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PRIMAL DUAL ALGORITHM FOR
THE LEXICOGRAPHICALLY OPTIMAL BASE OF
A SUBMODULAR POLYHEDRON AND
ITS RELATION TO A POSET GREEDOID
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Derart«m%-} ot Mathemtics ,  Josaj U,m\,ey.q-\y
Sakado, Sattama 350-02
Jabam

We show that for a submodular polyhedron and its dual supermodular poly-
hedron there exists a unique lexicographically optimal base with respect to a weight
vector and they coincide. We also present a dual algorithm to get the lexicographically
optimal base of a submodular polyhedron which works on its dual supermodular poly-
hedron. This dual algorithm completely agrees to the algorithm of Morton, G. and
von Randow, R. and Ringwald, K. [1985], where their underlying distributive lattice
is a chain poset greedoid. Finally we show that finding the lexicographically optimal
base of a submodular system is essentinlly equivalent to finding the lexicographically
optimal base of a simple submodular system, where its underlying distributive lat-

tice is a poset greedoid. This fact indicates the importance of greedoids in a further
development of submodular system theory.
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1. Introduction

In the preceeding paper, we proved the existence and the uniqueness of a
lexicographically optimal base of a submodular system with respect to a weight
vector (Iwamura, K. [1987]). There we presented a greedy procedure to get it,
which is quite different from Fujishige’s algorithm [1980,1987) and explains the
algorithm of the first problem of Morton, G. and von Randow, R. and Ringwald,
K. [1985]. There, we noticed that the greedy procedure proceeds inversely to

the algorithm of Morton, G and von Randow, R. and Ringwald, K. [1985] and

agsked ourselves why?

Here, we present another algorithm to get a lexicographically optimal base
of a submodular system with respect to a weight vector. When the distribulive
lattice of a submodular system is simple, it is, in fact, a poset greedoid. It is
well known that there exist two algorithms to find an optimal base of a matroid
and/or a shelling structure (Korte, B. and Lovadz, L. [1984c|, Iwamura, K.
'[1985]) for a linear objective function. Hence our result can be considered as
another example for which there exist more than one greedy algorithm.

2. Deflnition

Let E be a finite set and denote by 2Z the set of all the subsets of E.
Let a collection F of subsets of E be a distributive lattice with set union and
intersection as the lattice operations, i.e., for any X,Y € F we have XUY, X N
Y € F. A function f from F to the set R of reals is called a submodular function
(Fujishige, S. [1984]) on F if for each pair of X,Y € F

FX)+ £(¥) 2 f(XUY) + (X NY).

A triple (E,F, f) of a finite set E and a distributive lattice 7 C 2% and a
submodular function f : F — R is called a submodular system. We assume
that 9, E € F and f(0) = 0. It is well known that for a distributive lattice
F C 2F with 0, E € F there uniquely exist a partition Il = {4;,...,4x} ol E
and a partial order < on II satisfying 7 3 X iff there exists an ideal I of poset
(I, <) such that X = U{4; | 4; € I} (Birkhoff, G. [1937], Fujishige, S. and
Tomizawa, N. [1983]). Note that the correspondence X + I is a bijection. For
a submodular system (F,F, f), by indentiflying each X € F with I C II, we
obtain a distributive lattice 7' C 2%’ with E' = II and a submodular function
fl+F — R.Thatistosay,  :={ICHO|U{4d; | A el}eF}={IC
IO | Iis an ideal of (II, <)}, f'(I) := f(U{A; | Ai € I}) for I € F'. We see
that (E', F') is a poset greedoid (Korte, B. and Lovasz, L. [1983, 1984a]) and
hence (E',F', f') is still a (simple) submodular system. (E',F', f') is called a
simplification of (E,F, f).
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For a submodular sytem (E,F, f), define a submodular polyhedron P(f)
and a submodular base polyhedron B(f) by

P(f)={z € R® | z(X) < f(X)(X € F)},

B(f) = {z € R¥ | =(X) < f(X)(X € F) and =(E) = f(E)},
where coordinates indexed by E and z(e) € R(e € E) and z(X) := Y . x z(e).
Define F := {E - X | X € F}, f(E - X) := f(E) - f(X)(E — X € F). Then

F ={X C E| X is an upper ideal of (E,<)} with 0, E € F,f(#) =0 and f is
suppermodular on F, i.e. for each pair of X,Y € F

FXUY)+ (X NY)>F(X)+F(Y).

(E,F, f) is called dual supermodular system of (E,F, f). Define a suppermod-
ular polyhedron P(f) and suppermodular base polyhedron B(f) by

P(f):={z € B" | z(X) > f(X)(X € F)},
B(f): = {= € R® | =(X) > f(X)(X € F),=(E) = F(E)}

respectively (Fujishige, S. [1984]). Then we have
f(9) = £(9) = 0, F(E) = f(E), B(F) = B(f).

Any vector z € B(f) = B(f) is called a base of B(f) = B(f). Let x, be
a characteristic function of u, i.e. xu(¢) = 1 for e = u and x4(e) = 0 for
e € E\ {u}. Define a dual saturation function saf() : P(f) — 2F by sai(z) =
{u€ E|Vd > 0,z — dxu ¢ P(f)}. Then we have the following lemmas, where
A(z) == {4 € F | z(A) = F(A)} (Iwamura, K. [1987], Fujishige, S. [1980}).

Lemma 2.1.  Let X € P(f) and A,B € F. If z(A) = f(A),z(B) = f(B),
then z(A N B) = f(AN B) and z(AU B) = f(AU B) hold.

g
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Lemma 2.2. Let z € P(f). Then saf(z) satisfies
3a(z) € F,z(sal(z)) = f(sai(z)).

Furthermore A(z) is a distributive lattice with a partial order relation defined
by the set inclusion and saf(z) is the maximum element of A(z).

0

Lemma 2.3. Let z € P(f). Then z € B(f) iff sai(z) = E.
a

Let n := |E|. For any real sequences a = (a1,...,an) and b = (b1,...,bn)
of length n, a is called lezicographically greater than or equal to b if for some
jie{,...,n} :
a;=b(G=1,...,j—1)
a; > b;

or
a;=b; (i = 1,...,n).

A vector w € RF such that w(e) > 0 (e € E) is called a weight vector. For
a vector z € RF, denote by T(z) the n-tuple (or sequence) of the numbers
z(e)(e € E) arranged in order of increasing magnitude. Given a weight vector
w, a base z of P(f) is called a lezicographically mazimum base with respect to the
weight vector w if the n-tuple T((z(e)/w(e)).ek) is lexicographically maximum
among all n-tuples T'((y(e)/w(e))eer) for all bases y of P(f). The mathematical
programming problem to get ¢ € B(f) such that

T((z(e)/w(e))ecr) =Lexicographically maximum T((y(e)/w(e))ecr)
subject to y € B(f)

is called wlmaz b (weighted lexicographically mezimum base) problem for a
submodular base polyhedron B(f).

For a vector z € RF, denote by T(z) the n-tuple (or sequence) of the
numbers z(e)(e € E) arranged in order of decreasing magnitude. Given a weight
vector w, a base z of B(f) is called a lezicographically minimum base with respect
to the weight vector w if the n-tuple T((z(e)/w(e))eecr) is lexicographically
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minimum among all n-tuples T((y(e)/w(e))eer) for all bases y of P(f). The
mathematical programming problem to get z € B(f) such that

T((z(e)/w(e))ecr) =Lexicographically minimum T((y(e)/w(e))ecx)
subject to y € B(f)

is called wl min b (weighted lexicographically minimum base) problem for a sub-
modular base polyhedron B(f).

3. Primal dual algorithms for the lexicographically optimal base of a sub-

modular polyhedron and its relation to a poset greedoid

In Iwamura, K. [1987], we have developed an algorithm to get the (unique)
lexicographically maximum base with respect to the weight vector w.

Algorithm to get the lexicographically maximum base (primal)

Step 1. Seti:=1 and compute c; := min{% | 9 # A € F} and set U,,(e) :=
c;w(e)(e € E).

Step 2. If sat(U.,) = E, then STOP.

Step 3. Compute ¢; = min{'%@{% | A€ F, A\ sat(U,;) # 0} and set
Cit1 = ¢; + €; and set

Ue,,,(e) :== Ue:(e) for e € sat(U,;),
SR ) Uei(e) + sw(e) for e € E — sat(U,).

Seti:=1i+1 and go to Step 2.

With Lemma 2.1.-2.3., similar arguments as that of Iwamura, K. {1987]
show that the following algorithm produces the lexicographically minimum base
with respect to the weight vector w.
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Algorithm to get the lexicographically minimum base (dual)

Step 1.  Seti:=1 and compute ¢; := maz{% |0 # A€ F}and set Ug(e) :=
tiw(e)(e € E).

Step 2. If sai(Ugz) = E, then STOP.

Step 3. Compute € := min {%}%% | A\ 3al(Us) # 0,4 € F} and set

Cit1 = ¢; — € and set

Uzgale) = { =(e) — &w(e) ig: : 2 gt\(avatz;]a)
Seti:=1i+1 and go to Step 2.
Suppose that the above algorithm stops after d iterations, then we have
( ciw(e)(e € 3af(Uz))
Gw(e)(e € 3a¥(Uz) \ 3at(Uz))

Uz;(e) = ¢ %;;w(e)(e € sal(Uz) \ sat(Uz=x))

| Zu(e)(e € 30H(U=) \ 38i(Usi=s) = B\ 58l(Usy),
Us € B(f) = B(f),% cY3al(Us) C ... C 3al(Us;) = E which are all in
F, Uz (3el(U5)) = f(3al(Uz)) (1< i< d) and e > >...>¢C4.

Theorem 3.1. (Primal-dual theorem). The above U is the lexico-
graphically maximum base with respect to the weight vector w.

Proof. We use Theorem 3.3 of Iwamura, K. [1987]. Define c(e) = Uz(e)/w(e)
(e € E). Then we see that § = d with é = ¢3,é8; = ¢a_1,...,8d—1 = C2,64 = €1.
Using Uz; € B(f) = B(f), we get

Us(E) = f(E) = f(E),
Usz(E — 3ai(Uz;)) = f(E) — F(sai(Uz))

= f(E) - {f(E) — f(E — sai(Uz))}
= f(E — 3ai(Uz)),

*) X C Y means X is a proper subset of Y.
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where § C E — sal(U5—) C E—R(Ua_—,) C...CE—3al(Uz) CE,allin
F. Furthermore E — 3af(Uz) = {e € E | é(e) < €i71}(0 < i < d —1). Hence
by Theorem 3.3 of Iwamura, K. [1987] we get that Uz is the lexicographically
maximum base with respect to weight vector w.

g

A careful reader would have noticed that the proof for Theorem 3.1 of Iwa-
mura, K. [1987] remains valid for z € P(f). Hence the following mathematical
programming problems

Lexicographically maximum T'((y(e)/w(e))eer),
subject to y € P(f)

Lexicographically minimum T((y(e)/w(e))ecE),
subject to y € P(f)

have the same solution as that of wlminb — and wlmaz b — problem. Hence,
we call these problems wlo (weighted lexicographically optimal)-problems for a
submodular system.

Let (E, F, f) be a submodular system and let (E', 7, f') be its simplifica-
tion. Let w(e) > 0 (e € E) be a weight vector and let w'(4;) := 3, ¢ 4, w(e) >
0(Adi=e;€eE'(1<i<k)).

Theorem 3.2. Let z'(¢')(e' € E') be the lexicographically maximum base
of (E',F',f') with respect to the weight vector w' just above. Let z(e) =
(w(e)/w'(e}))z'(¢}) for any e € €}, e} € E'. Then z(e)(e € E) is the lexicograph-
ically maximum base of (E,F, f) with respect to the weight vector w.

Proof. Submodular polyhedrons corresponding to (E',F, f') and (B,F,f)
become

P(f')={z' € R¥ | 2'(4) < f'(A)(4 € F")}
and
P(f)={z € R¥ | z(X) < f(X)(X € F)}

respectively.

Let c'(e') = (z'(e')/w'(e'))(e' € E') and let c(e) = (z(e)/w(e))(e € E). Let
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the distinct numbers of ¢'(¢')(¢' € E') be given by ¢} < ... < ¢}y and define
St ={e' € E'| ()<}, Si={e€ E| cle) < c;}. Then the distinct
numbers of c(e)(e € E) are just the same as that of ¢'(¢')(¢’ € E'). By theorem
3.3 in Iwamura, K. [1987], we see that

Sie 7 and /() = £(S) 1 <i< 7).

z € B(f) because forany X € F, X =U{4; | Ai € I}, I € F' and z(X) =
Y aier Leea; 2(€) = La,er 2'(4i) = 2'(1) < f'(I) = f(X) with =(E) = f(E).
By the definition of 7' and S} € F', weget F D U{A; | A; € S} ={ec E|
c(e) < ¢t} = S; with z(S;) = f(S:) for 1 <i < p'.

Again by theorem 3.3 in Iwamura, K. [1987], we get the conclusion.

0

Let (E',F') be an arbitrary poset greedoid on E' = {e},...,e,}. Let f'
be a submodular function on F' with f'(#) = 0. Then (E',F', f') is a simple
submodular system. For each e} € E', assign a subset E; of E such that
ENE, =0(1<i<j<m)andU_, Ej = E.Let |E| = 31, |E{] =n,and let
F:={U;cr Bi | {e; | i € I} € F'}. Then clearly (E, F) is a distributive lattice
with set union and intersection as the lattice operations, and @, E € F. Define
f:F o Rby f(U;er Fi) = f'{e; | i € I} for'any {¢} | i € I} € F'. Then f is
a submodular function with f(9) = 0 and so (E,F, f) is a general submodular
system, which we call the ezpansion of (E',F', f'). In fact, the simplification
of (E,F,f) is (E',F', f'). Given a positive weight vector w(e)(e € E), define
w'(e}) == w(E;) = 2. ep; w(e). Then w'(e}) > 0 for any e} € E'.

Corollary 3.3. (Expansion theorem). Let z'(e')(¢e' € E') be the lexi-
cographically maximum base of (E',F', f') with respect to the weight vector
w'. Let z(e) = ;%z’(e&) for any e € E! e, € E'. Then z(e)(e € E) is the
lexicographically maximal base of (E,F, f) with respect to the weight vector
w. '

Proof. Same as Theorem 3.2.
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