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RECTILINEAR DRAWING OF A GRAPH ON A PLANE
WITH THE MINIMUM NUMBER OF SEGMENTS

Y. KAJITANI and T. TAKAHASHI

Dept. of E. E. Engineering, Tokyo Institute of Technology
2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan

A rivetted graph G(V,E) is a graph whose vertices are fixed on a plane in
position. Its rectilinear drawing D(G) is a configuration of G on the plane in
such a way that each edge is composed of horizontal and vertical segments. This
paper concerns with reduction of the number of segments. As a main result, it is
proved by presenting a linear time and space construction algorithm that any graph
has a rectilinear drawing such that the total number of segments is no more than
3|E]. It is shown that the 4-regular bipartite graph needs this number of

segments.



1.INTRODUCTION

A rivetted graph G(V,E) is a graph each
vertex of which an XY coordinate (position) on
an XY plane is assigned. A rectilinear
drawing, or simply, a drawing, D(G) of G is a
configuration of G on the plane such that each
edge is an alternating sequence of segments
parallel to the X axis (horizontal) or to the
Y axis (vertical) and that two segments are
allowed to have at most one point in common,
except, possibly, the endpoints. It is clear
that a rivetted graph, even if it is
nonplanar, has a rectilinear drawing if and
only if the vertices are assigned distinct
positions and the degree of each vertex is at
most four. Furthermore, when the vertices
are in general position, i.e. no two vertices
are assigned the same X-coordinate or Y-
coordinate, at least two segments are
necessary and five are enough for one edge.

For a given rivetted graph, its drawing
is not unique. In Fig.1(A), two different
drawings D,(G) and D,(G) are given for G in
(B) and (C), respectively. Each drawing has
its characteristics. As for the numbers of
segments, we have: D,(G) is consisting of
total 17 segments, of which 6 edges are
realized with two segments, and 1 edge with
five segments. The corresponding numbers of
D,(G) are 16 and 5, and O, respectively. It
has been checked for all possible drawings of
G that the minimum total number of segments is
16, that the maximum number of edges that are
realized with two segments is 6, and that
there is no drawing that attains both numbers.

Reduction of the segments in rectilinear
drawing of a rivetted graph is our main
concern. It may be significant in such a CAD
area that manipulates graphical
configurations. For example, it is related to
a better layout and routing of a VLSI chip,
and their data reduction in memory. Thus, in
the above example, the drawing D,(G) is the
desired one with respect to the total number
of segments.

The main result of this paper proves an
upper bound 3|E| for the total numbers of

segments for general rivetted graphs. The
proof is made constructive providing a linear
time and space algorithm to draw a given
rivetted graph with no more than 3J|E|
segments. The algorithm provides a drawing
without edges composed of 5 segments. The
bound is tight since it can be shown that any
4 regular bipartite rivetted graph needs 3|E|
segments at least. Furthermore, it is shown
that if the graph is not 4 regular, there

always exists a drawing with less than 3|E|
segments.

An interesting problem in this respect is
a decision problem 2-SEG which is to decide if
a given rivetted graph can be drawn all edges
with 2 segments. Though it is not presented
here for the space, the authors have proved
that 2-SEG and 2-SAT (2-satisfiability
problem; a standard decision problem in P) are
equivalent in computational complexity in the
sense that one is reducible from the other by
an O(|E|) time and space algorithms.

A similar problem, called the orthogonal
representation of a plane graph with the
minimum number of segments preserving the
region, is found in Tamassia [1] who solved
the problem providing an efficient algorithm
to get the required representation. The
problem was the one the authors also solved
independently but too late for publication.
While the problem in this paper is the one
originated. from the problem through the
discussion with Drs. R. Tamassia and I. G.
Tollis of University of Illinois, Urbana, USA.
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Fig.1 A rivetted graph G and its two rectilinear drawings




2.PRELIMINARIES

A rivetted graph G(V,E) is assumed to
satisfy the condition that vertices are in
general position and that the degree of each
vertex is at most 4. Note that G is not
assumed to be a planar graph at all. Let
m=|E| and n=|V]. An edge e between two
vertices u and v is denoted as e=(u,v). In a
drawing D(G), {[e] denotes the number of

segments of e and ¢[D(G)] the total number,

and (,[G] the minimum of ¢[D(G)] over all
drawings D(G).

For a vertex v on the XY plane, the
horizontal and vertical lines containing v are
called the x axis and y axis of v,
respectively. " The right (left) half of
the x axis of v is called the gi_g}_;E (x"
axis) of v. y* and y- axes of v are defined
analogously. They are called the half axes
of v while the whole x and y axes are the full
axes. One of the x* and x~ axes (y* and y
axes) is called opposite of the other. In a
drawing, a half axis without a segment is
called empty. While, a half axis with a

segment is called occupied.

LEMMA 1:

Let D(G) be a drawing in which e=(u,v) is
composed of ( segments between half axes a of
uand B8 of v. Then, ¢ is even (odd) if a
and B are orthogonal (parallel). Furthermore,
if =6, e can be redrawn to the one composed
of 2, 3, 4, or 5 segments without affecting
other configurations. [ ]

By this fact, drawings considerd here are
assumed that every edge is composed of 2, 3,
4, or 5 segments. Thus, it is always that

2n=([D(G)] <5m.

LEMMA 2:
Let e=(u,v)€E.

a. If a full axis A of u is available, e can
be realized within 4 segments.

b. Suppose that full axes 1 of u and p of v
are available. If A and p are parallel, or
orthogonal), e can be realized with 3 or 2
segments, respectively. ]

In a drawing, let an edge e=(u,v) be
drawn using half axis g of v. To get
another drawing by redrawing e so as to use
another half axis B8 of v is called to switch
e at vertex v from axis a to axis g§.
Consider two edges e and f incident to a
vertex v. To switch e and f at v is to

switch e and f at v from the axes of the ones
to the axes of the other.

3. TOTAL NUMBER OF SEGMENTS

In this section, the following theorem
will be proved.

THEOREM 1:

Any rivetted graph G has a drawing D(G)
satisfying the properties:

I. every edge is composed of 2, 3, or 4
segments, and

II. ¢[D(G)] <3m.

We prove the theorem providing an
algorithm to get a desired D(G). The
algorithm works in four phases. In Phase 1,
E is partitioned into the minimum number of
walks. In Phase 2, E is ordered following
the partition. In Phase 3, an initial
drawing which satisfies Property I is given.
In Phase 4, the obtained initial drawing is
modified to a drawing which satisfies both
properties I and II. Since the procedures in
Phases 2, 3, and 4 contain some essential
difference depending on if G is Eulerian or
not, they are described in two cases A and B
separatedly.

Without loss of generality, we assume
that G is connected. Futhermore, it is
assumed that n>3 and m=3 since the theorem
is trivial if n<2 or m<2.

A walk is an alternating sequence of
vertices and edges begimning and terminating
with vertices such that conmsecutive vertices
and edges are in adjacency relation in G and
that no edge appears more than once. If the
first and the last vertices are identical, the
walk is called a closed walk. If E itself is
a closed walk, it is called an Euler walk, and
the graph Eulerian.

Phase 1 (Partition of E):
Find a partition of E into the minimum
number of walks.

The following lemma is a list of known
properties of the walk partition which will be
referred to later.

LEMMA 3:

Let gz ={W,, ,Wo) be a set of the
minimum number of walks that partition E.
Then, ’



1. Let 6be the number of odd degree vertices.
Note that 6 is even. Then, @=1 if 6=0,
and @w=08 /2 otherwise.

2. If @ =2, every walk is mnot closed.
(Thus, the biginning and terminating vertices
of a walk are distinct.) [ ]

CASE A: G is Eulerian

Phase 2 (Ordering of E):
Find an Euler walk

W=(V,,€,,V5,€5,V3, -- s€m-1,Ves€mVi).
that satisfies the constraint;

C,: The second vertex v, and the last vertex
v, are distinct. .

Since n=>3, it is possible to find such W.

Phase 3 (Initial drawing):

The construction of edges proceeds from
one edge after another along W. The stage
when the edges e,, e,, ... , ¢ -, for 2<i<m
have been constructed and not the rest (and we
are going to add e;=(u,v) where u is the
common vertex with e; _,) is called the i-th
stage. At this stage, e; and v are called

the front edge and front vertex, respectively.
We start with e, following the comstraint;

C,: e,=(v,,V,) is composed of 2 segments.

For the 2 nd edge and the following, we follow
the constraint called the straight way

principle (abbreviated as STW principle) which
is:

C, (STW principle): Each pair of consecutive
two edges (e; _,,e;) for subscript pair (i-1,i)
=(1,2),(2,3), ... ,(m,1), must be on the same
full axis at the common vertex.

It is possible to follow C; all the
stages since at the i-th stage, ome of full
axes of the front vertex is empty whem i=2, 3,
... ,m-1, and the opposite axis of e, at v, is
left empty when i=m.

These constraints are still able to be
satisfied if we impose the following
constraints.

C,: When the front edge visits the last vertex
v, the first time (earliest at the 2-nd
stage), choose a half axis that is parallel to
the axis of v, on which e, lies.

Cs: Each front edge is constructed within &4
segments.

C, is possible to be satisfied because
all the axes are empty when v, is the first
time to be a front vertex since v,&(v,,V,) by
C,. Cs is also satisfied for e,, ... ,en-,
by Lemma 2a since at least one empty full axis
remains at the front vertex. For the last
edge e,, it is probable that only one empty
axis remains at the front vertex v,.
However, if C, is satisfied, there remains a
half axis of v, which is orthogonal to the
half axis of v, on which ey is. Therefore, ey
can be added with even number, which is 2 or
4, of segments. )

Thus we get a D(G) as an initial drawing
in which all the edges are composed of 2, 3,
or &4 segments. However, it is very doubtful
if the number of segments contained is no more
than 3m. In fact, we need a modification.

Phase 4 (Modification):

The idea of eliminating consecutive 4's
is applied which is described as follows. At
the i th stage (i=3, ... ,m-1) in Phase 3,
suppose that e; ; has been realized with 4
segments and that we anticipate that the front
edge e,=(u,v) needs 4 segments (if we proceed
as in Phase 3). As illustrated in Fig.2,
this situation indicates that front vertex v
has once been visited and the axes parallel to
the segment of e; at u are occupied.

We come back to the i-1 th stage. As
shown in the figure, consider to switch e; _,
at u from its half axis to the opposite one.
Since e, , used 4 segments, this operation
does not increase the number of segments of
the edge. (Possibly, it decreases to 2.)
This means that the current front edge
e;=(u,v) retains its possibility to use any
half axis contained in one full axis at u.
Furthermore, since i<m-1, e; can use any half
axis of a full axis at the front vertex v.
And these axes at u and v are orthogonal from
the fact that e; once needed 4 segments.
Then by Lemma 2b, e; can be constructed with 2
segments on these axes of u and v.
Construction of e; ., after that can be done
with 4 or 2 segments. Thus we require that
the i-1 th and i th stages are revised as
follows: Add e; with 2 segments. Then, add
e; ., within 4 segments.

The above consideration is generalized to
the following case. See an illustrative
example shown in Fig.3. Let i=3, i+psm-1,
and p=0. Suppose that we aknowledged at the




i+p th stage in Phase 3 that e;., is composed
of 4 segments and e;, ..., e.,., with 3
segments, and that we are forced to use 4
segments for the current front edge
e, .p=(u,v). Then, it is not difficult to
see that we can revise the procedure for e; _,,

,e;.p as follows.: Construct e;,, with 2
segments first. Then, construct e;., ;, ... ,
and e; in this order all with 3 segmentments.
Finally realize e; ., with & or possibly 2
segments. Note that the above idea cannot be
applied always to eliminating the last two 4's
if one exist.

Before estimating the number of segments
thus obtained, we must note the following
fact.

LEMMA 4: Any closed walk constructed
following the STW principle comsists of even
number of edges that consist of even number of
segments. [ ]

Now let N(W) be the sequence of the
numbers of segments corresponding to W in the
drawing obtained in the above. N'(W) denotes
the sequence derived from N(W) by deleting all
elements that are 3. Then, N'(W) satisfies
the following properties:

a. The first element is 2.

b. Any consecutive two elements, except the
last two, contains one 2.

c. The length is even.

) It is clear that the average of the
numbers of N(W) is 3 or less. ‘

ei-1: 4 line segs ej : forced to use

4 segments
— 56—
v
ei-2 e W—
u

Current situation

H

HR

Revising stage

Fig.2 Switch of ei-1 at u which makes e;
realizable with 2 segments

ei-1 : 4 line segs
ej : 3
eiv1 : 3
® ® o 0
.
H ei+p-1: 3
ei+p : 4

Fig.3 Eliminating consecutive 4's: Reconstruct ej+p
first with 2 line segs

CASE B:G is not Eulerian.

Phase 2 (Ordering of E):

For each walk, give an ordering
arbitrarily. (We do not require such a
constraint as C,.)

Phase 3 (Initial drawing):

Take a walk one by one and construct the
edges along each walk following only the
constraints C; and C;.

We do not require C,. Note that it may
be impossible to be followed for the second
walk and after since some axes are already
occupied by the previous walks. However, C;
is always possible to be satisfied. This is by
the same reason as in Case A for e;, i<m-1.

Thus, we get a drawing which contains no
edge with 5 segments.

Phase 4 (Modification):

~ Revisement of each walk is made by the
idea of eliminating consecutive 4's the same
as in Phase 4 of Case A. In a drawing D(G),
let N(W,) and N'(W;) denote as before the
sequence of the numbers of segments
corresponding to W, and the one obtained from
this neglecting 3's, respectively. For the
current D(G), N'(W;) <contains no two
consecutive 4's. But it is probable that the
length is odd and the first and the last
elements are both 4, contrary to the result in
Case A. Thus we need a further modification,
the idea of eliminating first 4.




Suppose that there is a walk W, in the initial
drawing D(G) such that the first element of

N'(W,) is 4. In other words, if W, is
denoted as
Wi=(vy,e5,V,e,, 1€p s Vps19€psr1y =ens),

all e,, ...,e, are composed of 3 segments and
ey, of 4 segments. Then, release all the
edges of W,, and reconstruct as follows.
Construct e,.,; with 2 segnments. Then,
construct e,, € .,, ..., and e, in this order
all with 3 segments. Then, come back to e, 4,
 again and go further to the end.

Let the resultant drawing be a new
initial drawing D(G) for which the first
element of N'(W) is 2. Important is that in
reconstruction, e,.;, €, ... ,e, are excuted
within the full axes whose half or full axes

were occupied by W, in D(G). This fact
guarantees the possibility of the
reconstruction independent from the other
configuration.

Given an initial drawing, apply the

operations of eliminating first 4 and then of
eliminating consecutive 4's, the latter
repeatedly to each W; . Then, N'(W;,) satisfies
the following properties.

a. the first element is 2,
nonempty.
b. any two consecutive two elements, except
the last two, containes one 2, and
c. the length is even.

It is clear that the average of the
elements of N(W;) is 3 or less. Hence the
proof of the theoren.

if N'(W) is

In the procedure, each edge is referred
to at most three times. First in
partitioning E into the walks, second as the
front edge, and the last on the way back in
the revised procedure. Note that the
reisement searches one edge at most once
because it is between two 4's or between the
first element and the first 4.

Corollary 1: The algorithm in the proof of
Th.1 runs in O(m) time and space. [ ]

4. GRAPHS THAT NEED 3m SEGMENTS

It will be shown here that the bound 3m
is tight by showing a class of graphs that
need 3m segments.

In a rivetted graph G, a vertex v is
called a right end (left end, upper end, lower
end) if all the adjacent vertices are inside
the left (right, lower, upper) half of the XY
plane with v as the -origin. G is called
bipartite if every vertex is either a right

end or left end, or every vertex is either an
upper end or a lower end.

THEOREM 2: If G is &4 regular and bipartite,
{m[G]=3m. .
PROOF:  Without loss of generality, we assume

that G is the type of every vertex being left
end or right end. Let L and R be the sets of
left end vertices and right end vertices,
respectively.  Then, |L|=|R|=n/2.

The x* half axes of the vertices of L and
the x~ half axes of the vertices of are called
the inside axes. The x° half axes of the
vertices of L and the x* axes of the vertices
of R are called the outside axes. Other half
axes are called the verti al axes.

Let D[G] be a drawing. There, an edge e
=(u,v) 1is called of type [inside,inside] if u
and v are on inside axes. While e is of type
[inside,vertical] if one of u, v is on an
inside axis and the other on a vertical axis.
Other types are analogously defined. Then, E
is classified into six subclasses depending
on the type. They are shown in Tab. 1,
together with the npumber ¢, the number of
segments an edge of the subclass consists of.
The last column denotes the numbers of the
edges of each type.

Type ¢ number of edges
[inside,inside] 3 a
[inside,vertical] 2 or 4 b
[inside,outside] 3 c
[vertical,vertical] 3 or 5 d
[vertical,outside] 4 e
[outside,outside] 5 f

Tab. 1 Types of edges in a drawing D(G)

The total numbers of inside ‘axes, vertical

axes, and outside axes are n, In, and n,
respectively. Therefore, we have

2a+b+c=n,

b+2d+e=2n,

c+e+2f=n.
From them, atb+c+d+e+f=2n and 2a+b-e-2f=0.

Thus,



¢ [D(G)] = 3a+2b+3c+3d+he+5f
=6n-b+e+2f
=6n+2a= 3m.
QED.

From the proof, we see that a drawing of
a 4-regular bipartite rivetted graph with the
minimum number (=3m) of segments is attained
only when D(G) includes no [inside,inside]
type edge and all the [inside,vertical] edges
are composed of 2 segments and all the
[vertical,vertical] type edges of 3 segments.

THEOREM 3:
If G is not 4-regular, (,[G}< 3nm.

PROOF:
The theorem will be proved in two cases,
G being Eulerian or not.

CASE 1: G is Eulerian

G contains a vertex
Represent the Euler walk by

of degree 2.

W=(V,,e1,V2,€5,...,V,,ep)

such that v, is of degree 2, i.e. the edges
incident to v, are e, and e,. Construct W by
the procedure CASE A, with an additional
constraint which is a modification of C,.

C.': Construct e, with 4 or 2 segments.

This is automatically satisfied if degree of
v, is 4 since we follow C,. Otherwise, the
last edge must be constructed as to satisfy
C,', which is trivially possible.
If g{e.]1=4, D(G) is modified as follows.

Switch e, at v, to y" or y axis so that ey
can be constructed with 3 segments.
Clearly, this operation is possible since the
switched e are on the parallel axes at v, and
at v,.

The resultant drawing contains one less
segments than D(G), and the proof.

If ¢[e.]=2, the average of the elements
of N(W) is less than 3 since N'(W) satisfies
a. the first element is 2,

b. two consecutive elements contains one 2
(without exceptions), and
c. the length is even.

CASE 2: G is not Eulerian
Of @ (>1) open walks, let any one be

W=(V €1, ,V0 q,0u 4,V0), (Vi#Vy).

Construct W by the procedure in CASE B
subject to the additional constraint C, and

Cs: e, at v, and e,_, at v, are orthogonal.

As mentioned before, we did not impose C,
in CASE B because it is probable that the
second and the following walks cannot satisfy
the constraint since we do not know which axis
is left at the front vertex. On the
contrary, the constraint can be satisfied if
the walk is the first one. C; can be
attained trivially if v, appears in W once. If
Vy appears twice, C; 1is automatically
satisfied since we follow constraint C,.

After W, construct all the walks left
exactly the same way as in CASE B. Let the
resultant drawing be D(G). Note that the
average of segment numbers for each walk is
not more than 3. Thus, if we show that the
average with respect to W is less than 3, the
proof will be completed.

Now let us see N'(W).
a. the first element is 2,
b. two consecutive elements contains one 2
(without exception), and
c. the length is odd.

Property c comes from Cs.

The sequence N'(W) is (2 4 2 &4 ... 4 2)
or the one some of its 4's are replaced by
2's. Hence, the average is less than 3.

It satisfies

QED.

5.EXAMPLE

In Fig.4, a rivetted graph G is shown.
G has an Euler walk W. The edges are ordered
along W. 'Fig.5 shows an initial drawing D(G)
by the procedures up to Phase 3. Since e; is
the first edge to visit v, (n=6), we choose x*
axis of v, which is parallel to the axis of e,
at v,. Because of this, e, (m=12) can be
realized within 4  segments. Suppose
otherwise, that is, if it were the case that
at vg, e; and e; use y axes and e,, uses x*
axis, e,, would need 5 segments.

Now go to Phase 4. Line seg number
sequence N(W) contains a subsequence (4,3,4)
corresponding to (eg,e,,e;). Then, we revise
eg, e, and eg. Construct e, with 2
segments. Then e, with 3 segments, the
number preserved, the configuration changed.
And then e,. Fortunately, the number of
segments of e; reduces from 4 to 2. By these
rearrangements, the axes used as a whole did
not change. Restart the procedure from ey
through the last e,,. The result is shown in
Fig. 6.



6.CONCLUDING REMARKS

The concept of the rivetted graph and its
rectilinear drawing is introcduced. The main
concern in this paper is to reduce the number
of segments contained. The main result
proves that the upper bound is 3|E| providing
a linear time and space algorithm to get a
drawing satisfying the bound. It is also
shown that the &4-regular bipartite rivetted
graph needs 3|E| segments. However, it is
open to determine, hopefully with a polynomial
time construction algorithm, the minimum
number of segments for each graph.
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Fig.4 A rivetted graph G with =12 and 3m=36
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