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The C-Oriented Polygon Intersection Problem

Xuehou TAN, Tomio HIRATA and Yasuyoshi INAGAKI

Faculty of Engineering, Nagaya University, Chikusaku-ku, Nagoya, Japan

¥We examine the problem of reporting all intersecting pairs in a set of
vc—oriented'polygons in the plane. A set of polygons is called c-oriented if
the edges of all polyéonévhave only a constant number of orientations. The
problem arises in many applications such as the VLSI design rule checking and
architecture or furniture databases. We present‘an optimal algorithm that runs

in O(n log n + t ) time.and O(n) space, where n is the number of polygons and

t the number of intersecting pairs.



1. Introduction

Let
polygons,
number of edges in the Euclidean plane.
A polygon intersectien problem requires
to report all intersecting pairs in P.
The classical rectangle intersection

“problem in which P is a set of axis-
parallel rectangles is already
mentioned in {1, 91, and much work has
been done on this problem [3, 5, 12,
151. Whereas the arbitrary polygon
intersection problem has received few
attention.

P denote a set of

We consider so-called c-oriented
objeécts, a notion proposed by Guting in-
order to bridge the gap in complexity
between * orthogonal ‘objects and ‘o
arbitrary objects [6, 7, 8], and thus
investigate the c-oriented polvgon"
intersection problem. 1In the plane a
set of polygons “is called c-oriented if
the edges of all polygons have only a
constant number of orientations.

Apart from the theoretical interest,
motivations for studying c-oriented
polygon intersection problem also stem
from some applications. For example,
in VLSI artwork analysis two distinct
components must be seperated. -by a:.cer-
tain distance. The detection of
whether or not the seperation rule is
obeyed (usually, called VLSI design
rule checking) can be cast as such an
instance,
required to detect or report intersect-
ing pairs among thousands of objects
having a few orientations. The impor-
tance is that we can perform VLSI
design rule checking on real boundaries
of components. In contrast to this, a
common approach is based on "bound
boxes" -- each component is represented
by the smallest rectangle enclosing it,
and then two components are checked in
detail if their respective rectangles
intersect (see [1, 91). The similar
problem also arises in maintaining
architecture or furniture databases.

Optimal algorithms for the rectangle
intersection problem have been obtained
independently by McCreight[12] and
Edelsbrunner[51]. Their algorithms run
in optimal time O(n log n + t) and
space O(n), where n is the number of
rectangles: and t- the number of
intersecting pairs. In this paper we
present an algorithm that solves the
c-oriented polygon intersection problem

simple
each having at most a fixed

where fast algorithms are

in the same optimal time O(n log n + t)

and space O(n). In [7]1 Guting gives
an algorithm for this problem, as a by
product of c-oriented polygon intersec-

which runs in
and O(n log n)

tion search problem,
0¢n.log2n + t) time
space, and remains it open whether his
bounds could be improved to O(n log n +
t) time and O(n) space. Our result

- here is an answer to his open problem.

The paper is organized as follows:
In section 2 we examine the c-oriented
polygon intersection problem and see
how it can be reduced to two
subproblems: the c-oriented version of
line segment intersection problem and

-batched point enclosure search problem.

In section 3 and 4 we give algorithms
based on the line-sweep mechanism for
these two subproblems respectively.
The methods used in section 3  and 4
may report an intersection more than
once (but at most a constant times, see
section 2). Section ‘5 gives another
algorithm ,to avoid multiple reports
with slightly lesser performance than
that of optimal algorithm. Directions
for further ‘work and conclusions are
finally offered in section 6.

2. The C-Oriented Polygon Intersection
Problem

For preciseness let us recapitulate
the definition of the notion "c-
orientedness"” and the polygon
intersection problem.

Definition 1 (c-orientedness): A
set of line segments in the plane is c¢-
oriented if there exist ¢ orientations
a1, 93, ,0 o such that the orienta-
tions of all line segments are among
(aq1,a 9, ,0cl. A set of polygons is
called c-oriented if the set of edges
of all polygons is c-oriented.

Definition 2 (the c-oriented polygon
intersection problem): Given a'set P
of c-oriented polygons, each having at
most a fixed number of edges, report
all pairs of polygons in P which have
at least one point in common.

We assume that each polygon is
simple (that is, no pair of nonconsecu-
tive edges sharing a point) and given
by the sequence of its vertices in
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clockwise or counterclockwise
For conventions, we call a line segment
o -segment if it is parallel to a .

that the polygon

is reducd to two
two polygons
either

It is obvious
intersection. problem
subproblems. - Namely,
intersect each other
edges intersect or if one entirely
encloses the other. Hence the problem
can be solved in two stages.
stage is to .find all pairs of polygons
with edge intersections. For this pur-
pose an algorithm for reporting line
segment intersections is developed in
the following section. The second
stage is to find all pairwise polygon
enclosures. In this stage we. choose
for each polygon X a representative
vertex x from its vertices,: and then

for each representative vertex we find
out all enclosing polygons. This is a
special case of the batched point

encliosure search problem, which we

will discuss in section 4.

.The two subproblems are respectively
solved in the next two sections.
Combining ‘these results we obtain that
the polvgon intersection problem for n
pelygons whose edges have. a -constant
number of orientations can be solved in
O(n tvg n + t), where t is the number
of reported intersecting pairs.

Our algorithm reports:- each pair of
intersecting polygons at least once,
but no more than a constant times since
the number of edges of a polygon is
bounded by a constant. This is the
only reason we posed a restriction on
the number of edges of -a polygon. In
fact our algorithm works correctly
without this restriction, but each
intersecting pair might be reported too
often.

3. The Line Segment Intersection

Problem

In this section we consider the spe-
cial case of line segment intersections
in which all of the n given line
segments have a constant number
orientations « 1,Q 9, , & ¢.

c of

We decompose the problem by
orientations; that is, we report the
intersections of o j-segments with non
a j-segments for each a ; (1= .1 = c¢).

order. .

if their

The first

-C.

(3)

intersections for
we ‘sweep through the
plane a scan-line which is parallel to
o and stops at each endpoint of a non
@ -segment and at each o -segment.
During the sweep we maintain a data
structure to store the non a -segments
currently cut by the scan-line (the
"active" non « -segments). Initially
the structure is empty. ~ Whenever the
scan-line stops at a left (right)
endpoint of a non o -segment, this -
segment is inserted into (deléted'{rpm)
the structure. When an «a -segment’
scanned, we check it for ntersectlons
with the active non a -segments in the
structure. )

- To compute the
orientation ¢,

The c-orientedness enables us to
split the active non « -segments into

c-1 disjoint sets by their orienta-

tions. Let 8p denote the set
corresponding to orientation B . The
cardinalities of all sets Sp are O(n).

The segments in S is then ordered by
their f3 “-coordinates where 3 - is the
orientation perpendicular te A, and
implemented as a balanced binary leaf-
search tree with leaves storing these

p ~“-coordinates [2]1. Thus our data
structure consists of ¢-1 balanced
binary trees. Each of the insertion,

deletion and search operations is
performed in O(Clog n) time. When the
scan-line meets an o -segment (a, b),
we find the intersections of the
segment (a, b) with segments in'Sﬂ by
projecting two endpoints a and . b
onto the f axis (see Figure 1).
Reporting the intersecting pairs can be
done in time - proportional to their
number if the leaves of the tree are
kept in a doubly linked list.

- As done in [2], some special cases
must be handled carefully, such as the
line segments overlapping and sharing
endpoints. Besides, our method reports
each intersection twice. To avoid
this, we remove all « -segments from
the given set of line segménts as soon
as the sweep for o is finished. . Thus
balanced binary trees are decreased one
by one, and the last sweep is really
unnecessary.

From the previous discussion, the
intersection problem for c-oriented
line segments can be solved in
O(n log n + t) time and O(n) space,
where t is the number of intersecting
pairs. Taking ¢ into account the time
complexity is OCc n log n + t). The
space requirements are independent of
These time and space complexies are
the same as those for the orthogonal



case. Although

complexity has
Chazelle and Edelsbrunner [4] for the
arbitrary line segment .intersection

the same time

problem, their algorithm requires
O(n + t) space and our. algorithm is
simpler.

Using the method described by

Bentley and Ottmann [2], we can
“modifiy the algorithm for counting the
total number of intersecting pairs of
c-oriented line segments (without
reporting them), the modified algo-
rithm will run in O(n log n) time and
O(n) space.

4. The Batched Point Enclosure Search
Problem

‘In this section we study the batched
point enclosure search problem: Given
a mixed set of query points and c-
oriented polygons, report for each
point all of the polygons enclosing it.

It is assumed that the total number of
points and edges is n. (We need not
place the restriction on the number of
edges of a polygon.)

As discussed in [31, one solution
to the batched point enclosure search

been obtained by -

problem is to cast it as a search
problem, that is, the set of polygons.
is first organized into a data struc-
ture and then for each point an
enclosure query is asked with respect
to the set of polygons. In {71 Guting
presents an algorithm for the c¢-

oriented version of the search problem,
which' leads to a result of O(n Logzn +
t) time and O(n log n) space, where i
is the total number of reported
polygons.

We now give a solution of the
batched problem by using the scan-line
paradigm, that is, we sweep a vertical
line from left to right, and as it
sweeps over a query point we report. the
enclosing polygons. During the sweep,
a data structure is maintained to store
the polygons currently cut by the scan-
line, the "active" polygons. The
structure must be able. to answer
gqueries about the polygons enclosing
any point of the scan-line. The inter-
section of the sacn-line with the set
of active polygons forms intervals of
the scan-line. A single polygon may
produce several intervals if it is con-
cave. See Figure 2. When a query
point is encountered, we report the

(4)

polygons whose
point;

intervals contain the

Unlike the orthogonal case, the
endpoints of intervals on the scan-line
are not fixed when the scan-line is
swept, but move at different speeds to
the top or bottom. Obviously the
segment tree of Bently and Wood [3] can
not be used to answer point enclosure
queries on a set of continuously
varying intervals. We need a data
structure to hold the ‘intervals that
vary with the scan-line.

Observe that an endpoint of an
interval moves along an edge of an
active polygon. Thus we can describe

endpoints by the corresponding edges.

An. edge with orientation @ is repre-
sented 'by o ~-coordinate where « ~ is
the orientation perpendicular to o .

1t is assumed that the introduced « ~
axis points upwards from the origin of
the (X, y)-coordinate system. Then an
interval in the scan-line is repre-
sented by a pair (a ~0, f3 ~0), where «
and B are the orientations of it's top
and bottom edges respectively. See
Figure 3. Since @ and 3 have no more
than ¢ different orientations, the
intervals are partitioned into at most
c2 disjoint sets. Let 1, g denote
the set corresponding to orientations
a and B . The cardinalities of all
sets Ty | are O(n). Therefore we can
represent the intervals varying with
the scan-line by c¢2 different data
structures, one for each set 1y .

Suppose that a query point p is now
encountered. If p is represented in
(a~, B ~)-coordinate system as a pair
(a "p,” B Tp), an interval (a Ty, B "¢
in 1y ,p contains p iff C

ﬂ—o B—p
To answer this kind of range queries
efficiently, a standard data structure

of computational geometry can be used.
We are able to store the intervals of

=

o p a ~¢p and =

Ig g in a priority search tree (see
t13J7or [141), and hence c2 priority
search trees are used. A priority

search tree stores a dynamic set of
points (x, y) in linear space. It
supports l1.5-dimensional range searches
with logarithmic query time. A 1.5~
dimensional range search is given by a
rectangle unbounded to the bottom side,
i.e. it asks for all points (x, y) in a
semi-infinite strip x5 £ x = x1,

y £ v, Moreover, a point can be
inserted into (deleted from) a priorvity
search tree in logarthmic running time.
Since all polygons are given




beforehand, radix priority search trees
suit to our purpose.

The scan-line also stops at all ver-
tices of the polygons. When no edge
parallels to the scan-line, a vertex v
is one of the kinds shown in Figures 4a
to 4f. In these figures inside of a
polygon is indicated by hatching.
Whenever a vertex v is encountered,
some intervals cease to be active, and
some intervals become active. A vertex
in Figure 4a or 4b terminates an
interval and initiates an interval. In
Figure 4c¢ two intervals are terminated
and an interval is initiated, while in
Figure 4d an interval is terminated and
two intervals are initiated. A vertex
of Figure 4e terminates an interval,
while that of Figure 4f initiates an
interval.

On meeting a vertex we have a dif-
ficulty in determining which intervals
to be inserted 'into/deleted from the
priority search trees. For example, a
vertex of Figure 4a gives us only one
endpoint of the intervals to be deleted
and inserted. But the intervals in the
priority search trees are represented
by a pair of endpoints. To overcome
this difficulty we use, as a subsidiary
data structure, a balanced binary
search tree [11, 171, for each active
polygon. It is known that the time
bounds for access, insertion and dele-
tion operations are O(log n) for
balanced search trees, where n is the
number of tree nodes. Initially these
balanced search trees are empty. If an
interval of a polygon P is stored in
the priority search tree, it is also
maintained in.- P's search tree. An
interval in the search tree is
represented by two egquations y a1x +
by and vy agx + by of the edges
(supporting lines) forming it. Given
X, we can determine the interval
exactly. The intervals of a polygon in
the scan-line are totally ordered in y
coordinate (also see Figure 2).

The determination of the intervals
to be inserted into/deleted from our
data structures on meeting a vertex v
is now straightforward. Let the vertex
v belong to polygon P. In Figure 4a,
we access P's search tree with the left
neighboring edge 1, delete the node
representing the equations of 1 and 1's
partner, . and insert a node representing
the equation of the right neighboring
edge r and that of 1's partner. . The
inserted and deleted intervals in P's
search tree are simultaneously
processed in the priority search trees.
The similar treatment is done when the

vertices represented by Figures 4b to
4¢c are scanned. A vertex v in Figure
4d has no corresponding edges in P's
search tree, but it is contained by the
sole interval. Hence we first locate
the interval containing v in P's search
tree, and then combinate the top and
bottom edges of the interval with the
top neighboring edge t of v and the
bottom neighboring edge b of v
respectively. A vertex v in Figures 4e
and 4f determines the interval in the
cbvious way.

When there exists an edge parallel
to the scan-line, the edge will be of
a kind shown in Figures Sa to 5d.
(Symmetric cases are omitted.) On
meeting an -edges vepresented by Figures
5a to 5d the intervals can be deter-
mined in the similar way as above. For
example, Figure 5a is treated in the
same way as Figure 4e.

Note that in our original problem
where each polygon has at most a fixed
number of edges, a polygon has at most
a constant number of intervals, which
makes subsidiary search trees unneces-
sary, and that if the given polygons
are monotonic in some direction, a
polygon has only one varying interval
during the sweep and subsidiary search
trees are also unnecessary.

By now we obtain an algorithm that
solves the batched problem. When a
query point is met, we query all the
priority search trees. The query time
for a priority search tree is O(log n +
ti).time where t; is the number of
answers. Thus our algorithm runs in
O(n log n + t) time and O(n) space,
where t is the total number of reported
polygons. Taking ¢ into account the
time complexity is O(cé n log n + t).
Again the space requirements are inde-
pendent of c. In practical applica-

tions, ¢ must be rather small to make
our algorithm efficient, for instance,
less than 5. These time and space

complexities are also the same as those
for the orthogonal case [3].

It is noted that Guting [61 has

given an optimal algorithm of
O¢(n log n) time and O(n) spdace that
solves the batched point enclosure

counting problem: given a mixed set of

‘query points and c-oriented polygons

where the total number of points and
edges is n, determine for each point
the number of polygons enclosing it.
But his method does not solve the
batched point enclosure reporting
problem.



5. Another Solution with a Single
‘Report

In section 3 and 4 we have given an
optimal algorithm for the c-oriented
polygon intersection problem. It
reports an intersecting pair as soon as
it is found,  and the same intersecting
pair -may be reported more than once
(but at most a constant number of
times). We present here another
algorithm that stores each found pair
in an vector instead of reporting it
instantly, and avoids multiple reports.
Unfortunately the algorithm is not
space-optimal and requires O(n log n)
.Space.

The new algorithm proceeds as
follows: The polygons are first sorted
into some order, and then deleted one
by one from the sorted sequence.
Furthmorte, when polygon P is
deleted, we check for intersection of
p with the rest of polygons. Obviously
this is a one-pass algorithm. If we
sort polygons according to their maxi-
mum X values in increasing order, and
choeose the rightmost vertex of a
polygon as its representative vertex,
the algorithm for the batched point
enclosure problem in the ' previous
section will works to report all pair-
wise polygon enclosures in the desired
order.

To report edge intersections as
described above, the method presented
in section 3 can not be used. A new
‘method is to delay computing edge
intersections until a rightmost vertex

of a polygon p 1is encountered. At

that time P is deleted from the
sequence, and edge intersections of p
with the rest polygons are checked.

This delay makes the solution of edge
intersections independent of the scan-
line.. In fact we are faced with a
special kind of dynamic line segment
intersection search probiem. As
polygons are deleted one by one from
the segquence, edge intersection queries
are asked in the same order. For-
tunately Imai and Asano[10] have
studied this kind of problems for the
orthogonal ' case. That  is, if the
underlying set is updated only by dele-
tions or insertions, an intermixed
sequence of O(n) queries and updates
can be excuted on-line in O(n log n +
t) time and O(n log n) space, where t
is the total number of reported inter-
sections. By reducing the c-oriented
line segment intersection search

(6)

problem to several instances of the
orthogonal! problem (for detials
seel81), it is not difficult to extend
Imai and Asano's algorithm to c-
oriented objects. We omit the details
here.’

To report each pair only once, we
use a vector V(t) (with t ranging from
1 to n) to keep the intersecting infor-
mation. Just before the ith polygon
is deleted, VIjl (j 2 i) holds the
maximum number of the polygon which is
intersected with the ‘jth polygon and
whose number is less than i. That is,
VIjl ‘
" max { the kth polygon intersets with

k the jth polygon and k < i).-
Hence the strategy for processing . the
ith polygon is ‘as follows: First, if
VI{il is not 0O, the pair (V[il, i) is
output and V{il-is reset to 0. Second,
the intersections of the ith polygon
with all of the jth (j > i) polygons
are checked. After having detected the
jth polygon intersecting with the ith

polygon, - we check the value of V[jl,
if VIjl is neither 0 nor i (that is, in
the range of 1 to i-1) the pair (V[jJ,

j) is output, and then set VI[jl to i.
In this method each intersecting pair
is reported exactly once.

Let us now give a short description
of the algorithm:

Sort all polygons according to their
maximum x values in increasing
order;

Initially the vector V is

FOR i 1 To n DO
Delete the ith polygon p from the

sorted sequence;
IF VIil # O THEN report the pair
(VLil, i); VIi] 0 FI;
Check the intersections of
with the rest polygons;
FOR. EACH intersected polygon q DO
(Let q be the kth polygon)
IF 0 < V[j]l < i-1 THEN
report the pair (V[jl,
Vijil i
OoD;
OoD;

0;

P

i) F1;

By now we have solved the problem
posed in the beginning of this section.
Due to the fact that edge intersections
must be reported in some designated
order, the method presented here fails
to obtain optimal space bound. We
leave open the question of the exist-
ence of a time- and space-optimal
algorithm for the c-oriented polygon
intersection problem which reports each




intersecting pair only once.

6. Conclusions

In this paper we presents an optimal
algorithm for the c-oriented polygon
intersection problem. As intermediate
steps of this algorithm, we also give
algorithms for two related problems:
the c-oriented version of line segment
intersection problem and batched point
enclosure problem. To aviod multiple
reports occurred in the optimal algo-
rithm, we present another algorithm,
but which requires to increase the
space bound by a factor of log n.

The solution to the c-oriented
polygon intersection problem is par-
ticularly important in practice because
of its relation to VLSI design rule
checking. It may also have applica-
tions where a problem involves comput-
ing some property of a given set of c-
oriented objects. For example, in the
translation problem which requires to
translate geometrical objects in a
given direction, one at a time, without

collisiuns occuring between the
objects, we can give efficient algo-
rithms for c-oriented objects in three

dimensions based on the methods
developed in this paper -[16].

The result we have obtained par-
tially answers the challenging open
question of whether all t intersections
among n polygons can be reported in
O(n log n + t) time. To solve this
problem, one might use Chazelle and
Edelsbrunner's algorithm [4] 'to find
all edge intersections in optimal time
O(n log n + k), where k is the number
of pairwise edge intersections. The
remaining problem is how to find all
polygon enclosures in the same time
bound.
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