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On Digraph k-component Algorithms
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IBM Research, Tokyo Research Laboratory

5-19, Sanbancho, Chiyoda-ku, Tokyo, 154, Japan

A digraph G is said to be k-connected if and only if it has at least &k + 1 vertices and there exist at least %
vertex disjoint paths between every ordered pair of vertices. In general, G may have k-connected subgraphs,
even if G itself is not k-connected. A maximal k-connected subgraph of G is called a k-component of G.
We present an algorithm for finding all the v -components of G which satisfies 1< k<v < /< n , for any
fixed &,/ within O((n — k) x T(G)) time, where 7 and e are the number of vertices and edges of G, respectively,
and T(G) is the time bound for finding a minimum vertex separator of G whose cardinality does not exceed
I We assume T(G)= n+ e.
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1. Introduction.

Consider a digraph (or graph) G without any self-loops or parallel-edges. We denote the vertex-set and
edge-set of G by V(G) and E(G), respectively. We denote the cardinality of #(G) and E(G), namely, |V(G)| or
|E(G)| by n and e, respectively. G is k-connected, iff [V(G)| > k and there exist at least & vertex-disjoint paths
from v to w, for every ordered pair of v and w (v,w € V(G)). A k-component of G is a maximal k-connected
subgraph of G (see Figure 1). o

Hoperoft and Tarjan discovered algorithms for finding 1-components, 2-components and 3-components
of a graph, as well as 1-components of a digraph, within O(n+ ¢) time [Ta72], [HoTa73]; however, no
such linear algorithm has been found for k> 4, if G is a graph, nor for k> 2, if G is a digraph. Recently,
Kanevsky and Ramachandran discovered an algorithm that finds all separating triplets of a 3-connected
graph in O(n?) time [KaRa87], which suggests the existence of an efficient algorithm for finding
4-components of a graph. .

Matula discovered a polynomial algorithm that finds all the k-components of a graph, using cluster
analysis techniques [Ma77] . Note that the problems for graphs are easily reducible to those for
symmetrical digraphs, although the converse is not true. Our purpose is to construct a polynomial time
algorithm to find all the v-components (k<v <) of a digraph for any fixed k/. Our algorithm can be_'
regarded as an extension and refinement (a practical, and probably more efficient version) of Matula’s, and as
essentially the same, but rather practical version of Makino’s [M88]. . :

Proceeding to our main results, we need to introduce some notations. For two finite sets, P,Q, we denote
P+Q={xlxePorxe Q},and P— Q= {ylye Pand y¢Q} . Forv,we V, let [»,w] denote a directed edge
which leaves v and enters w. For ve V, let I'*(v) = {w| [v,w] € E(G) }, and I~ (v) = {w| [w,] & EG)}. We
denote deg(v)= min{l*(¥),I~(v)}. G is complete if T*(v)= I'-(v)=n— 1, for Yve VG). For UcWG)),
< U denotes the induced subgraph of G by U, that is, a subgraph of G whose vertex-set is U, and whose
edge-set is {[vw] € E(G)lvwe U} . For ScV(G), we denote <V(G)— S»¢; as G/S. S(c (G)) is a separator .
of G iff V(G)/S is not 1-connected. For /> 1, a [-separator, denoted by S{G), is a minimum separator,
S, of G, such that [S| <. Note that S{G) is nothing but a minimum separator of G, if it exists, otherwise
S{G) is empty (see Figure 1). Then by the well-known Menger’s theéorem [Me27], G is k-connected iff
k < |S(G)| for some /> k. We assume all digraphs in our algorithm are represented by adjacency structures
[AhHoUl74], [Ta72], and manipulated in an efficient way. Our results are summarized as follows.

Theorem A Let G be a digraph with n vertices and e edges. All the possible v-components (k<v <) of G
are found within O{(n— k)x T{G)) time, where T(G) is the time bound for computing S{(G). We assurne
T(G)=n+e.

+ Many algorithm are available for computing S{G) for digraphs [EvTa751,[ Ga80]. In particular, Galil's
approach [Ga80] yields an O(/x (n+ e)x Vn x Max{I~/n}) time algorithm for computing S{G). Thus we
have: v

Corollary 1 All _the possible v-components (k<v<1[l) of a digraph G are found within
O((n—k)x Ix (n+ e)x Vn x Max{iNn}) time. :

Provided that G is a symmetrical digraph, or a graph, we can use more efficient algorithms for computing
S(G), [EsHa84], [GrHa86]. Combining Granot-Hassin’s algorithm [GrHa86] with Even-Tarjan’s
maximum-flow algorithm [EvTa75], we can compute S{G) in O(nx (n+ e)x min{INn}) time. Thus we
have: .

Corollary 2 Al the possible v-czpponents (k<v <) of a symmetrical digraph (or gfaph ) G are found
within ((n— kyx nx (n+ e)x min{{~Nn}) time.
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<4,5,6,9,10,11,16>;

Figure 1. A digraph G with 16 vertices. G is not 1-connected. 1-component is <1,...,13,15,16> 4, 2-component is
<1,..,6,9,10,11,16> ¢, 3-component is <4,5,6,9,10,11,16> ¢, S%(<1,...,13,15,16>¢) is {11}.
5%<1,.,6,9,10,11,16> ) is {4,5}. $(<4,5,6,9,10,11,16%¢) is {10,11,16}. 5%«4,5,6,9,10,11,16> ;) is empty.
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Note that Corollary 1 and Corollary 2 show the same time bound, if /< . In particular, combined with
Kanevsky-Ramachandran and Hopcroft-Tarjan algorithms [KaRa87] [HoTa73], Theorem 1 yxelds an
O(n?) bound for ﬁndmg 4-components of a graph.

Theorem B For any k»n, st 1<k<n, there exists a digrapﬁ with 2xn—k+ 1 vertices and
2x n? —k x (k— 1) edges which has every v- componenl (k<v < n) with at least n+ 1 vertices and nx (n+ 1)
edges.

Theorem B shows that there are infinite class of digraphs with O(n?) vertices and O{n?) edges which require
finding separator operations on O(n— k) subgraphs, each of which has O(n?) vertices, for any fixed k< n.
Therefore, time bound of theorem A is tight within a constant factor.

2. Algorithm.

1. procedure FMC(k,.,G);
2 begin if k<1 then
‘3. .begin if |(G)| = k+ 1 then
repeat
. for Yve V(G) do
if deg(v) < k then eliminate v, together with I'*(v), and I"~(v) from G;
find 1-components of G; _
eliminate all edges linking between any two 1-components from G;
until |V(@)] < k+ 1, or min{deg(v)lve V(G)} > k;
10.  if |V(G)| = k+ 1 then begin
‘11, find 1-components of G;
12.  for each 1-component G; of G do
13, ifFI(G)l = k+ 1 then
14. if G, is complete then output G, as a ({I{G))] — 1)-component
15. else if |(G)| > k+ 1 then begin
16. find S{(G);

O XNk

17. if S{G))is empty then output G; as a (/+ 1)-component
18. else iflS{G)| = k then begin

19. - K —Max{k,|S(G) + 1};

20. output a copy of G, as a |S’(G)l component;

21. G—<WV(G)— S(G)>q;

22. find 1-components of G,, any two l-components from G;
23. for each 1-component P; of G, do begin

24. Gl<WV(P)+ S(G)>e;

25. FMCOk 1,Gi);

26. end,

27. end;’

28. end,

39. end,

30. end,

31. end.
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3. Proof of the theqrems.

Eight lemmas are used in the proof of theorem A. The first five witness the correctness of FMO(k,1,G), and
the last three evaluates the time complexity. .

‘Lemma 1 ]-coMponents bf a digréph are disjoiﬁt.

Proof Let M, N be 1-components of a digraph G. Suppose M and N (M 5 N) have a vertex v in
common. Then by definition of 1-components, there exists a path from u to v, and a path from v to w for
any ue V(M) and w e V(N), which implies there exists a path from 1 to w in < W)+ V(N)> . Similarly,
there exists a path from w to  for any w & ¥(N) and ue V(M) . Thus < V(M) + V(N)»; must be a
1-component of G, which contradicts the maximality of M and N.

Lemma 2 If deg(v) < k, then v is not contained in any k-component.
Proof Inﬁnediate from the definition of the k-component. ’

Lemma 3 Let G be I-connected digraph with n (> 3) vertices. If G is not complete, and |S{G)| > 0, there
© exist two vertices, VW , such that, there exist no path from v to w in G|S{G) .

- Proof If Gis not complete, there exist a vertex w, such that, deg(fv) < n— 1, which implies |S{G)|<n—2
. Therefore, G/S{G) has at least two vertices. On the other hand, G/S{G) is disconnected. Thus, there exist
two vertices, v,w, such that there exist no path from v to w in G/S{G). Q.E.D.

Lemma 4 Let HcG, Then H is a k-component (k's D of G if and only if |S{H)| = k and |S{D)| < k for
every I which satisfles HclcG and H # 1

Proof Immediate from the definition of the k-component.

Lemma 5 Let G be [-connected digraph, and let P\, ..., P¥ be the I-components-of G|S{G). Then, evefy
k-component (k> |S{G)|) of G is a subgraph of <V(P)+ S(G)>¢ , for some unique i(1<i<N). Conversely,
every k-component (k> |S{G)|) of «V(P)+ S(G)> is a k-component of G. o

Proof Suppose H be a k-component (|S{G)| < k) of G. Let vwe V(H), and v,w¢ S{G). Then there exist
a path from v to w, and a path from w to v, each of which avoids S{G), because there are at least k vertex
disjoint paths both from v to w and from w to v, by Menger’s theorem, which implies v, w & V(P?) for some
unique i (1< i< N). Thus, V(H)< V(P)+ S{G), for some unique i. Therefore, He<W(P) + S{G)» , for
some unique i (1 < i< N). Since < V(P + S(G)>,<G, the maximality of H is obvious. Conversely, )
suppose I be a k-component of <V(P)+ S{G)>; Then, since [ is a k-connected subgraph in G, IcI’ holds
for some k-component, I, of G. Then by the previous argument, I’ must be a k -component of
<WV(P)+ S{(G)». Therefore, by the maximality of 7, I=I". Q.E.D. )

Note that Lemma 3 implies each < V{P¥)+ S(G)> ¢ in lemma 5 has fewer vertices than G, unless S{G) is
empty. :

Lemma 6 Overall time complexity to find S{G) in line 13 of FMCk,1,G), including recursive calls is
bounded by ¢ x (n— k)x TG) , where ¢ (= 1), and T(G) is the time bound to find S{(G). We assume
T(G)=n+e

Proof Let |V(G)| = n, G} = n, |V(G)| = A, and |S(G)| = s5; . We prove this by the induction on
m=n—k. :

1) m= I: trivial.
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*2) Assume the lemma holds for V1 < m< M. Consider the case, m(=n—k)=M+ 1. Since G, are
disjoint by Lemma 1, time complexity to find S{G,) in line 16, excluding recursive calls, is bounded by:

ZTKG,») <T{(G).

Next, we show that time complexity of the recursive calls, FMC(¥’,/,G}) , in line 25 for each i, is bounded
by: .

ex T(G)x (m—k—1).

At line 16, |V{G))| = 3, and G, cannot be complete. Hence by lemma 3, W<, —1<n~—1. Note that K=k
Then:

n—kK<n—k-—1<M.
Therefore, by the induction assumption, each FMC(K’,/,G}) spends at most ¢ x ( — k) x T(G/) time.
Suppose G, (at line 22) has N 1-components. Since T(G{) < T(G)) , time complexity for the executions of
FMC(k 1,G]) for all j is bounded by: :
¥ ¥
Yex(n—K)x T[G)) <cx T(G)x 2(n—K). A
1 : 71

Recall ¥ > k,and i< m —1.
IfN=1, :

(A) < ex T(G)x (H — k)< e x (m— k— 1) x T(G).

Note that |S{G)|+ 2|V(P)| < n; . Then:
~ :

I = BP0+ IS <k (V- D

1
Note that kK’ > 5,+1, and k¥’ > k.
IfN>2,

(A) S ex T(GYx {m+(N—Dxs—(N—1+1)x £}
=ex T(GYx {n— k' —(N=1)x (K —s)}
<ex T(G)x (m—k—1).
Thus the overall time complexity to find S G,-),'including recursive calls, is bounded by:
SUTLG)+ cx (m—k— D) TGl < cx(n—k)x T(G) .
Therefore, by th¢ induction, the lemma holds for Vm>1 . Q.E.D.
Lemma 7 Time complexity of the iteration in ?z'nes 4-9, including recursive calls, is bounded by
cx (n— k) x (n+ e) time, for some c (= 1).
Proof Let m=n-— k. We prove by the induction on m.
1) m = 1: Obvious.
2) Assume the lemma holds for Vi< m< M. Let m(=n—-k)=M+ 1.

In the same manner as Lemma 6, using the induction assumption, it is easily shown that the time
complexity for each G; (recursive part, concerning this iteration ) is bounded by: ¢x (7, —k—Dx(m+e).
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Let the iteration (lines 4-9) be repeated r times, excluding recursive calls. Then, at least  — 1 vertices are
eliminated from G by the iteration. Therefore, after the iteration, it becomes: Zn, <n—-r+ 1 Thus, the
overall time complexity is bounded by:
rxcx(n+e)+ Z{cx (n—k—1x{(n+e) <rxcx(n+e)+cx(n—r+ 1—k— Dx(n+e)
=cx(n—k)x(n+e).

Q.E.D.

Lemma 8 FM(k,/,G) is called at most (n— k) times, including itself.

Proof Proof is by the induction on n— k, same as Lemma 5. QE.D.

Theorem A Let G be a digraph with n vertices and e edges. All the possible v-components (k < v< Dof G
are found within O((n— k) x T(G)) time, where T(G) is the time bound for computing S(G). We assume
IT(GOl=zn+e

Proof The correctness easily follows from lemmas 1 - 5. In each execution of FM C(k 1,G), processes
except for what are evaluated in Lemma 6 and Lemma 7, spend at most ¢’ x (n+ e) time, excluding recursive
calls, for some ¢’ (> 0). Since FM((k,],G) is called at most (n — k) times by Lemma 8, these processes spend
at most ¢’ x (n— k) x (n+ €) time. Thus, the overall time complexity is bounded by

ex(n=E)x T(G)+ cx(n—k)x (n+e)+ & x (n+ e)
= O(n— k) x T{G)) time. Q.E.D.

Theorem B For any k,n, s.t. 1 < k < n, there exists a digraph with 2 x n— iy + 1 vertices and
2x n? —k x (k — 1) edges which has every v-component (k < v < n) with at Ieaxt n-+ 1 vertices and nx (n+ 1)
edges.

Proof Construct G as follows.

(Stage 1) Let G, be a complete digraph with n+ 1 vertices, v, , ... V-

(Stage i 2<i<n—k+1) Let G,bea digraph constructed by.addixig a new vertex v,,; and new edges,
[V:ﬂ-i, VJ]) and [VJ, vn+i] (1 Sjs n—i+ l) to G:‘-l'

(Stage n—k+2) Let G= G, 4.

Note that G, has n+ 1 vertices and 71x (n+ 1) edges, and in edch stage i, a new vertex and 2x (n—i+ 1)
edges are added to G._,. Therefore, G has 2x n— k+ 1 vertices and, the number of edges is:

ax (it D+ 3 2x(n—i+ 1) = 2x 2 —kx (k+ 1).
=2
Cleatly, |(G)| = IV(G))| = n+ 1, and |E(G)| = |E(G,)|= nx (n+ 1) . By a simple observation,
{ve NG)deg() =2} =yl <j<2xn—j+ 1} =G 4, (k<j<n).

For k<j<n, G,_;, is clearly j -connected, since G, _;,, may not be disconnected by the removal of any p
vertices (p < j). Thus, G, is the j-component of G (k<j<n). Q.E.D.
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4. Apphcatlons

Our algorithm may provide a heuristic for certain kinds of induced subgraph problems. We deﬁne the
induced subgraph problem as follows:

Given a graph (or digraph) G, positive integer I ( < |/(G)]), and a property g) Is there a subset W< (G)
with [W] > I such that < W satisfies g ?

In case g means “clique”, “independent set”, “planar”, “bipartite”, “outerplanar”, ”edge graph”, “chordal”,
“comparability graph”, or “forest”, the induced subgraph problem is known to be NP-complete [ GaJo79] .
However, our result shows that the induced subgraph problem is solvable in polynomial time, if ¢ means
“k-connected”. Note that if given graph (or digraph) G has a chque with & (> 2) vertices, then G has a
(k — 1)-component. Let k' denote the maximum value of k over all the k- -components of G, that is, G has a
k* -component, but no (k" +1) -component. Clearly, our algorithm determines k” in polynomial time. On
the other hand, if / > k" +1, then G cannot have any clique with no less than / vertices. Therefore the
induced subgraph problem for “clique” with such / would be answered “No”.

”

5. Remarks.

In our algorithm, degree checks and eliminations of unavailablé edges in lines 4 - 9 are not necessary to
achieve the time bounds of theorem A. However, in many cases, these simple checks may yield considerable
reduction of the cost, while they may cause no effect in the worst case as described in theorem B.
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