7oou Ty X A 5-19
(1989 1. 26)

REOBWRAVEBOFHH P VTV X

mlEl, mwExl. Sl
lgkw - b - T LRREWPIRT, “LEAYEIHE, ShickpmTen

PHELCRB YW EHROEEORERE ORI HERAFOEFNL T - TH
%, ATk, F I FORELRIEN 2 HHRETENT2EHL . F [FOXEDSH
WMECHEAEBOSEIH, 0(n log log n) OFHETHLNBILETT. IOMREM
WL MENLE TREOECEABERBEE 0BT VIV XL ELND, BB,
n@@ﬁﬁ%@ﬁﬁ%mrm%ﬁﬁﬁﬂmﬁbr\%ieﬂtﬁﬁﬁﬁ%wmumﬁv%
¥ SHEL T, TEsEE2ETRO3METH S, HiL L RAPPEHES NS L,
2R ESHEROFL WRELTAR NS, S THAB PN T Y XL, 00 OELE
ﬁﬁ%mhf‘~@®§ﬁ%ﬁﬁ%$EMnMgbgmwﬁﬁﬁﬁégiéo?*ﬁwﬁ
Fix., BEREEO—EOROEM, FHDHLU T 0(log n) TITA 3,

A Dynamic Algorithm for Placing Rectangles without
Intersection

Takeshi Tokuyama!, Takao Asano?, and Shuji Tsukiyama3

1 IBM Research, Tokyo Research Laboratory, 5-19, Sanbancho, Chiyoda-ku, Tokyo, Japan
2 Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
3 Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan

Construction of the contour of the union of rectangles is an important problem in computational
geometry. In this paper, we define a special class of arrangements of rectangles, called FIFO
arrangemehts, whose contour is constructled in O(nloglogn) time. Using tﬁe result, we solve the
foﬂowing dynamic allocation problem of rectangles efficiently: given a rectangle and an orthogonal
region with n noﬁ—intersecting rectangular holes, find a possible placement of the rectahgle‘in the

region and create a new hole. We present an algorithm that takes O(nloglog n) time and O(n) space;

this algorithm finds not only one but all possible placements.

—139—

Introduction

In this paper, we deal with the problem of finding an allocation of a set of rectangles without
overlapping (we consider only vertical-horizontal rectangles). This problem has applications to
2-dimensional memory allocation, VLSI design, scheduling, and graphics. Let us imagine that we place a set
of rectangular chips on a board.

Problem | Suppose a rectangular board W and a set of rectangles {Rect(a,, b,), Rect{a,, b,),... ‘ , Recfa,, b))}
are given. Find an allocation of the rectang[es on W wzthout overlapping each other, where Reci(a, b) is a
rectangle of width a and height b :

Problem 1 is a kind of 2-dimensional bin packing problem that is hard to be solved [B-C-R]. We can
find an approximate solution of this problem by placing all rectangles in a “reasonable” way and then
remove overlapping rectangles. Bentley and Wood [B-W], and McCreight [M] designed efficient algorithms
to list intersections of rectangles that have already been placed on a plane. However, to construct a complete
solution, we must place the rectangles that have been removed back on the board without overlapping the
rectangles already there. Therefore, we would like to consider the fo].lowmg problem of incrementing
placement:

Problem 2 Suppose n rectangles Ry, R,,..., R, have already been placed on W without overlapping. Then
decide whether the next rectangle Recf«, B) can be placed on the orthogonal region W— R U R U ..UR,.
If s0, find all possible placements.

Figure 1 and Figure 2 illustrate the problem. The set of all possible placements of the top-right
corner of the inserted rectangle is called an admissible region. We are concerned with dynamic algorithms for
problem 2, where we process a series of insertions and deletions updating suitably preprocessed data. An
admissible region is constructed in O{nlog n) time by using the algorithms of Gutting or Wood [G] [W].
This bound is optimal for the static problem. However, we can improve this upper bound to O{(nloglog n)
for the dynamic problem. Our result is as follows:

Theorem I . There exists a dynamic algorithm that constructs the admissible region for the insertion of a
rectangle in (nlog log n) time, where n is the number of rectangles already placed on the board. We maintain
a data structure that needs (n) space and O(log n) updating time when we insert or delete a rectangle.

Admissible region and extended rectangles

Let us characterize the admissible region mentioned above. Suppose that R= [/r]1x [b,1]is a
rectangle placed on the board with the vertex set {(/,6),(/,2),(r,b),(r,t)} such that /< » and b < t. We consider
the extended rectangle R{a, 1= [/ r+a]x [b, t+ B]. Further, we shrink the board
w=1[l,r,]x[b,,t]to obtain W, a=L+a,rIx[b,+8,¢1

Observation 2.1 (Figure 3.)

1. Recf{a, B) can be placed in Py= W — UR ifand only if P, ;= W, , — UR,.[a,B] is non-empty.
2. We can place Recf(«, B) such that its top-right corner is located on anyPoint of P, ;.

Therefore, it suffices to compute the admissible region P, ; efficiently. An admissible region is not
connected in general. - ‘

The arrangement constructed from R[a, 81 (i= 1,2,...,n) is not easy enough to handle. Thus, we
consider the easier arrangement consisting of horizontally extended rectangles R[a] = R[a 0] (i=12,.,n
and a horizontally contracted board W, =[I, + «,r,1x [b,,t,]. (See Figure 4.)

" The following lemma ensures that it suffices to study the arrangement constructed from R, [a]
(i=1,2,..,n)in order to solve our problem.

Lemma 2.2 Recia,) can be placed in Py= W — UR if and only if the vertical segment of length B can be

=1

placed in P,= W, — UR,.[oc] .

=1

—140—

By adding some vertical cuts to an orthogonal region, we can decompose the region into a set of
rectangular vertical strips. This decomposition is called a (vertical) rectangulation if we decompose the
region into a minimum number of strips (Figure 5.) The vertical rectangulation is uniquely determined.
The set of all maximal vertical segments that can be placed in an orthogonal region is obtained from its
rectangulation. Therefore, we shall deal with the rectangulation of P,.

Suppose that we obtain the rectangulation of a orthogonal region P into vertical strips V;, Vapoo Vs -
Without loss of generality, we can assume that each pair of vertical edges of P has two different x- values.
We consider a directed graph G(P) associated with the rectangulation (Figure 6.) The vertex set of G(P) is
{a, a,..., 4.}, where g, corresponds to the vertical strip V. Each node keeps information about the four edges
of the corresponding strip. Two nodes, g, and g;, are connected by a direct edge [a, g] if and only if ¥; and
V. are adjacent in P,, sharing a vertical cut such that V, is located to the left of V G(P) has the following
propcrtlcs

Facts 2.3
1. G(P)isa planar graph.
2. Each node has at most two outgoing edges and two incoming edges.

We have the following lemma:

Lemma 2.4 If we can obtain the graph G(P,) in F(n) time, we can compute the admissible region in
Hn)+ O(k) time, where k is the complexity of the region P,.

In fact, the complexity of P, 1s O(n); thus, it suffices to construct the graph G(P,) efficiently. Since we
are considering a dynamic placement problem, we can assume that we know the sorted lists of vertical edges
(resp. horizontal edges) of previously placed rectangles with respect to x-values (resp. y-values.) As is well
known, these lists are updated in O log n) time. The arrangement constructed from R[a] (i = 1,2,...,n) has
a nice property that we call the FIFO property. In the following section, we study arrangements of rectangles
with the FIFO property. :

FIFO arrangement of rectangles

Let A =(Ry, R,,..., R,) be a sequence of rectangles, where R,= [/, r,]1x [5, ;] . The contour C{A) of the

orthogonal region ({A): = UR is a (non connected) orthogonal polygon. Further, placing the rectangles of
A on a plane in order of th€'index and eliminating hidden parts of previous placed rectangles, we get an
orthogonal subdivision S(A) of (A) constructed from the visible edges of rectangles.

It is a major problem in computational geometry to construct the contour ({A) and the subdivision
S(A) efficiently. For a general A, O(k + nlog n) time algorithms for constructing C(A) and an
O(K log n + nlog nloglog n) time algorithm for constructing S{A) are known, where k and K are the
complexity of C(A) and S(A) respectively [G], [W], [B]. However, for a special kind of sequence shown
below, we can design a more efficient algorithm. . ‘

We say A is regular if the sequénce (/, ,..., [,) is a non-decreasing sequence. A regular sequence A is
called a FIFO sequence if it satisfies the following condition:

Condition 3.1 (See Figure 7) If R, and R; overlap for i < j, thenr,<r,.
Fact 3.2 For a FIFO sequence A, the complexity of the subdivision S(A) is at most Tn.

We explain the relation of a FIFO sequence to the previous section. We sort the horizontally extended
rectangles R{«) (i= 1,2,..,n) to obtain a regular sequence I'. This process takes O(n) time, since we know the
sorted list of vertical edges. We then immediately have the following:

Proposition 3.3 U is a FIFO sequence.

The proof is trivial.

From now on, we assume that A is a FIFO sequence. Moreover, we assume that both the sorted
order of the sets of y-values of horizontal edges and that of of x-values of vertical edges are known from
some oracle. We may assume-that there is no pair of horizontal (resp. vertical) edges sharing a y-value (resp.
x-value). Our results are as follows:

—141—

Theorem 3.4
1. ((A) is constructed in (nlog log n) time.
2. S(A) is constructed in O(nloglog n) time.

Theorem 3.5 ,
1. The complement space P = R*>— ((A) is decomposed into vertical strips in O(nlog log n) time, where R? is
the total plane.

2. G(P) is constructed in (nloglog n) time. We use O{n) space for our algorithm.

We shall give the outline of a proof of theorem 3.5. The proof of theorem 3.4 is omitted in this version.

Plane Sweep and Set Union Structure

First, let us recall the split-union algorithm of [V-M-N7]. Let S be a subset of a linearly ordered
ground set U. We distinguish the elements of S from those of U — S by marking each element of S . We do
the following three operations -- FIND, SPLIT, and UNION.

1. FIND(u): Find the smallest marked element that is larger than or equal to the element u of U.
2. SPLIT(u): Mark the element u of U.
3. UNION(s): If s is an element of S, unmark s. (Else nop.)

Theorem 4.1 [V-K-N1, [V] A4n O(n) mixed sequence of FIND, SPLIT, and UNION is done in
(nloglog n) time, using a data structure of O(n) space and O(n log log n) preprocessing.

This theorem is based on the theory of priority quéue. We omit the details of the data structure.
We prove theorem 3.5 by using plane sweeping. We obtain the graph G(P) of the complement space P
as the output of our algorithm. We sweep the plane with the vertical lines through the members of X(vert)

from left to right, where X(vert) is the sorted set of the x-values of vertical edges. The set # of all horizontal

edges of the rectangles is our ground set. # is arranged as an ordered set with respect to the y-value of each
element. For convenience’ sake, we add —co and oo to # as the maximal and minimal elements
At each sweep line § , we maintain a subset () of 5# , defined as follows:

Definition 4.2 H(8) is the set of all horizontal edges whose part segments appearing in the subdivision S(A)
intersect the sweep line 8 at the interior points or left endpoints.

We consider FIND, UNION, and SPLIT for the pair ¥ > #(8). We also maintain the label L(4) for
each element 4 of 5. In the algorithm, intuitively, we assign to Z(A) the name of the rectangle that covers
the point infinitesimally higher than the intersection of 4 with the current sweep line. (L(h) = 0 means that
the intersection is vacant.) Initially, L(h) = 0 for all &. We reset L(h) to 0 whenever UNION(h) is done.
We also maintain Queues O, i=(1,2,...,n) , which are initially vacant. Q, stores the horizontal edges of the
rectangles that “cover” R, in S(A) when they are inserted. '
At each sweep line, one of the operations INSERT and DELETE is done:

1. Ifthe sweep line corresponds to the eft edge (A, &) of a rectangle with A, (resp. A;) as its lower (resp.
upper) horizontal edge, then INSERT(Ay, k).

2. If'the sweep line corresponds to the right edge (h,, A,) of a rectangle, then DELETE(hl, h,).

Procedure INSERT (u,v) ;
{ u<v are clements of 5. u is the lower edge of R,. }

begin
1: SPLIT (u);
2: L) := k;

3: w = PREDECESSOR (u);
4:if I(w) = O then
begin
5: MAKENODE (w,u);
6: COMPLETENODE (w,SUCCESSOR (u));
7: CONNECT ((w,SUCCESSOR (u)),(w,u));
end ‘
else
begin

8 PUSH uin Q,,,, i

end;
9: w = SUCCESSOR(u);
10. while SUCCESSOR(w)< v do

begin
10: if L(w) = O then
begin :
11: COMPLETENODE (w,SUCCESSOR(w))
end;

12: UNION (w);
13: w := SUCCESSOR(w).
end; .
14: if L{w) = 0 then
begin
15: COMPLETENODE (w,SUCCESSOR(w));
16: MAKENODE (v,SUCCESSOR(w));
17: CONNECT ((w,SUCCESSOR(w)),(v,SUCCESSOR(w)))
end;
18: L(v) = L(w);
19: SPLIT (v);
20: UNION (w)
end.

Procedure DELETE (u,v) ;
{ u< v are elements of 5. u is the lower edge of R,. }
begin
1: if'u is marked then
begin
2: COMPLETENODE(PREDECESSOR(u), u);
3: MAKENODE(PREDECESSOR(u), SUCCESSOR(u));
4: CONNECT ((PREDECESSOR (u),SUCCESSOR(u)), (PREDECESSOR(u) u));
5: UNION (u)
end;
repeat
6: POP w from Q,;
7: if' w is marked then
begin
8: MAKENODE(PREDECESSOR(W), w);
9: L(PREDECESSOR(w)) =
end;
10: until Q, is vacant;
11: if (V) = O then
begin
12: COMPLETENODE(V SUCCESSOR(V));
13: MAKENODE(PREDECESSOR (v), SUCCESSOR (v));
14: CONNECT ((PREDECESSOR(V) SUCCESSOR(v)), (PREDECESSOR(V) V));
15: L{ PREDECESSOR (v)) =
end;
16: UNION (v)
end.) :

We explain the functions used in the procedures above.

SUCCESSOR (u) : Find the smallest marked element that is larger than w.

PREDECESSOR (u) : Find the largest marked element that is smaller than u.

PUSH : Push an element into a queue.

-POP : Pop the top element from a queue.

MAKENODE (u,v) : Make a node a(u,v) of G(P) corresponding to a strip V(%) whose lower and upper
horizontal edges are parts of » and v respectively. The left vertical edge of the strip is a part of the current
sweep line. The right vertical edge is determined when COMPLETENODE (u, v) is done.

* COMPLETENODE (vw) : Determine the right vertical edge of the strip ¥(w,v) corresponding to the
node a(u,v) that has been created by using MAKENODE(u, v). The right vertical edge is a part of the
current sweep line.

o CONNECT ((uy), (p,g)) : Create a dlrected edge of G(P) from the node a(u v)to ap,q).

® 6 o o o

—143—

Lemma 4.3
1. Both SUCCESSOR and PREDECESSOR are done in { loglog n) time

2. Each of the operations PULL, PUSH, MAKENODE, COMPLETENODE, and CONNECT is done in (1)
time.

Proposition 4.4

1. During the sweeping of the plane, the number of iterations is ((n) for each of the operations SUCCESSOR,
PREDECESSOR, UNION, and SPLIT.

2. The number of iterations is ({n) for each of the operations PUSH, POP, COMPLETENODE,
MAKENODE, and CONNECT.

Proof. It suffices to show that the number of iterations of SUCCESSOR is O(n). The total number of
SUCCESSOR operations executed in all INSERT operations has the same order as the complexity of S(A).
Hence, it follows Fact 3.2 that the total number of iterations of SUCCESSOR executed in all INSERT
operations is Xn). When we DELETE the rectangle R,, the number of itcration of SUCCESSOR is less
than the number of the elements stored in the Queue Q,. O, stores the lower edge 4 of a rectangle R; such
that 4 was inserted on the “sheet” corresponding to R, when the sweep line came to the left vertical edge of
R,. The number of such pairs (4,7} is at most n. This implies that the number of SUCCESSOR operatlons
executed in all DELETE operations is O(n). This proves proposition 4.4.

Hence this plane sweep method constructs the graph G(P) as a planar graph in O(nloglog n) time,
using O(n) space. The proof of theorem 3.5 is now complete.

Construction of admissible region

Proposition 3.3 and theorem 3.5 ensure us that we can obtained the graph G(P) for P = R? — | JR(«) in
O(nloglog n) time. Our target is the admissible region P, ;. We obtain G(P, ;) from G(P) in O{n) time as
follows: '

1. For each node a of G(P), consider the intersection of W, and the strip V{a) stored in a.

2. Y(a) := WV(a)n W, (Change the information of the strip stored in a.)

3. Erase each node a for which the height of ¥(a) is less than S.

4. Erase both incoming edges and outgoing edges of erased nodes.

We can construct the admissible region P, ;, from G = G(P, ;) by using graph walk. We omit the
details in this version.

Acknowledgement: The authors express their gratitude to Dr. N. Kubo, Sharp Corp., for his suggestion of
the problem considered here in 2-dimensional memory allocation, from which this research is originated.

References

[B-C-R] B. S. Baker, E.G.Coffman, and R.L.Rivest, “Orthogonal packing in two dimensions,” SIAM J.
Comput., 9-4 1980, pp. 846-855.
[B-W1] J. L. Bentley and D. Wood, “An Optimal Worst Case Algorithm for Reportmg Intersections of
Rectangles, ” IEEE Trans. Comput. C-29, 1980, pp. 571-577.
[M] E. M. McCreight, “Priority Search Trees, SIAM J of Computing 14, 1985, pp. 257 276.
[{G] R. H. Guting, “An Optimal Algorithm for Iso-Oriented Rectangles, ” J.A4lgorithm 5 1984, pp. 303-326.
[W] D. Wood, “The Contour Problem for Rectilinear Polygons, " Information Processing Letters 19 1984,
pp. 229- 236. .
[B] M. Bern, “Hidden Surface Removal of Rectangles, ” Proc. 4-th ACM Computanonal Geometry 1988,
pp. 183-192.
[V] P. van Emde Boas “Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space,”
Proc. Information Processing Letters, 1977, pp. 80- 82
[V-K-Z] P.van Emde Boas, B. Kaas, and E. Zijstra, “Design and Implementation of an Efficient Priority
Queue,” Math. Syst. Theory 10, 1977, pp. 99-127

—144—

Figures

1 U

Figure 1. 1 ection free alk

of r g| We found a placement and updated the orthogonal region.

7

[« I

Figure 2. Admissible region. The admissible region is the union of the shaded regions.

Figure 3. A of ded gl The admissible region is the union of two regions of the
arrangement.
I
1
i |
Figure 4. Ar of hori. ity ded r b

l T v v
1 1 1 3
v7
;o HE !
' '
' v '
] 1)
VII H \2 H h n . vie
1 1] 1 ve 1 1
V3 . P
1 V3,
1 '
1 R3
H L R4
' | A
Figure 5. Vertical rectangulati Decompose an orth I region P= W — R1|J R2U R3 R4 into 10
verlical strips. -
W
IE v
R1 . K |
W R2
S —— —
[ri] 6] re] : M
W R3 B
ERERE — R4
v [®] - —
L 8
L L l r l
R3
3 S
d R2
R1 [s
3]R3
l] W
[L
R3
[15 ry
v 3
Figure 6. Graph representation of orthogonal region. The graph repr ion G(P) corresponds to the
previous figure. Each node has four edge ficlds.
1
T
Figure 7. Orthogonal subdivisi iated with a FIFO sequence

—146—

