F oo Ty X A 1-2
(1988 5 23)

B+ 2 584 DVoronoi MDZEL

wmil %
BE7-A - &— - L0 HEEBHIAR

BEVHFORD ) A RO 2TAR3HEET. FROBRIKOEROY 2I V- 2
VICBRL T, HIREWHANRTH 3, Fic, BEMSBEEL EEEAPLRE T3 5%
FQW)HrNTVBBEIE, Ko A HoEEkeEx3, EHtcoFo/ 4
EV ) b T 2 B oRBOY X b2, A0 ARoBERELWS , BR2HET3
TRV EEORMCoOMBEZAZ I LB TES, ZOEETE. QR)PETBE TS
BRCAK D A FV (&) DR 2K 30 (0llog ) OFPNTY XL 2523, BEETON
%0 M) iy fTinic, 0wd ofigz v cEEL2ELS,

DEFORMATION OF MERGED VORONOI DIAGRAMS WITH TRANSLATION
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A Voronoi diagram of moving &ata points is an interesting target to apply to simulated deformation of
planar subdivision. As a special case, we consider the deformation of the topological structure of a Voronoi
diagram of points moving continuously in two groups.

Let P be a set of static points and Q(t) be a set of moving points with time parameter t , where
0<t<T. The Voronoi diagram V(t) of the point set P U (?) is deformed as time passes. The history of
V(t) means the list of all ‘catastrophic epochs’.

In this paper, we give an algorithm for processing the history of V(t) when Q(t) moves by
simultaneous translation. Our algorithm needs O(n? log n) time and O(#?) space to store the history in order
to retrieve the W(t) of any epoch in linear time.



Deformation of Merged Voronoi Diagram with Translation.

Introduction

The treatment of dynamic data is an important theme in computational geometry. Various kinds of
deformation of data must be considered separately dependent on the applications. For example, the
following three kind of deformation must be treated with different methods :

1. Discrete update (insertion and deletion).
2. Continuous movement.
3. Others (e.g. probabilistic movement ).

Discrete update has been well studied, and many beautiful algorithms and data structures have been created.
On the other hand, continuous movement of data seems to have been less studied, although it has important
applications to graphics, robotics, and other areas involving moving objects. In this article, we shall be
concerned with the deformation of the geometric structure of Voronoi diagrams caused by continuous
movement of data. Since Voronoi diagrams are used to simulate many planar objects, a mobile Voronoi
diagram is an interesting target to apply to simulated deformation of planar objects.

Let us begin with more general problems. Let S(¢) be a data set moving continuously on the ‘time’
parameter t. Let us use A(z) to denote for the output we get from S(#) at 7. The following two problems
occur naturally.

Problem 1 -- Fast construction.
Find an algorithm with suitable preprocessing on (t) such that it output A(t) for any given t faster than static
algorithm.

Problem 2 -- Investigation of history.
when the output A(t) takes discrete values with respect to t , report all catastrophic epochs and changes of A(1)
during t, < t< t,.

A mobile version of the sorting problem of points on a line is a problem of sorting the edges of planar
graphs. This edge sorting plays a key role in the point location problem on planar graphs. Thus, much is
known about both fast construction and investigation of history [21, [4], [7]-

For the two- (or three-) dimensional case, many algorithms for fast construction are known for convex
polytopes; for example, there are collision detection algorithms for convex polyhedra [3].

Some theoretical results are given on investigation of history, based on the theory of the
Davenport-Schinzel sequence [1], [5]. '

Voronoi diagram is not a discrete object. However, its ‘topological structure’ is discrete. Since the
deformation of Voronoi diagram of a general mobile point set is rather expensive to maintain and is very
naive for data degeneration, we shall deal mainly with a more specialized case, namely, the merging of two
mobile Voronoi diagrams.

We note the existence of an algorithm running in linear time [6] for merging two static Voronoi
diagrams. Hence, it is impossible to improve the theoretical cost with any preprocessing. Therefore, our
main target is to investigate the history of the topological structure of the merged Voronoi diagrams. We can
report all catastrophic epochs in O(n?log n) time. By storing the changes at these epochs in O(n?) space, we
can write the Voronoi diagram at any epoch in O(z) time.
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1. Formulation of the problem.

Yoronoi diagram.

Let S= {p,, p,,..-, p,} be a point set in plane. For any element p, of S, the Voronoi region (or
dominating region) of p, is

(11) R(pl) = {x: d(x3pi)s d(x’pj) fOl’ v]= 1,2,--,”},

where d(x,p) is the Euclidean distance between a and b. The plane is then subdivided into the Voronoi
regions of points of . The union of the boundaries of Voronoi regions is regarded as a planar graph. We
usually call this planar graph and its corresponding plane subdivision the Voronoi diagram of S, and denote
it by ¥(S). It is well-known that the Voronoi diagram (S) is constructed in O(n log n) time (optimal) and
stored in ((n) space [7]. By adding a point co representing infinity, we can regard a Voronoi diagram as a
graph on a sphere.

Suppose a Voronoi vertex v of I{(S) is surrounded by Voronoi regions R(q,), R(q,),-.., R(q,)- Then all
the points g, i = 1,2...,k are located on a circle with center v. Hence, the multiplicity at the Voronoi vertex v
is usually 3. We say that the vertex v has k-cocycular degeneration if its multiplicity k is more than 3.
Note that if one of points around a k-cocycular degenerating vertex is oo, then other surrounding points are
located on a line. We often call this case (k-1)-colinear degeneration.

The dual graph IXS) of ¥(S) is called Delaunay triangulation, which is a real trangulation if ¥(S) is
nondegenerate.

‘History” of deformation of Voronoi diagrams.

Let S(6)= {p(2), pA?),--., p{£)} be a set of moving points with respect to the time parameter ¢ . K{S(2)) is
its corresponding Voronoi diagram. To know the complete process of deformation of the topological
structure of a geometric object, it is necessary to know all ‘catastrophic epochs ’ -- the moments when the
object becomes singular.

Let us therefore consider the ‘history ’ of ¥(S(¢)) during 0 < ¢t < 7 for a fixed 7. Intuitively, it is the list
of all pictures when an edge appears or vanishes in the animation of deformation of the plane subdivision.
The following well-known results are the key to our method.

Lemma 1.1.
If't, is a catastrophic epoch of the Voronoi diagram V(S(t)), then V(S(t,)) contains a 4-cocycular degeneration.

Definition 1.2. Projective transformation [4].
We embed the plane as the x-y plane in a 3-dimensional space. For a point p=(a, b) on the plane, we consider
its projective dual plane (with respect to a conic) H(p) defined by the following equation:

Lp): z=ax+ by — (a2 + b?).

Lemma 1.3. (4-cocycular test)
If a 4-cocycular degenerating vertex v is surrounded by the four regions corresponding to the points
(41, 92 95.94) of S, then the four planes H(q,), H(¢,), H(gs), H(q,) meet at at least one point. In other words, the
determinant of the corresponding affine coefficient matrix is zero.

Lemma 1.3 gives us a computable necessary criterion for degeneracy. Suppose ¢ is a catastrophic epoch of

V(S(#)). Then at least one of the determinants corresponding to the four point subset of S(¢) is zero at ¢ = t.

Thus, a catastrophic epoch is a member of the set of roots of equations arising from those determinants.
Hence,the catastrophic epoch can be found by the following procedure.
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1.4. Procedure.

Solve the equations of the cocycular tests.

Select real catastrophic epochs from among those candidates.
Analyze the topological change at each epoch.

Store the change so that it can be retrieved efficiently.

Abdh

There are two drawbacks to studying general mobile configurations in this way. Firstly, we must solve
equations on ,C, four-point subsets of S, notwithstanding the high cost of solving quadratic (or more
complex) equations. Secondly, the analysis of the topological change at an epoch may become very heavy if
the data are highly degenerate. '

In the following sections, therefore, we deal with more specialized case, the problem of merging two
mobile Voronoi diagrams.

Merging mobile Voronoi diagrams.

Let P = {p,, Py, P} and O = {4, Gs,--., ¢} be two sets of fixed points. o) = {q(1), g{t),---, g{2)} is a
set of simultaneously moving points, defined as follows:

()= R(t)g; + A0

for rotation matrix function R(f) and translating vector function fz) determined independently of i.

It suffices to assume some weak conditions on R(f) and f{¢) in order to follow most parts of our
procedure below. However, for simplicity, we deal here with a very simple case where R(¢) is the identity
transformation and £{¢) is a linear translation.

)= g+ i
for a fixed vector &. We often write simply ¢ to represent g(¢) of O(f). Our target is the (merged) Voronoi
diagram (&) = W(S(t)) of the set S()=P U 1) -

To avoid unnecessarily high degeneration, we assume the following condition.

Condition 1.5.

1. Both V(P) and V(Q) are non-degenerate.
2. Forany t and for any i,j, p,# q(%), i.e. points are never overlapped.

Our algorithm is divided into three procedures, principally following procedure 1.4.

1.6. Main Algorithm.

1. FIND: Find the candidates of catastrophic epoch solving equations occurring in 4-cocycular tests.
2. SELECT: Select the real catastrophic epoch and determine the type of change.
3. STORE: Store the history efficiently.

2. Algorithm

Find candidates using the 4-cocycular test.

We noted that O{n*) 4-cocycular tests should be done as a rule. However, in the case of the merging
problem, we can show that it suffices to solve O(nm) equations. Furthermore, since points are linearly
translated, the equations are quadratic.

Lemma 2.1. If the 4 points of S(t) are 4-cocycular around a vertex of (1), then one of the following
cases occurs:
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1. Three of those points are points of P surrounding a Voronoi vertex of V(P), and the other is a point of
X0).

2. Three of those points are points of () surrounding a Voronoi vertex of V((Xt)), and the other is a point
of P.

3. Two of those points are points of P whose Voronoi regions in V(P) share a Voronoi edge, and the other
two are points of () whose Voronoi regions in V{({(t)) share a Voronoi edge.

Owing to the lemma 2.1, it suffices to check the 4-cocycular tests for the following patterns:

2.2. Tested patterns

1. A Voronoi vertex of V(P) and a point of Q.
2. A Voronoi vertex of V(Q) and a point of P.
3. A Voronoi edge of V(P) and a Voronoi edge of V(Q) .

We see examples of those patterns in Figure 2, in which dual terminology is used for visual simplicity.

Since V(P) and V(Q) are spherical graphs with vertex multiplicity 3, the total numbers of test cases in 2.2 is
13nm— 1ln— 1lm+ 9.

O(nm) catastrophic epochs can actually occur in the worst case. It is interesting and important in practice to
diminish the average number of 4-cycular tests, since it is heavy work solving the quadratic equations.
However, we shall not discuss this problem in the present article.

The procedure FIND is as follows.
FIND:

1. FIND1: prepare LIST1 , which is the list of candidates of catastrophic epochs derived from the 4-cycular
tests of type 1 of 2.2
2. FIND2: prepare LIST2 , which is the list of candidates of catastrophic epochs derived from the 4-cycular

tests of type 2 of 2.2. ‘
3. FIND3: prepare LIST3 , which are the lists of candidates of catastrophic epochs derived from the
4-cycular tests of type 3 of 2.2.

4. Merge: Merge LIST1, LIST2, LIST3 to get LIST_ROOTS, which is a sorted list with respect to time.
The procedures FINDI1, FIND2, and FIND?3 are essentially the same. Therefore, we only show FIND3.

Procedure: FIND3.

List_e(P) < = = = All Voronoi edges of V(P), length M
List_e(Q) < = = = All Voronoi edges of V(Q), length N
LIST3 < === Vacant: output list
FORi =1

DO

Pick the i-th element e, from List_e(P).

FORj =1

DO

Pick the j-th element £ from List_e(Q).
Solve the quadratic equation corresponding to the 4-cocycular test on the vertex set of ¢, and 5

IF the equation has a finite number (1 or 2) of roots in the range 0 < ¢ < T, put the pair
consisting of the root (time label) and the quartet of points in LIST3 for each root.
Moreover, if the root has multiplicity, label it with an asterisk.

ELSE nop

END DO
UNTILj =N
END DO
UNTILi =M
END Procedure FIND3
<5>



Selection of real catastrophic epochs.

We now have a sorted list LIST_ROOTS including all catastrophic epochs. To select catastrophic
epochs from this list, we apply “history updating ” on the Voronoi diagram V(t) from ¢= 0 until /= T.
First, let us study an easier case in which no pair of elements of LIST_ROOTS have the same time label. It
is easy to see that Voronoi diagram V(t) has no Voronoi vertex v of degree more than 4 for any ¢ in short,
no 5-point degeneration occurs.

Suppose that ¢, is an epoch and 4-point degeneration occurs at £, around a Voronoi vertex v, and the
corresponding 4-points of S(4,) are a, b, ¢, d. We can choose a sufficiently small positive number ¢ such that
there is no epoch during , — £ < t < f,+ ¢ . We then have the following lemma.

Lemma 3.1.

1. In V{t,— &), the Voronoi regions R(a) , R(b) , R(c) , R(d) surround an edge . Without loss of
generality, we assume R(a) and R(b) share B as their boundary edge.

2. In Wty + ), the Voronoi regions R(a) , R(b) , R(c) , R(d) surround an edge y,; moreover, R(c) and
R(d) sharey.

We see topological changes in Voronoi diagrams and their corresponding Delaunay diagrams in Figure 2.
This lemma permits processing by the following algorithm.

Procedure: SELECT

LIST_EPOCH < = = Vacant: output list
- Construct the Voronoi diagram V(0). -- Initial diagram.
V = V(0)
FOR1i =1
DO
(t; a, b, ¢, d) is the i-th element of LIST_ROOTS.
IF it is labeled with an asterisk, then nop
ELSE
IF the Voronoi region R(a), R(b), R(c), R(d) of V surround an edge e of V, then change the
topological structure of V into the other possible structure.
Store (¢; a, b, ¢, d) in LIST_EPOCH
ELSE nop
END DO
UNTIL i = the length of LIST_ROOTS
END procedure SELECT

Singular cases

In general, there may be more than two candidates in LIST_ROOTS with the same time label.
Actually, higher degenerations may occur in that case. However, the following lemma shows that we can
handle them at a low cost.

Lemma 3.2. There is no 7(or more)-point degeneracy in V(t).

Hence, it suffices to consider 5 and 6-point degenerations.

First, we consider the case where 5-point degeneration occurs at time z. We assume all combinations
of 4 points out of 5 are listed in LIST_ROOTS. Also we omit the easy case in which one of these
candidates is labeled with an asterisk. The topological change of Delaunay diagram of {a, b, ¢, u, w} at tis
then one of the two cases in Figure 4 if initial structure is the center pentagon with diagonals a_b and a_c.
We see in Figure 4 that both possible terminal structures have the diagonal u_w. Thus it suffices to know the
topological structure among {b, ¢, u, w}. This is determined by checking the sign of the gradient of the
4-cocycular test function at time ¢.

Next, we consider 6-point degeneration where all ,C; combinations of these points are listed in
LIST_ROOTS at ¢. In this case, we prepare the signs of gradients of all 4-cycular tests of 15 possible
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combinations. Checking those signs, we can find the correct data structure from the 14 possible structures. in
Figure 5. We note that if no listed candidates at ¢ is labeled with an asterisk , the rotation distance (cf.[8D)
between initial structure and final structure is 3. Hence, the number of candidates of final structure is at
most 5 (see Figure 5).

Finally, we consider 5 or 6-point degeneration where one of the combinations of 4 points is not listed
in LIST_G. The Voronoi diagram may then have real 4-point degeneracy during the period beginning or
terminating at ¢. It is easy to find the final structure from the initial structure in these cases.

Storing the history.

We have a sorted list LIST_EPOCH of length O(nm). However, it takes O(nm) time to retrieve the
topological structure of the Voronoi diagram M(¢) at ¢ = ¢, from LIST_EPOCH. We can construct a data
structure of size O(nm) such that we can retrieve the topological structure at any epoch in linear time.
This is done as follows:

1. Choose every n+ m-th epoch from LIST_EPOCH

2. Construct the (whole) Voronoi diagram at each chosen epoch, and make a list LIST_VOLONOI of
diagrams.

3. Store both LIST_EPOCH and LIST_VOLONOL.

Since a Voronoi diagram is stored linearly, the storage size of LIST_VOLONOI is O(nm). Further, it
is evident that the time needed to retrieve the topological structure is O(n+m).

Estimation of Algorithm.
The estimation of cost is as follows:

®  We need O(nm) operations to find LIST1, LIST2, and LIST3. These operations involve solving
quadratic equations.

®  We need O(nm log nm) operations to sort the lists to get LIST ROOTS.

®  We need O(nm) operations to do SELECT.

®  We need (rmlog(n+ m)) operations to make LIST VORONOI from LIST_EPOCH.

Acknowledgement: The author thanks Prof. Koukichi Sugihara of Tokyo University for his helpful
comments and discussion.
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Figure 1. Deformation of Voronoi diagram. Translating marked points, left diagram is deformed into right
one.

Figure 2. Patterns of local catastrophe.
1. Topological change of Voronoi diagram among three neighbored points (Delaunay triangle) of Pand a

point of Q.
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2. A Delaunay edge of P with that of Q.
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Figure 3. Catastrophe at 5-cocycular degeneration.
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