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A UNIFIED VIEW ON TREE METRICS

Katsumi OHMORI and  Eiichi TANAKA
Department of Information Science, Utsunomiya University

2753 Ishiimachi, Utsunomiya, 321 Japan

This paper describes a unified treatise on tree metrics already proposed. These are the

Tai

metric, the metric defined by the structure preserving mapping, the metric by the strongly struc-

ture preserving mapping and the Selkow metric. By introducing ''the nearest ancestor determined

by a mapping', these metrics are classified in a simple way and the similarity by the weakly
structure preserving mapping can be introduced. The computing methods for these metrics and

similarity are also stated.



1. Introduction

A considerable amount of work has
been done on sequence comparison for
problems such as string correction,
molecular biology, human speech, codes
and error control, and so on [1]. Tree
metrics have been also studied [3-14].
Potential applications of tree metrics
include the areas of behavioral science
[3], data base [5], clustering [7],
waveform correlation [9], and so on.
Among various tree metrics, Tai's metric
[6] seems to be the most fundamental
one. Selkow's metric [4] is a strictly
restricted Tai's metric. Between these
two metrics, several metrics have. been
defined [10-12]. However, the
interrelation between these metrics is
not known clearly. 1In this paper, by
introducing a concept "the nearest
ancestor determined by a mapping", we
give a unified point of view for tree
metrics. Furthermore, we propose a new
similarity between two trees.

2. Definitions

In this paper all trees we discuss
are rooted, ordered, and labeled.
[Definition 1] Numbering in preorder.
A tree T is numbered from one in
preorder for nodes of T. A positive
integer represents a node.
[Definieion 2] Notations

T(k) denotes a subtree of a tree T
whose root is k. Ch{k) and An(k) denote
the set of children of k and that of
ancestors of k, respectively. N(k)
denotes the number of nodes of T(k).
Let N mean N(1). +t(k) denotes the label
of node k. The rightmost leaf of T(k)
is called the end leaf of T(k) and
denoted by el(k).
[Definition 3]
subtrees.

Separation of nodes and

For any nodes k4 and ko (k1#k2), ky
and k, are said to be separated if k1 is
neither an ancestor of k2 nor a
descendant of ky. Furthermore, if k
and k, are separated, T(kq) and T(,) are
said to be separated.

[Definition 4] Forest

A sequence of separate subtrees
T(kq)y Tlkp)y weey T(ky) (kq<kp<enncky)
is called a forest of T. A subtree T(k)
is also a forest. If the forest is
composed of all the nodes from k to
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Fig. 1 Tree and Forest.

m(k<m), it is denoted by F(k,m).
In Fig.1, Ch(4)={5,7}, An(4)=(1,2},
N(4)=(1,2), N(4)=4, t(4)="E", el(4)=7.

Before discussing tree metrics, let
us review briefly the weighted
Levenshtein distance [2].

The following three operations to
transform one string into the other and
their weights (or costs) are considered:
(1) substitute another symbol for a
symbol (cost p); (2) insert an extra
symbol (cost gq); and (3) delete a symbol
(cost r). 1In general, p<q+r. Because
if p>qtr, a substitution is always
regarded as a pair of an insertion and a
deletion.

[Definition 5] The
Levenshtein distance.

Let A=aqaj...a; and B=b4Dbjy...b, be
two finite strings of symbols. A
mapping M from A to B is a set of
ordered pairs (i,j) (1<i<m, 1<j<n). Let
I={1i|(1,j)4M) and J=(j|(i,j)¢M}. Then,
M represents a transformation from A to
B under the following interpretation:

(1) For (i,j)4M, if airr‘bj, by is

substituted for a;;

(2) If j4J, b, is inserted;

(3) 1f ifT1, a; is deleted.

Let M be the set of all these possible
mappings from A to B. THen, the minimum

cost from A to B, denoted by D(A,B), can

be defined as follows:
D(4,B) = min (
+ (m-|I])*r).

weighted

p(i,J) + (n=]|J|)*q
(2-1)

where |I| denotes the number of

elements in I, and

0: if as=b.;

i .)= i )

p(1,] {p: if a;#b..
D(A,B) is called the weighted

Levenshtein distance (WLD) from A to B
if the mapping M satisfies the following




conditions.
For any pairs (iq,j4)s (ip,ip)4M,
(1) i=i, iff J1=dos
(2) i4<i, iff 34<30-
D(A,B) can be computed by applying the
following formula, iteratively:

ali-1,3-11+p(4,j),

dfi,j] = min< dl i ,j-11+q,

dafi-1, j l+r,

(2-2)
where
a[o0,jl=j*q (0<jsn),
dli,0}=i*r (0<i<m).
Then, D(A,B) = d[m,n].
The time and space complexities to
compute D(A,B) are proportional to mn.

In mathematical literatures, the
word "distance" is ordinarily used to
indicate a function 'd' which satisfies
the metric axtioms:

For all A, B and G,
(1) Nonnegative property :

a(4,B)>0;
(2) Zero property :
d(A,B)=0 iff A=B;
(3) Symmetry H

d(A‘)B)=d(B’A) H
(4) Triangle inequality :
d(A,C)<d(a,B)+d(B,C).
WLD satisfies the metric axioms if the

insertion cost equals to the deletion
cost, that is, g=r.

Let us turn to tree metrics. We
will use a similar approach to define
transformation between trees and tree-
to-tree distances. The three edit
operations on a labeled node, that is,
substitution (cost p), insertion (cost
q) and deletion (cost r) are considered.
A mapping between trees is regarded as a
transformation between trees. (i,j){M
means that a labeled node i mapped to a
labeled node j (1<idNy, 1<j<Np). Since
the mapping conditions of WLD have no
information on tree structures, a
mapping M from Ty to Ty must satisfy
conditions about tree structures. Tai
proposed the following mapping.
[Definition 6] The mapping conditions
of Tai's distance [6].

For any pairs (i4,14),(ip,jpo}M,

VANRVAW, WANNAN

TA [delete D] [substitute S for R] [insert E!

Fig.2 Transformation and mapping
from Ty to Tp.

S
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Fig.3 Examples of non-Tai mappings

and a Tai mapping.
(1) iq=iy iff J1=30s
(2) i1<dy iff J1<323

(3) ii€An,(iy) iff

Here we call it the Tai mapping. (1)
means one-to-one correspondence, (2)
means that a cross mapping is prohibited
and (3) means that the ancestor-
descendant relation does not change. If
11440, (iy) and jqéAng(jp), then it is
obvious from preorder numbering that
i4<iy and j4<j,. That is, (2) states
that the order relation between separate
nodes is preserved.

The minimum cost under the Tai
mapping is called the Tai distance. The
Tai distance D(T,,Tp) satisfies the
metric axioms in case of g=r.

Jq QAHB(jz)-

3. Computation of the Tai distance

In this section, we propose a
simple algorithm for computing the Tai
distance.

The word "mapping" and M mean a Tai
mapping in this section. The set I and
J, defined in definition 5, are again
used hereafter.

[Lemma 1]

Let Ry and Rg be the roots of Ty
and Ty, respectively. Suppose M is the
minimum cost mapping from T, to Tp.

~3~



Then RA-(I and/or RB-(J.

(Proof) Assume, for the sake of
contradiction, that RyfI, RpkJ and M is
the minimum cost mapping. Let An(I)

=( An,(i)|i4I)}. Then An(I)#() because
RyéAn(I). Similarly, An(J3)#{}. Let
M'=M ((i',j')} for i'tAn(I) and j'é
An(J). Since M is a Tai mapping, M' is
also a Tai mapping. Assume that the
cost of the transformation represented
by M be ct+q+r, that is, i' is deleted
and j' is inserted. Then the cost of
the transformation by M' is c+p, since
j' is substituted for i'. Apparently,
ctp<ct+qg+tr. This contradicts our
assumption that M is the minimum cost
mapping.
[Definition 7]
subtrees.

If (i,j)éM, we say that subtree
TB(j) is substituted for subtree TA(i).
The mapping condition (3) is apparently
equivalent to the following.

For any (i,j), (i',j") & M (i#i',
i#i'),

it is in T,(1)
T(4).

Therefore, a substitution of Ty(j) for
TA(i) means that a mapping from TA(i) to
Tg(j) meets the mapping condition 3).

From lemma 1 and the above
definition, one of the three cases (a),
(b) and (c) gives the minimum cost
mapping from T,(x) to Tg(y):

(a) TB(y) is substituted for TA(x);
(b) One subtree of Tp(y) is substituted

Substitution between

iff j' is in

for TA(x);
(c) TB(y) is substituted for one

subtree of TA(x).

Let pa(x,y), Ab(x,y) and Ae(x,y)
be the minimum costs in case (a), (b)
and (¢), respectively. Then the Tai
distance D(TA(x),TB(y)), which is stored
in D[x,y], is the minimum value of
Aa(x,y), Ab(x,y) and Ac(x,y).

The main algorithm for computing
the Tai distance is as follows:

[Main algorithm]
for x:=N, downto 1 do
for y:=Ng downto 1 do
begin

if {x is a leaf) then
(Np(y)-1)*q:

if tA(X)(-LabB(y);

(Ng(y)-1)*q+ps

(3-1-1)

Dlx,y]:=

~4~

if ty(x)#Labg(y);

if {y is a leaf} then (3-1-2)
(Ny (x)-1)*r;

if tg(y)4Laby(x);
(Np (x)-1)*r+p;

if tp(y)4Laby(x);

Dlx,yl:=

if {Neither x nor y is a leaf]} then
(3-1-3)
Dix,yl:= min { Aa(x,y), A b(x,y),
Ac(x,3));
end;
D(Ty,Tg):=Dl1,11;
where Lab(k)=(t(k')|k' in T(k)}.

If x is a leaf, an arbitrary node
of Tg(y) can be substituted for x. The
remaining nodes of Tgp(y) are considered
to be inserted. Hence, we get the
formula (3-1-1). If y is a leaf, we
have the formula (3-1-2).

T, (%) Tgly)

Fig.4 Substitution of TB(y') for

Ty (x).

Let us consider the case (b) (See
Fig.4). Let (x,y")€M, y' in TB(yc) and
ye&Chg(y). Then the remaining subgraph
by removing Tglyc) from Tg(y) are

inserted. Furthermore, the minimum cost
mapping from T,(x) to Tg(y') is
identical with that from T,(x) to
TB(yc). Therefore, Ab(x,y) can be
computed by the following formula:
Ab(x,y)= min (Dfx,y:]1+(Ng(y)-Np(y:))*q)
- ol ) Aty
Similarly,
Ace(x,y)= min [D[x.,y1+(N,(x)-N,(x;))*r
( ,}’) xiEGhAExi’y ( A( ) A( 1(3_3;
Let us investigate the case (a).
As in Fig.5, using the mapping
conditions and definition 7,
substitution of Ty(y) for T,(x) can be
decomposed into that of Tg(j4) for
Ty(iq), that of TB(jZ) for TA(i2), veey
that of Tg(j,) for Tp(i,) such that both
Typ(iq), Tplin), -y Tp(iy) and Tg(jq),
Tp(ig)s ««» Tg(j,) are forests, and any




Fig.5

Substitution of Tg(y) for

TA(X) .

T x

i+N, (i) J+Ng (3)
i L3 /3 L
1+l J+L /

elA(x)

Fig.b Computation of Aa(x,y) for

the Tai distence.

node outside these forests is inserted
or deleted. Hence, to compute Aa(x,y),
we must check up the all possible pairs
of forests. we can use the
technique of dynamic programming.
[Computation ofAa(x,y): the Tai
distance]

Each da[1,j] (x<igely(x),y<jLelp(y))
stores the distance from forest FA(i,
elA(x)) to forest FB(j,elB(y)). As
boundary conditions, d[elA(x)+1,j] is
the cost of insertions of nodes j, j+1,

However,

cost of deletions of nodes i, i+1, ..,
ely(x). Aa(x,y) can be computed by
applying the following formula
iteratively:

81 = ali+Ny (1), j+Ng(§)] + Dl1,j1;

62 = dl i ,j+1) + q; 8:2:%3
§3 = dli+1, j 1 + r; (3-4~3)
ali,j] = min{ &1, 62, &§3}, (3-4)

where, the boundary conditions are
d[elA(x)+1,j]=[elB(y)+1—j}*q

(y<igelg(y)+1),
d[i,elB(y)+1]={elA(x)+1—i}*r

els(y)

(x<igely (x)+1).
if by (x)=tg(y);
if t,(x)#tg(y).

O:
Let p(x,) {p:
Then,
A alx,y) = dlx+1,y+1] +p(x,y).
The formula of pa(x,y) is a
straightforward extension of that of

WLD.
Ta Tp
RL R2
£l E2
Ccl A2
Al Bl B2 C2

Fig.7 Mapping from Ty to Tg.

4. Subclasses of the Tai mapping

There are some problems that the
Tai mapping can not be applied to.
Consider a Tai mapping between
classification trees Ty and Tp in Fig.7.
In Ty, B1 is closer to A1l than to C1.
On the other hand, B2 is closer to C2
than to A2 in Tp. Therefore, the Tai
mapping 1is appropriate to
classification trees.

To introduce other mappings,
define a special ancestor, called "the
nearest ancestor determined by a
mapping".

[Definition 8] The nearest ancestor
determined by a mapping. .

Let m be a Tai mapping.
i£{I, let i'{I be any separate node of i.
The nearest common ancestor of i and i'
is called the nearest ancestor of i
determined by maping M, and denoted by
NamA(iL If i' can not be determined,
NamA(i) can not be also determined.
Namp(j) is defined in the same way.

not

we

For some

$V
Nam(kliu “ykz

Fig.8 Nam(k).



Let us illustrate Nam using Fig.8.
Let k1 and kr be left and right neighbor
separate nodes of k such that k, k1, kr
£ I (or £J), respectively. Let u and v
be the nearest common ancestors of k &
kl and k & kr, respectively. Since u
and v have a common descendant k, u and
v are not separated. Then Nam(k) is the
nearest node between u and v.

By putting restrictions on
insertion and deletion of Nam, we
propose the following mappings.
[Definition 9] WSPM, ISPM,
SSPM.

Let M be a Tai mapping. For any (i,j)¢
M, if NamA(i) and NamB(j) can be
determined,

(a) Nam,(i)4I
(b) Nam,(i)€I;
(c) Namg(jMJ;
(@) - Nam,(i)¢I and Nampg(jMJ.

Then, mappings satisfying (a), (b), (c)
and (d) are called the weakly structure
preserving mapping (WSPM), the structure
preserving mapping for insertion (ISPM),
the structure preserving mapping for
deletion (DSPM), and the strongly
structure preserving mapping (SSPM),
respectively.

The minimum cost under WSPM is
symmetric. However, since the triangle
inequality is not satisfied, we call it
the WSPM "similarity".
costs under other mappings are called
the "distance". Neither the ISPM
distance nor the DSPM distance is
symmetric. If g=r, the SSPM distance
satisfies the metric axioms.

Since these four mappings belong to
the Tai mapping, Ab(x,y) and Ac(x,y)
for the Tai distance are available to
compute dlx,y]. We will explain
a(x,y).

As illustrated in the previous
section, substitution of Tp(y) for T,(x)
is decomposed into that of forest
Tp(i4)s Tpliz)s .y Tpliy) for forest
TA(i1)’ TA(iZ)’ .y TA(in). In the case
of WSPM, by definition 9(a), the
following holds:

NamA(i1)=x or

Namy(ip)=x or Namg(j )=y, .-,

Namy(ip)=x or Namg(j,)=y.
Without loss of generality, assume
Namy(ip)=x. Let xc be a child of x such
that iy in TA(xc). Then, ih(h#k) is not

DSPM,

or Namg(j)MJ;

The minimum

Namg(iq)=y, e

~G~

in TA(xc). Because if i, is in TA(xc),
xc is a common ancestor of i, and i,
and x is not NamA(ik). In order to
ensure that only i, is in T,(xe), we
must use Dlxe,y, ], not Dliy,j, ] in
computing Aa(x,y). Therefore, we can
get the formula of Aa(x,y) by only
replacing (3-4-1) with the following
formula.

[ Aa(x,y) for the WSPM similarity]
ali+Ny(1),j+Ng(5)] + D[4,j]:
if i(-ChA(x) or j(-ChB(y);

infinite :
(4-1-1)

otherwise.

Similarly, we can compute other  a(x,y)
by replacing (3-4-1) with the following
formulae.

[ Aa(x,y) for the ISPM distance]
d[i+NA(i)lj+NB(j )1+ D[i)j ]1:
if 14Chy(x);
infinite :
otherwise. (4-2-1)

§1=

[ Aa(x,y) for the DSPM distance]
ali+N, (i), +Ng(3)] + D4,51:
if j4Chg(y);
infinite :
otherwise. (4=3-1)

8 1=

[ Aa(x,y) for the SSPM distance]
ali+N,(1),j+Ng(3)] + D[4,j1:
8 1= if 14Ch,(x) and j4Chp(y);
infinite :
(4=4~1)

otherwise.

However, except the WSPM
similarity, we can improve the
algorithms. We will explain how to
improve the algorithm for computing the
ISPM distance.
[Computation of Aa(x,y):
distance]

The children of x are named Xq, Xp, seey

xp from left to right.

ali+1,j+Ng(j)1 + Dlxy,jl,
d[i,j]=min

the ISPM

dal i ,j+1]1 + q (4-5)
afi+1, j 1 + Np(xg)*r.
The boundary conditions are
dlm+1,j1 = (elg(y)+1-jl*q
(7<i<elp(y)+1),
d[i,elg(y)+1]= (NA(Xi)+--+NA(xm)]*r
(1<im).
Then,
A a(x,y)=a[1,y+11+p(x,y).




Ty (x)

Tg(y)

Fig.9 Computation of a(x,y) for

the ISPM distance.

TA(x)
——=—D({x,y)l=d(x,y]==~~

L--D(x ,y l=d{i,jl=~s

ell(x)selh(x')
Fig.10 Computation of D[x,y] and
D[x',y'].

5. Improved algorithms

We can further improve the
algorithms for computing the Tai, ISPM
and DSPM distances. We take the Tai
distance as an example.

Note that Ab(x,y) and Ac(x,y) can
be computed by the formula (3-4). That
is, although this formula is applied to
dli,j] such that x<i<el,(x) and
y<jLelg(y), we can compute d[x,j] and

d[i,y] using it. Then, D[x,y] is as
follows:
d[x+1,y+1 Mp(x,y)
D[x,y]=d[x,y]=min{:[ X ,yt1+g  (5-1)
[x+1, ¥y J+r

Consider the case shown in Fig.10.
The end leaf of Ty(x) (Tp(y)) is also
that of TA(x') (TB(y’)). In the
algorithm shown in section 3, we compute
d[i,j] for getting DIx,y] separately
from d[i,j] for DI(x',y']. However,
since the computation of d[i,j] proceeds
leftward from the end leaves of two
trees, we can get D[x!',y'] in the midst
of computing d[i,j] for D[x,yl.
[Computation of the Tai distancel
(1) Main algorithm:

Let L be the number of leaf in T,
leaf(k) be k-th leaf from the leftmost
leaf, and R(u) be the youngest node v
such that u is the end leaf of T(v).
for h:=1 to Ly do
for k:=1 to Lg do

ely(y)

el (y)=el, (y")

begin

x:=RA(1eafA(h));

y:=Rp(leafp(k));

"compute d[x+Ny(x}, y+Np(y)ladlx,y1";

(5-2)

(*where, z+N(z)=el(z)+1 (z=x or z=y),*)
end:
D(T,,Tg):=D[1,1].
(2) Computation of d[i,jl:
if elA(x)=e1A(i) and elB(y)=elB(j), we
get D[i,j] by formula (5-1). Otherwise,
we compute d[i,j] by formula (3-4).

dli+1,3+1] + p(1,3)
: if elA(x)=elA(i) and

81 ely(y)=el (1)

d[14N, (1), 34N, () ]
: otherwise;

§2=4dl i,j+1] + q:
§3=d[i+1, j 1 + r;
dli,j] = min ( 81, 82, 63);
if elp(x)=ely(i) and elp(y)=elg(])
then D[i,j] = dli,j];
where, the boundary conditions are
dlely (x)+1,j1=(elp(y)+1-j)*q
(y<igely(y)+1),
d[i,elB(y)+1]={elA(x)+1—i}*r
(x<icely (x)+1).
The time and space complexities of
the above algorithm are O(LALBNANB) and
0(N,Np), respectively.

6. Relation of metrics
proposed.

We clarify the relation between the
metrics proposed in this paper and
metrics in the previous works. The WSPM
similarity, as a special case, becomes
the metric between binary trees by
Nakabayashi and Kamata [12]. Although
the definition of ISPM is different from
that of SPM by Tanaka [10], they are
equivalent. In this paper SPM is called
ISPM to express the meaning of SPM
clearly. If the inverse mapping of a
given mapping is SPM, this is called
DSPM. Selkow's metric is the restricted
SSPM metric. We can compute Selkow's
metric by letting Dix,yl:= Aa(x,y) in
for formula (3-1-3), where Aa(x,y) is
that of the SSPM metric. Therefore, it
can be defined by the following mapping.

already



