,T;) + m(F,T3).
Hence,

time(F!, T} + time(FY,T¥) + time(Fj,T5)
< 3time(F;,T3) + O(m(F2,T2))
= O(m(Py, T3) + m(Py, T2)).-
Note that T € F3, and Tj € P}, in this case.

Case of (9). The execution time of the loop for this case is
bounded by the time for Case of (8) plus time(F}{", T{"), i.e.,

O(m(Fae, Ty) + m(Frs, T2) + m(Fre, T1")).
The trees modified in the six cases above will not be modified

again. Therefore one can know that the total execution time of the
algorithm is

3 O(m(Fi, T + Y, O(m(F2s, T))

TeR, TeFz,
+ 3 O(m(Fie, T + 3, O(m(Fie, T)) + O(n)
TER, TeR,
= 0(n).
Thus we have:
THEOREM 2. A Steiner forest of network Al = (G, S) can be found
in O(n) time for the case Si2 = ¢.]

5. Case In which there is a net intersecting with V(£1) and V(f2)

In this section, we present an algorithm FOREST3 for finding
a Steiner forest of network A = (G,S) for the case Si; # ¢.
FORESTS3 is based on several results in [RS] and a new algorithm
PATH for finding internally disjoint paths. We first outline FOREST3
consisting of thre¢ steps, using a concrete example.

STEP 1. This step reduces the Steiner forest problem to the
disjoint path problem. Let A; = (G, S1) and A/, = (G, S52). We
first find two Steiner forests F; of A[; and F; of A[,. In Fig. 7(a)
Fy and F, are drawn by thick lines. We then delete all vertices of
Fi+F from G, and let @' = G- V(F + F,). @ is drawn in
Fig. 7(b). Let 8} = {NNV(fi)| N € Si2}, and let A} = (&, S}).
Define S5 and A, similarly. We then find two Steiner forests Fj of
AL} and F} of N[, and contract all edges of F{ + Fj in G'. Let
AN 12 = (G", 8t,) be the resulting network. F{ and Fj are drawn by
thick lines in Fig. 7(b), and Ay, in Fig. 7(c). Each of the ki nets
in Sf, consists of exactly two terminals; one on the outer boundary
and the other on an inner boundary. Hence a Steiner forest Fip of
N4, indeed consists of vertex-disjoint paths. (As shown later, if Fy,
F,, F|, and Fj are appropriately chosen, then A;, necessarily has a
forest Fiy and Fy + F, + F| + Fj + Fi, is a forest of AL. Baker and
Pinter have solved the disjoint path problem of this type for a special
class of grids [BP].)

STEP 2. The disjoint path problem for A(;, is solved by this
step and the succeeding Step 3. In this step we simply find ki
vertex-disjoint paths P in G", each connecting a terminal on the
outer boundary B; and a terminal on the inner boundary B of
network A\(;,. P are drawn by thick lines in Fig. 7(c). Note that
these paths do not necessarily connect terminals of the same net.

STEP 3. In this step we modify 2 so that each path connects two
terminals of the same net. Let P’ be the resulting disjoint paths, then
F=F +F, + F| + F} + P is a Steiner forest of network A_. P’ is
drawn by thick lines in Fig. 7(d), and F in Fig. 1.

We next present the details of Steps 1,
subsections 5.1-5.3

5.1 Step 1. We find four forests Fi, Fy, Fy, and Fj for which
there exist desired paths P’. Since kjy > 1, the “homotopy” of F} is
uniquely determined. That is, if F} can be a subgraph of a Steiner
forest of A, then Z(F}) is uniquely determined. (Observe this fact
in Figs. 1 and 8(a) by considering all possible trees spanning net 1.)
Among all such forests, we find Fj with the minimal $n(F;). One
can find such a forest F} of A(; in O(n) time by applying procedure
FORESTI1. in Section 3 to network A(;, with choosing any terminal
(on By) of a net in Sy, as the starting vertex vo. It may be assumed
that a Steiner forest of A contains F; and F,. Therefore we delete
all vertices of Fy + F from G. Let AL’ = (G, S12) be the resulting
network. A is depicted in Fig. 7(b). If ky; = 1, then find in G’
a tree T spanning the net in Si2, and output F = Fy + F» + T as
a Steiner forest of A_. Thus we may assume that k;; > 2 and
S12 = {N1,Na,...,Ni,}. Then the outer boundary of G' contains
k12 vertex-disjoint walks Wy;,1 <1< k12 such that N; C V(Wh,),
V(W) NN; = ¢ for every j #i,1 < j < k12, and both of the
ends of Wj; are terminals -in N;NV(f1). Similarly define k3
vertex-disjoint walks W»;,1 < i < ki in the inner boundary of G'.
These 2 k2 walks are drawn by thick lines in Fig. 7(b). Let F| be a
forest of A’} contained in 3 Wj;, and let F} be a forest of Ay
contained in Y W>;. One may assume that Fj + Fj is contained in a
Steiner forest of AL. So we contract all edges of these 2 ki, walks
in G, and let A(;; = (G", 5},) be the resulting network. Thus we
have reduced the Steiner forest problem for Al to the disjoint path
problem for ALy, .

Since FOREST1 runs in O(n) time and the deletion and
contraction of edges can be done in O(n) time, STEP1 runs in O(n)
time.

2, and 3 in

(6]

5.2 Step2. In this step we find k;, vertex-disjoint paths in graph

G". Let G* be the graph obtained from G" as follows:

(1) add two new vertices s and ¢ to G; .

(2) join s with each of the k;; terminals on the inner face boundary;
and

(3) join ¢ with each of the k12 terminals on the outer face boundary.
Find ki, internally disjoint s-t paths in G*. Then ki

vertex-disjoint paths of G can be immediately obtained from them.

Applying network flow algorithms, one can find ki internally

disjoint paths in O(MIN {ki2n,m/n}) {ET]. Furthermore we can

find them in O(MIN {ki;n,nlogn}) time using none of flow

algorithms. Therefore Step 2 can be done in O(MIN {k127n, nlog n})

time.

5.3 Step 3. The paths found in Step 2 do not necessarily connect

terminals of the same net. In Step 3 we find vertex-disjoint paths of

N1z = (G", 8f,), each connecting the terminals of the same net. Let

T = {(si,t)]|1 <4 < kin}, where s; # t;, and s; lies on the inner
boundary and ¢; on the outer boundary. One may assume that G" is
embedded in the ring £ = {(z,y)|1 < 7% + y*> < 22} bounded by
two circles Cy, 22 + y? = 1, and Gy, 72 + y? = 22, as follows:

Image(s;) = (cos 32, sin 3,

Image(t;) = (2 cos 22,2 sin 3%, and

Image(G"YN(CUC,)

= {Image(s;), Image(t;)|1 < i < k2 }.

Let O be the origin of the z-y plane. Let P be a path in £
which starts with s; and ends with ¢;. Let 6 be the total angle turned
through (measured counterclockwise) by the line OX, where point X
moves on P from s; to t;. Possibly |§] > 2%. We define the angle
6(P) of path P by 0(P) = k120/2x. Thus 8(P) is an integer.

Let P = {P,,P,,..., Py, } be the k;, vertex-disjoint paths in G
found by STEP2, where P; starts with s; but does not necessarily
end with t;. Clearly 8(F;), 1 < 1 < ki, are all equal. We denote
this value by 6(P) and call it the apgle of vertex-disjoint paths P .
If (P) is a multiple of ki, then each path in P would have
connected terminals of the same net. Thus we may assume that
6(P) is not a multiple of k3. In Step 3, we modify 2 so that (P)
becomes a multiple of k2. Our algorithm uses the following result
(Theorem (5.9) in [RS, p.134]).

Tueorem 3. If G” has vertex-disjoint paths P; and P, with

(P1) < 6(P2), then G" has vertex-disjoint paths P with

0(P) = « for any integer o, (P 1) < a < 0(P3). n
One may assume that 0 < 0(P) < kiz; otherwise, re-embed

G" in T with fixing C; and rotating C, appropriately. Then

Theorem 3 implies that G has vertex-disjoint paths P’ such that

either 6(P") = 0 or 8(P') = k. We now present an algorithm

which finds vertex-disjoint paths P’ with 8(P') = 0 whenever there
exists such ', Similarly one can find vertex-disjoint paths P’ with

6(P') = k1. From now on, indices are counted modulo kiz, s0

Pku = .Po.

Let a=6(P), and let P; € P,1 < i< ki, be a path in "
connecting s; and t,.4. Let R;, 1 < i < k2, be the walk on the inner
face boundary counterclockwise going from s; 10 s;,;. Although R;
is updated during the execution of the algorithm, we always denote
it by R;. If there exist vertex-disjoint paths P’ with 6(?') = 0 in
G", then there exist disjoint paths P’ with 6(P') = 0 in a graph
obtained from G" by the following operation (a), (b), or (c):

(a) Delete the edge ¢ on R; incident with s; if e ¢ E(P;).

(b) Contract the edge e incident with s; if s; has degree one. (The
vertex adjacent with s; is not on Cj; otherwise, the vertex would
be terminal #;,., and consequently vertex-disjoint paths ' with
8(P"y = 0 would not exist.)

(c) If path P; intersects with R;_, except at s;, then let v be the
vertex on R;_; which appears last on P;, and replace the subpath
of P; from s; to v with the path on R;_; clockwise going from s;
tov.

One can easily observe that operations (b) and (c) preserve
disjoint paths P’ with §(P’) = 0. On the other hand it is intuitively
clear but nontrivial that operation (a) preserves paths P’ with
6(P') = 0. This fact can be immediately derived from Theorems

] _ in Fig. 1 (5.5 and (5.10) in [RS]. Apply (a)(c) above to Ay, and P
Fig. 7(2) Fy and 3 g" "e“‘g’fzkkﬂw £;$ in Fig repeatedly, and let Alj, be the new network for which none of
8)) _a(nd "m}g‘ —?il:s joinﬁ)aths 2 and (a)-(c) can be applied. Then each path P; — s; intersects with R; but
@ P 12 ’ does not intersect with R;_;. In this case the following operation (d)

can “rotate” such paths by angle —1.

(73

(d) Let u;, 1 < i < k2, be the vertex on R;_; which appears last on
P;_;. Note that u; # s;_;. Let Q; be the walk on R;_; clockwise
going from s; to u;, and let U; be the subpath of P;_; going from
u; 10 t;_14+q. Replace path P; connecting s; and t;,, with path
Q; + U; connecting s; and t;_1+, through u;.

Repeating the operations above « times, one can construct
vertex-disjoint paths P’ with 6(P") = 0 as below.

procedure STEP3(A y;, P);
begin
let (P) = a;
for i:=11to k;; do T :=an empty graph;
initialization of the vertex-disjoint
T1,T2, o T }}
(1) for m := o downio 1do
begin
2 fori:=110ky do
#V(Pi—-s)NV(Ri) # ¢
then SHORTCUT(P;, R;—1); {combined operation of
) (?)-(0)}
i=1
3 while V(P; — ;) NV(Ri—1) # ¢ do
begin
SHORTCUT(F;, R;-1);
i=i+1
end;
{none of operations (a), (b), and (c) is applicable to Nig.
Each path P; — s; intersects with R; and does not intersect
with R;_;. Operation (d) is hext executed}
for i:=110 k;; do
begin
let u; be the vertex on R;_; that appears last on P;_;;
let Q; be the walk on R;_; clockwise going from s; to u;;
let U; be the subpath of P;_; from u; t0 t;_1+m
end;
for i:=11%0 kp dOP;:=Q;+U;
end; {Statement (1) ends}
for i:=110 kyp do T;:=T;+ F;
P’ = (T}, Ts,...., T}
end;

paths P’ =

procedure SHORTCUT(F;, R;-1);
begin
let v be the vertex on R;_; which appears last on P;; {v # s;}
let R, be the subwalk of R;_; clockwise going from s; to v;
T; := T; + R,; {operations (a), (b) and (c). R, is determined to be

included in P;}
G =G - (V(R) —v);
8§ =V,

update P;, R; and R;_;

assume that the edges e;,ez,...,eq incident with vertex s; are

embedded in this order clockwise around s;, where e; is the first

edge of R;;

let e; be the first edge of P;;

gglew edges e1, €2, ..., 51, and update R; {operation (a)}
end;

We next show that procedure STEP3 runs correctly. If none of
(a)-(c) is applicable to A;; when the while loop (3) terminates, then
Operation (d) is applicable and the algorithm finds vertex-disjoint
paths P’ with 8(P') = 6(P) — 1. Therefore it suffices to show
that none of Operations (a)-(c) is applicable when the while loop
terminates. Just after SHORTCUT(P;, R;.;) is executed in the
while loop, P;—s; does not intersect with R;_i, and none of
(@)-(c) is applicable for i. Thereafter P; —s; and R;_i remain
vertex-disjoint as long as R;_; is not altered. R;_, is altered
only when either SHORTCUT(®;, R;—1) or SHORTCUT(P;_1, Ri—2)
is executed. Therefore none of (a)-(c) is applicable for any 1,
1 < i < k12, when the while loop terminates.

We next analyze the execution time of STEP3. The total
execution time of STEP3, excluding the time needed to find
intersections of P; and R;_; in the for loop (2) and in the while
loop (3), is proportional to the number of edges deleted from G, and
hence is O(n). Thus we shall show that the time needed to find
intersections of P; and R;_; is O(n) in total. When executing the
for statement (2), one can find all the intersections of P; and R;_;
by traversing the inner face boundary. On the other hand, traversing
only the edges newly appearing on the inner face boundary, one can
find new intersections of P; and R;_; caused by the modification of

the graph. That is, just after executing SHORTCUT(P;_1, R;_2),
traverse counterclockwise. the new portion of inner face boundary
from the end(# v) of e;, and, if we meet vertices on F;, then choose
the first one as new u;. Thus when executing the for loop (1) for
m = «, we traverse at most once each of the edges appearing on
the inner face boundary to find the intersections of P; and R;_;.
Furthermore, all the edges on the inner face boundary which are
traversed during the execution of the for loop (1) for m and are not
deleted from the graph are necessarily deleted during the execution of
the for loop for m — 1. Therefore each edge in G is traversed at
most twice, and hence the time needed to find the intersections of P;
and R;_; is O(n) in total. Thus Step 3 rmuns in O(n) time.
We have proved that FOREST3 runs in O(MIN {k;2 7, nlog n}),

and can conclude this section by the main theorem of this paper.

THEOREM 4. A Steiner forest of network A = (G, S) can be found
in O(MIN {(k12 + 1)n,nlog n}) time if all the terminals lie on at
most two face boundaries of a planar graph G. u
Remark. Theorem 4 can be generalized as follows: a Steiner forest
of AL = (@, S) can be found in O(n*~>MIN {(k12 + 1), nlog n})
time if all the terminals lic on a constant number of face
boundaries Bi,Bz,...,Bn, h > 2, of a planar graph G and each
net N € S satisfies either N C V(B;) UV(By) or N C V(By)
for some i,3 < i < h, where kjz is the number of nets N with
NOV(B) #¢and NNV (B;) # ¢.

Let h >3 and let F= Fi + Fp + ...+ Fy + Fi; be a forest
of A, where F;,1 < i< h, is a forest of trees spanning nets N
with N C V(B;), and Fi; is a forest of trees spanning nets N
with NNV(B1) ¥ ¢ and NNV(B2) # ¢. Then the relation
in(F}) C in(Fj) among F3,Fy, ..., Fy defincs a genealogy forest of
h —2 nodes. Since h is a constant, there are a constant number
(at most (h — 1)#~2) of genealogy forests. We consider all these
genealogy forests. For each of them we construct F3, Fs, ..., Fy in
the postorder. Thus, if F is a leaf in the genealogy forest, then we
first construct F3. By Lemma 1(c) and Corollary 1(b) it suffices
to consider at most n tight forests F3 with distinct Z(F3). Thus
for a fixed genealogy forest there are at most n*~2 patterns of
{Z(F3), ..., Z(Fy)}. Noting these facts and using FOREST3, one
can immiediately give an algorithm of the claimed complexity to find
a Steiner forest of AL.

Acknowledgment. We would like to thank Professor N. Saito for
many stimulating discussions. This research is partly supported
by Grant in Aid for Scientific Research of the Ministry of
Education, Science, and Culture, under grant number: General
Research (C) 62550253 (1987).

References
B. S. Baker and R. Y. Pinter, An algorithm for optimal
placement and routing of a circuit within a ring of pads, 24th
Ann. Symp. FOCS, pp. 360-370 (1983).
S. Even and R. E. Tarjan, Network flow and testing graph
connectivity, SIAM J. Compt. 4, 4, pp. 507-518 (1975).
L. R. Ford and D. R, Fulkerson, Maximal flow through a
network, Canad. J. Math., 8, pp. 399-404 (1956).
H. N. Gabow and R. E. Tarjan, A linear-time algorithm for a
special case of disjoint set union, Journal of Computer and
System Sciences, 30, pp. 209-221 (1985).
R. Hassin and D. B. Johnson, An O(nlog?n) algorithm
for maximum flow in undirected planar networks, SIAM J.
Compt., 14, pp.612-624 (1985).
M. R. Kramer and J. van Leeuwen, Wire-routing is
NP-complete, Report No. RUU-CS-82-4, Department of
Computer Science, University of Utrecht, Utrecht, the
Netherlands (1982).
J. F. Lynch, The equivalence of theorem proving and
the interconnection problem, ACM Sigma Newsletier 5:3,
pp. 31-65 (1975).
K. Menger, Zur allgemeinen Kurventheorie, Fund. Math.10,
pp. 95-115 (1927).
J. H. Reif, Minimum s-t cut of a planar undirected network
in O(nlog?(n)) time, SIAM J. on Compt., 12, pp.71-81
(1981).
D. Richards, Complexity of single-layer routing, unpublished
manuscript (1981).
N. Robertson and P. D. Seymour, Graph minors. VI. Disjoint
paths across a disc, Journal of Combinatorial Theory, Series
B, 41, pp. 115-138 (1986).

[BP]

[ET]

[GT]

[KL]

[Lyn]

{Men]

[Rei]

[Ric]
[RS]

(83

