7 o I Y X A 5-18
(1989 1. 26)

U — 2 oL S T OB KE S IRITITE S AR DH D
X O EEESR T L =Y X L

BEERy, HHF #Ew, FEL

s LPERFETFMBARITFEN HAMKRELERHERLER

b= VWIS TOBRAREAMIELSERD 2L EHER 7TV Y X2 %2E%ET 5. NHE
DEMEDPSREnAKOEOY - VTS5 7WLT, 207ATY a3, BREAMIT
BH5%20(nN)KH, O(n)EETRD 3. i

A Faster Algorithm for
Finding a Maximum Weight Independent Set of a Circle Graph

Takao ASANO¥*, Hiroshi IMAI§ and Akira MUKAIYAMA*

*Department of Mechanical Engineering, Sophia University
Chiyoda-ku, Tokyo 102, Japan
§Department of Computer Science and Communication Engineering
Kyushu University, Fukuoka 812, Japan

We present an algorithm for finding a maximum weight independent set of
a circle graph. For a circle graph of a set of n chords with N endpoints,
the algorithm finds a maximum weight independent set in O(nN) time and O(n)
space.

—133—

1. Introduction

The problem of decomposing a polygon into simpler components is of
fundamental importance in computational geometry and often arises in VLSI
layouts. Closely related to this problem is the problem of finding a
maximum set of independent chords in a circle (i.e., the problem of finding
a maximum independent set of a circle graph). In fact, algorithms for
finding a maximum set of independent chords in a circle are used in
decomposing a simple polygon into a minimum number of trapezoids [AAIT1 and
into a minimum number of uniformly monotone polygons LLNI.

Gavril first obtained an 0(n3) time algorithm for finding a maximum set
of independent chords for a set of n chords with N endpoints on a circle.
Later, Read et al. I[RRUI, Buckingham [Bl, and Asano et al. [AAIl proposed
0(n2) time algorithms. Recently, Liu and Ntafos- proposed an 0(N3) time and
O(Nz) space algorithm I[LNI. Note that n=0(N2) (and n2=O(N)) in the worst
case.

In this paper, we present another efficient algorithm which is a slight
modification of the algorithm in [AAIl. The proposed algorithm runs in
0(nN) time and O(n) space. Thus, it may be considered to be an improvement
of O(nz) time algorithms as well as Liu and Ntafos's algorithm.

2. Preliminaries

For a set of chords each of which connects two points on a circle C, a
subset of chords is independent if no two of them have a point in common.
Here, we consider each chord is a closed set; i.e., both of its endpoints on
C belong to it (the argument below can be easily modified in case each chord
is an open set). Then the problem we consider is to find a maximum set of
independent chords in C. This can be restated as a problem on special
graphs known as circle graphs, intersection graphs of chords in circles.
That is, in a circle graph, each vertex represents a chord in a circle C and
two vertices are connected by an edge iff the corresponding chords intersect
(i.e., have a point in common). - Thus, finding a maximum set of independent
chords is equivalent to finding a maximum independent set of a circle graph
(an independent set of a graph is a subset of vertices no two of which are

connected by an edge). When each vertex has a weight, the weight of an
independent set is defined to be the sum of the weights of vertices in the
set.

A circle graph is closely related to an overlap graph defined below.
Let S be a set of n intervals on a line with N endpoints. For intervals
I=[x_,x+] and J=[y_,y+], we say I is completely contained in J if y < x~

and x+ < y+. Two intervals are said to overlap if they intersect without

one being completely contained in the other. An overlap graph G(S) of S is
obtained by identifying each interval with a vertex and connecting two
vertices by an edge iff the corresponding intervals overlap. An interval
graph, an intersection graph of intervals, is obtained by identifying each

—134—

interval with a vertex and connecting two vertices by an edge iff the
corresponding intervals intersect. There is a slight difference between an
overalp graph and an interval graph. Since the class of circle graphs
coincides with the class of overlap graphs [Gl, we will concentrate on
finding a maximum weight independent set of an overlap graph.

3. Finding a maximum weight independent set of an overlap graph
Consider a set S of n intervals with N endpoints. Each interval I of S

has a nonnegative weight w(I). 1In this section we will describe an
algorithm for finding a maximum weight independent set of the overlap graph
G(S) of S. We assume that N endpoints are sorted and labeled from 1 to N.
This can be done in O(N log N) time and O(N) space (if the set of endpoints
is considered to be a multiset, this sorting can be done in O(n log n) time
and O(n) space). We ignore this complexity because it does not dominate the
complexity of our algorithm (note that N= €(vn)). For convenience sake, we
introduce a new interval IO=[0,N+1] with weight w(IO)=0. All intervals of S
are of course completely contained in Ip-

For an interval I of S, let S(I) be the set of intervals of S
completely contained in I. Define W(I) to be the weight of a maximum weight
independent set of the overlap graph of S(I)U{I} (that always contains I if
w(I) is positive). Thus, it is easily observed that W(I) satisfies the
following [GI, [AAI]l,[IA]l:

W(I)= w(I) + [the weight of a maximum weight independent set of the

interval graph of S(I) where the weight of each interval

J of S(I) is W(J)1 '
Thus, W(IO) becomes the weight of a maximum weight independent set of the
overlap graph G(S) of S (and G(SU{Izh)).

Gavril proposed an O(n3) time algorithm based on the above observation
[GI. 1In fact, he has iteratively solved the problem of finding a maximum
weight independent set of an interval graph for a subset of those intervals
to compute W(I)'s. Note that, to compute W(I), we have only to compute W(J)
in advance for each J of S completely contained in I. Thus, there are many
possibilities about the order to compute W(I)'s. In this paper we adopt a
method of computing W(I)'s in decreasing order of the left endpoints of the
intervals. Note also that, for intervals I's having their left endpoint in
common, we can compute W(I)'s simultaneously.

Let L, (k=0,1,...,N-1) be the set of intervals of SU{IO} having k as
their left endpoint. Let I be the interval in Ly with the largest right
endpoint. S(Ik) is the set of intervals of S completely contained in Ik'
Let {Xl""’xa(k)} be the set of endpoints of the intervalg in Lku S(Ik).
We assume x; < ... < Xa(k) " Then our algorithm for computing W(I)'s (TelLy)
can be described as follows (we assume that, for each J in S(Ik), W(J) is
already computed). i

—135—

Procedure COMP_W(Lk,Ik,S(Ik));

begin .)
1 sort a(k) numbers Xl""’xa(k) in increasing order; ’
{comment: we assume Xy < ... < Xak): ¥1 is the left endpoint of the
intervals in L.}
2 U:=0;
3 for i:=2 to a(k) do
begin
4 for each interval J in S(Ik) with x; as its left endpoint do
‘{comment: U is the weight of a maximum weight independent
set of the interval graph of intervals in S(Ik) whose right
endpoints are less than xi}
5 U(J):=U + WWJ);
6 if %; 1s the right endpoint of an interval I in Ly then
7 W(I):= U + w(I);
8 UMAX:= 0;
9 for each interval J in S(Ik) with X; as its right endpoint do
10 if UMAX < U(J) then
11 UMAX:= U(J);
{comment: UMAX=max[U(J)1}
12 if UMAX > U then
13 U:= UMAX;
“end;
end;

The validity of the algorithm can be easily shown by an argument
similar to the one in [AAIl (since, at each %;, U is the weight of a maximum
weight independent set of the interval graph of those intervals in S(Ik)
whose right endpoints are less than xi). Thus, the whole algorithm for
computing W(Io), the weight of a maximum independent set of the overlap
graph G(S) of S, as well as all other W(I)'s, can be written as follows:

Prodedure COMP_WEIGHT;
begin
for k:=N-1 downto 0 do
if k is the left endpoint of an interval of § then
begin
fiqd Lk’ Ik and S(Ik);
COMP_W(Lk,Ik,S(Ik));
end;

end;

—136—

Now we consider the time complexity. Line 1 in COMP_W(Lk,Ik,S(Ik)) can
be done in O(N) time since the endpoints are labeled from 1 to N.- Lines 3-
13 can be done in O(lLkl + rS(Ik)l) time. Thus, COMP_W(Ly,I,,S(I;))
requires only O(n) time. Since L, I, and S(Ik) can be found in O(n) time,
COMP_WEIGHT requires only O(nN) time. Similarly, it can be shown that the
required space is O(n). It is also easy to modify the above algorithm in
such a way that it actually finds a maximum weight independent set. Thus by

summarizing we have:

Theorem. A maximum weight independent set of an overlap graph of n
intervals with N endpoints (or, of a circle graph of n chords with N
endpoints on a circle) can be found in O(nN) time and O(n) space.

4. Remarks

In [IAI, an O(n log n + mcloglog n) time algorithm for finding a
maximum weight independent set of an overlap graph of n intervals is
described, where m, is the number of the pairs of intervals one of which is
completely contained in the other. Employing the technique described there,
we can similarly refine the complexity analysis of our algorithm by using
the persistent search tree proposed by Sarnak and Tarjan [ST1 (the hive
graph proposed by Chazelle [Cl can also be used). The persistent search
tree is one of the most powerful data structures in computational geometry.
It can be used to efficiently solve the following (static) interval search
problem: Given a set S of n intervals on a line and a query interval, find
the set of intervals in S which are completely contained in the query
interval. In fact, by using the persistent search tree, the set of
intervals in S which are completely contained in the query interval can be
enumerated in O(t + log n) time in such a way that all the endpoints of the
enumerated t intervals are sorted in nondecreasing order. We can construct
the persistent search tree in O(n log n) time and O(n) space.

Thus, by choosing Ik as a query interval, we can find S(Ik) in
COMP_WEIGHT in O(|S(Ik)| + log n) time. L, and I, can also be obtained in
O([Lk[) time. Thus, the time complexity of COMP_W(Lk,Ik,S(Ik)) (i.e.,
computing W(I)'s for all I's in L) becomes O(log n + ILk\ + IS(Ik)]) since
sorting in Line 1 can be done by merging the two sorted lists of endpoints
of S(1,) and Ly - From the above discussion, we see that a maximum weight
independent set of the overlap graph G(S) can be found in O(n log n +
ZE (log n + 1Lk| + |S(Ik)[)) = 0(n log n + m) time and O(n) space, where m
= Zk=0!S(Ik)\. Clearly, m < m, and m £ nN.

It should be noted that the algorithm in this paper can be easily
modified even if we consider each interval (chord) is an open set, i.e., it

contains none of its endpoints.

—137—

Acknowledgment.

The first author was supported in part by the Grant in Aid for

Scientific Research of the Ministry of Education, Science and Culture of
Japan under Grant 62550270 (1988).

References

[AATI]

[B]

[CI

[G]

I[IA]

[LN]

[RRU1

[ST1

T. Asano, T. Asano and H. Imai, Partitioning a polygonal region into
trapezoids, J. of ACM, 33 (1986), pp.290-312.

M. Buckingham, Circle Graphs, Ph.D. Dissertation, Courant Institute,
Rept. NSO #21, October 1980.

B. Chazelle, Filtering search: A new approach to query-answering, SIAM
J. Computing, 15 (1986), pp.703-724.

F. Gavril, Algorithms for a maximum clique and a maximum independent
set of a circle graph, Networks, 3 (1973), pp.261-273.

H. Imai and T. Asano, Applications of the priority search tree to
circle graph problems, CAS86-112, IECEJ Technical Reports in Circuits
and Systems, 1986.

R. Liu and S. Ntafos, On decomposing polygons into uniformly monotone
parts, Inform. Process. Lett., 27 (1988), pp.85-88.

R.C. Read, D. Rotem and Urrutia, Orientations of circle graphs, J.
Graph Theory, 6 (1982), pp.325-341. -

N. Sarnak and R.E. Tarjan, Planar point location using persistent
search trees, C. of ACM, 29 (1986), pp.669-679.

—138—

