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Algorithms for Finding k& Points with Minimum Variance and Diameter

Hiroshi Imai Naoki Katoh
Kyushu University Kobe University of Commerce

The problems of finding a subset of k points with minimum vari-
ance and diameter among n given points in the plane are considered, and
O(k*n + nlogn)-time and O(k2®nlogk + nlogn)-time, respectively, al-
gorithms are given. Both algorithms make use of higher order Voronoi
diagrams, and, the algorithm for finding k£ points with minimum diameter
utilizes an independent set algorithm on a bipartite graph obtained from
points by geometric conditions. New extremal results on the higher order

Voronoi diagram are also established, which are used in the analysis of the
algorithms.

7-1
22)



1 Introduction

We consider the problem of selecting a specified num-
ber of points, k, from a given set S, subject to some
optimization criterion. Problems of this type often
arise in statistical clustering and pattern recognition.
From an algorithmic standpoint, these problems usu-
ally can be solved in time O(n**¢), where n is the
number of points in S and ¢ a small constant. Observe
that for arbitrary k this time complexity is exponen-
tial in the size of the input. Finding general methods
to solve this problem for a wide variety of optimization
criteria is a challenging and elusive goal and, except
for a paper by Dobkin, Drysdale and Guibas [3], the
study of this problem has been conducted mainly for
fixed values of k. In this paper, we follow the lead of
[3] and study the general case of the problem for sev-
eral natural criteria of optimization. In particular, we
give efficient algorithms for the following problems:

1. (k-diameter) Find a set of k points with a mini-
mum diameter; the diameter of a set is the maxi-
mum distance between any two points of the set.
Our algorithm takes O(k%5n log k+n log n) time.

. (k-variance) Find a set of k points with a min-
imum variance; the vartance of a set is the sum
of squares of the distances of all pairs of points
in the set divided by the number of points in the
set. Our algorithm takes O(k?n + nlogn) time.

The general idea behind our algorithms is the use
of higher-order Voronoi diagrams. This approach is a
fairly natural one, and it was also adopted by Dobkin,
Drysdale and Guibas [3] for finding a smallest convex
polygon containing at least k points. In deriving our
algorithms, we add several new features to this basic
approach, and also establish new combinatorial facts
about the higher-order Voronoi diagrams, which may
have independent interest.

2 The k-Variance Problem

Given aset S of n points in the plane, we wish to select
k points from S with a minimum variance, where the
variance of a set is defined as the sum of squares of
the pairwise distances divided by the number of points
in the set. We show that this problem can be solved
efficiently by using the order k Voronoi diagram. We
begin by deriving a useful inequality for the variance.

Let S; be aset of k points with a minimum variance,
and let ¢* = (z*,y*) be the centroid of 57, i.e.

z‘:%zz; and y" %Zyi,

pi€S] pi€Sy

where z; and y; are the coordinates of p;. Then we
have the following relations:
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= Z ((zi — 17')2 + (v — y.)z) (1)
pi€S;

< Z ((zi — )2 + (3 — v)%), (2)
pi€Sy

for any (z,y) # (2*,y"). The last inequality follows
from the fact that the function

flzy) =Y (=i —2)* + (% —v)?)

pPi€S;

has a unique minimum, which occurs at (z*,y*). We
can now prove the following lemma.

Lemma 2.1. Let Sj C S be a'set of k points with a
minimum variance, and let ¢* = (2*,y*) be the cen-
troid of S;. Then, the k nearest neighbors of ¢* in S
are precisely the points of S;. Consequently, in the
order k Voronoi diagram of S, there is a nonempty
region associated with Si.

Proof. Let p; be the farthest point from c* in S}.
Suppose, for a contradiction, that there exists a point
p1 € S— S; that is no farther from ¢* than p;. Define
S, = (St —{p;})U{p1}. Then, using the equation (1),
we have

Var(S) = D ((@i=2") + (i - v')?)
PiES;
2 Y (@i—2") + (- v))
pi€S,
> Var(S;),
since ¢* = (z*,y") is not the centroid of S; (cf. in-

equality (2)). But this contradicts our assumption
that S; has the minimum variance. O

Theorem 2.1 clearty holds in arbitrary dimensions.
We therefore have the following simple algorithm for
solving the k-variance problem: construct the kth or-
der Voronoi diagram of S; compute the variance of sets
of k points associated with the regions of the Voronoi
diagram; and select the set with a minimum variance.
Given the kth order Voronoi diagram of S, we can
compute the variance of various sets of points at con-
stant time apiece, by using the relation (1). More
precisely, let A and B be two neighboring regions in
the Voronoi diagram. Then the sets of points associ-
ated with them, namely, SN A and SN B, differ by
exactly one point. Given the centroid of SN A, the
centroid of SN B can be easily computed in O(1) time
and, consequently, the relation (1) allows the variance
of SN B to be determined from the variance of SNA in
constant time. The running time of our algorithm for
solving the k-variance problem is therefore dominated
by the time for constructing the kth order Voronoi di-
agram. In particular, we have the following theorem.
Theorem 2.1. Given a set S of n points in a d-
dimensional space, we can solve the k-variance prob-
lem for S in time O(fa(n,k)), where fa(n, k) is the



time complexity of computing the kth order Voronoi
diagram of n points in d dimensions. 0O

The time bounds for f4(n, k) are fo(n, k) = O(k*n+
nlogn) [1] and fi(n, k) = O(nt!) for d > 3.

3 The k-Diameter Problem

The k-diameter problem asks for a set of k points hav-
ing a minimum diameter. In this section, we present
an O(k>®nlog k +nlogn) time algorithm to solve this
problem. In Subsection 3.1, we show a connection
between the k-diameter problem and the (3k — 3)th
order Voronoi diagram of S. In Subsection 3.2, we
reduce our problem to the problem of finding a maxi-
mum independent set in a certain bipartite graph, and
present an O(k*®nlogk + nlogn) time algorithm for
the problem. This bound is subsequently improved in
Subsection 3.3 by exercising greater care in our use of
the Voronoi diagram; in particular, this involves prov-
ing some new combinatorial bounds on the number of
distinct pairs and triples whose points belong to the
same region of a higher order Voronoi diagram.

3.1 The k-diameter Problem and
Higher Order Voronoi Diagrams

Motivated by our success with the kth order Voronoi
diagram in the k-variance problem, we are tempted to
use the same idea for the present problem as well. Un-
fortunately, the following example shows that the kth
order Voronoi diagram may not always help in solv-
ing the k-diameter problem. Given a regular hexagon
abedef, let S(z) be a set of m points contained in a
ball of radius ¢ centered at z, for z € {a,c,e}, where
€ > 0 is a suitably small number. Similarly, let S'(z)
be a set of m — 1 points lying inside the triangle Abdf
at distance 2¢ from z, for z € {b,d, f}. It is easily
seen that Sp = S(a) U S(c) U S(e) is the unique set of
k = 3m points having a minimum diameter but there
is no nonempty region associated with Sy in the or-
der k Voronoi diagram of the given set of points; this
follows because any point in the plane is closer to at
least one point of S/(b)U S’(d)US’(f) than it is to all
of Si.

Consequently, if there is a relationship between the
k-diameter problem and the Voronoi diagram, then it
must exist only for orders higher than k. Fortunately,
the following lemma shows that we need not look be-
yond diagrams of order (3k — 3). We introduce some
notation.

The mth order Voronoi diagram of S is denoted
by Vin(S); recall that this diagram is a partition of
the plane into convex regions, where each region is
associated with a set of m points of S such that, for
any point z in the region, the m nearest neighbors of z
in S are precisely these m points. The set of points of
S associated with a region of V,,(S) is called a voronoi
set of Vi, (S). Observe that a voronoi set of V,,(S) has
cardinality m and there are O(mn) such sets (see e.g.
Lee [6]). We now prove the key lemma of this section.

Lemma 3.1. Let Sy C S be a set of k points with a
minimum diameter, for k < n/3. Then S is contained
in some voronoi set of Va;_3(S).
Proof. A set of points T is a voronoi set of Vjr|(S) if
and only if there exists a circle C containing T and no
other point of S. To prove the lemma, we exhibit such
aset T C S of size |T| < 3k — 3 such that Sg C T.
Let C be the minimum enclosing circle of Si. First
consider the case where C is determined by two points
of Sk, say, p and q. In this case C cannot contain any
point of S — Sy in its interior; if there were a point
s € S — S lying in C, we could replace p, or ¢, by
s to obtain another set of k points whose diameter is
strictly smaller than the diameter of Sy. In this case,
Sk is obviously contained in a voronoi set of V,,,(S) (in
particular, the voronoi set associated with the Voronoi
region containing the center of the circle C). So let us
now assume that C is determined by three points of
Sk. We divide the circle into three sectors by adding
line segments from the center to the three points de-
termining C. Observe that the diameter of each of
the three sectors is less than the diameter of S;. If
C contains more than 3k — 2 points of S, then one of
the sectors has at least k points, which gives a set of
k points with a smaller diameter than S;. Thus, C
has at most 3k — 3 points, and the proof is completed.
a

By Lemma 3.1, we can solve the k-diameter prob-
lem by examining all (3";3) subsets of each of the
O(kn) voronoi sets of Va_3(S). This time complex-
ity, although polynomial in n, is still exponential in k.
In the following subsection, we develop a fully poly-
nomial algorithm for the problem.

3.2 A Polynomial Time Algorithm

Given a nonnegative number d, let G(d) be the graph
defined as follows. The vertices of G(d) are the points
of S and there is an edge between two points, p; and
pj, if [|pi — pj|| < d, where || - |} denotes the Euclidean
norm. We define the lune of p; and p; to be the inter-
section of two circles of radius ||p; — pjl|, one centered
at p; and the other at p;. The graph G(pi, pj) is then
defined as the restriction of G(||pi — p;|l) to the lune
of p; and p;: its vertices are the points of S that lie in
the lune of p; and p; and two vertices are connected
by an edge if their distance is at most ||p; — p;||. Then
the following observation is straightforward.
Observation 3.1. There is a set of k points in S
whose diameter is determined by the points p; and p;
if and only if there is a clique of size k in G(p;,p;)
that includes p; and p;.

Let G(pi, p;) be the complement graph of G(p;, p; ).
Then a clique of size k in G(p;, p;) corresponds to an
independent set of the same size in 5(p;,pj). In the
following, we present an efficient algorithm for finding
a maximum independent set of a(p;,pj). The follow-
ing lemma is straightforward.

Lemma 3.2. The graph G(p;,p;) is bipartite.

Proof. Consider the two half-lunes obtained from the
lune of p; and p; by drawing the line segment from p;
to p;j. Points in either half-lune form an independent



set of G(p;,p;) since the diameter of each half-lune
is at most |lp; — pj||. The points lying on opposite
sides of the line from p; to p; form a bipartition of the
vertices of G(pi,p;). O

The following lemma describes an efficient pro-
cedure for finding a maximum independent set of
G(pi, pj)-
Lemma 3.3. A maximum independent set of the
graph G(p;, p;) can be found in O(n!*®logn) time.
Proof. If G is a bipartite graph on n vertices, then
a maximum independent set of G can be found in
time O(n1-5Q(n)+n%% P(n)) (see Imai and Asano [5]),
provided that the following two operations, F (find)
and D (delete), can be dynamically implemented for
G in time O(Q(n)) after O(P(n)) time preprocessing:

F: given a vertex v, find an edge incident to v in the
current graph; :

D: given a vertex v, delete v and all its incident edges
from the graph;

In our graph G(p;,p;), two points have an edge be-
tween them if and only if their distance is greater than
llpi — pjll. Thus, we need a dynamic data structure
for storing a set of point S such that the following
operations are efliciently implemented: (F) given a
point v, find a point of S whose distance from v is
greater than ||p; —p;|l, and (D) delete a point from S.
We use a data structure, called circuler hull, that was
recently proposed by Hershberger and Suri [4]. This
data structure needs O(nlogn) time for construction
and O(n) space for storage, and it supports the above
operations at an amortized cost of O(log ) each. Con-
sequently, a maximum independent set of G(pi,p;j)
can be computed in time O(n!-°logn) time and O(n)
space. O

Observe, however, that we really do not need to
compute a maximum independent set; we only need
to check if the size of the independent set is at least
k. The following lemma shows that if the number of
vertices in G(p;,p;) is at least 2k, then there always
exists an independent set of size k.

Lemma 3.4. If G(p;, p;) has at least 2k vertices, then
there exists an independent set of size at least k, and
it can be found in linear time.

Proof. Consider the two half-lunes obtained from the
lune of p; and p; by drawing the line segment from
pi to p;. The set of points contained in the same
half-lune forms an independent set. Since there are at
least 2k points in the lune, one of the half-lunes must
contain at least k points, which proves the lemma.
m]

__Therefore, the problem of deciding whether
G(pi,pj) contains an independent set of size k can
be solved in time O(n + k'S log k). (In O(n) time we
count the number of points in the lune of p; and p;;
if this number is at least 2k, we have an independent
set of size k, otherwise we use Lemma 3.3 to find a
maximum independent set.) The k-diameter problem
of S can be solved by repeating this process for each
of the O(n?) pairs of S. This leads to the following
theorem.

Theorem 3.1. The k-diameter problem for n points
in the plane can be solved in O(n®+ k!-5n? log k) time
and O(n) space. O

By combining Theorem 3.1 with Lemma 3.1, we
obtain the following theorem.
Theorem 3.2. The k-diameter problem for n points
in the plane can be solved in O(k*®nlogk + nlogn)
time and O(kn) space.
Proof. We compute the (3k — 3)th order Voronoi di-
agram of S; this takes O(k®n + nlogn) time. By
Lemma 3.1, we can solve the k-diameter problem of
S by solving the problem for each of the voronoi sets
of Va;_3(S). Since there are O(kn) voronoi sets, each
set has size 3k — 3, and we can solve the problem for
each voronoi set in time O(k!-% log k), the overall time
complexity of our algorithm is

O(nk - k* - k'Slogk) = O(k*Snlogk),

plus the cost of computing the Voronoi diagram. This
completes the proof. O

3.3 Improving the Time Complexity

Our final improvement to the time complexity comes
from a more careful counting of the total number of
pairs of points in all the voronoi sets of Vai_3(S). The-
orem 3.1 derives its bound by checking O(nk?) pairs
of points; (3k2'3) pairs in each of the O(nk) voronoi
sets. We show in this section that this bound is overly
pessimistic and, in fact, we need to check only O(nk)
pairs. This fact will be proved in several stages. We
begin with a definition.

Let Unn(p;) denote the union of the closed Voronoi
regions of V,,,(S) whose voronoi sets contain p; € S.
The following observation is quite straightforward.
Observation 3.2. Up,(p;) is simply connected and it
is star-shaped with respect to p;. O

We use b;; to denote the perpendicular bisector of
the line segment from p; to pj. Then we have the
following key lemma.

Lemma 3.5. Let m < n/2; let p;,p; € S be two
points such that Up,(pi) NUm(p;) # 0; and let U be a
connected component of Uy, (pi)NUm (p;). Then there
is a Voronoi edge of V,,(S) that is part of b;; and that
has a nonempty intersection with U.

Proof. We prove the lemma in two parts: (a) the
boundary of U intersects with b;; and (b) this inter-
section point is contained in a Voronoi edge of Vin(S).
To prove (a), consider a point p € U and assume with-
out loss of generality that p and p; are on opposite
sides of b;;. Let g be the point where the line segment
from p to p; meets bi;. Since Upn(p;) is star-shaped
with respect to pj, the line segment from p to p; lies
in Uj. Therefore, if we move a point z from p to p;,
then the m nearest neighbors of = always include p;.
For any position of z between p and ¢, p; must also be
one of the m nearest neighbors of z since z is on the
same side of b;; as p;. This implies that the segment
from p to ¢ is contained in Un,(p;i), and consequently
q is in the same component of Upm(p:) N Un(p;) as p,



namely, U. Since ¢ lies on b;;, this shows that U in-
tersects b;;. To complete the proof of (a), it remains
to prove that b;; cannot be completely contained in-
side U. If b;; were to lie entirely within U, the m
nearest neighbors of any point z € b;; must include
both p; and p;. We consider the two extreme points
of b;;, namely, £ = +00 and £ = —o0, and denote by
H* (resp. H™) the half-plane determined by p; and
p; and containing 400 (resp. —oc). If p; and p; are
among the m nearest neighbors of both r = +00 and
z = —00, then neither H+ nor H~ may contain more
than m points. But that is impossible since H+* U H~
is the entire plane and m < n/2. This completes the
proof of (a).

To prove (b), let u be the point where b;; inter-
sects the boundary of U, and assume without loss of
generality that u belongs to the boundary of Up,(pi).
Let e be an edge of the Voronoi diagram V,,(S) that
contains u, and let p; and p; be the two points whose
bisector contains e. If I = j, then the claim easily fol-
lows: e is the desired edge. Otherwise, u is equidistant
from p;, p; and p;. We show that u is a Voronoi ver-
tex of V;,(S) determined by p;, p;, and p;, as follows.
Consider a point v close to the edge e but just outside
the region Up,(p;). Since e C by, the set of m nearest
neighbors of v is obtained by replacing p; with py in
the neighbor-set of u. That is, p; is no longer one of
the m nearest neighbors of v, but p; is. This, however,
cannot be the case for all positions of v along e: in
particular, if v is chosen on the same side of b;; as p;,
then v is closer to p; that it is to p;. Consequently,
there must be a discontinuity at the point u where the
bisectors b;; and b;; meet. Therefore, the point u is a
Voronoi vertex of V,,,(S) determined by p;, p;j and py
and there is a Voronoi edge incident to u that is part
of b;;. This completes the proof. O
Lemma 3.6. The total number of distinct pairs (p, q)
such that both p and ¢ are contained in a voronoi set
of Vin(S) is O(mn).

Proof. If m > n/2, then the lemma is trivial; there are
only O(n?) distinct pairs. Otherwise, observe that if
p and g are in a voronoi set, then Un, (p) N U (q) # 0.
By Lemma 3.5, the number of such pairs is bounded
above by the number of edges in the Voronoi diagram
Vin(S), which is O(mn). O :
Lemma 3.7. If m < n/2 and p;,p; € S are two dis-
tinct points, then neither Un,(pi) nor Um(p;) is con-
tained in the other.

Proof. If Un,(pi) N U (p;) # 0, then Lemma 3.5 guar-
antees that b;; contributes a Voronoi edge to V,,(S),
say, e;j. The points in the neighborhood of e;; lying
on the same side as p; are contained in U,,(p;) but not
in U (p;) and vice versa, and therefore neither region
can be contained in the other. O

Lemma 3.8. Let m < n/2; let PisPj, P1 € S be three
points such that Un,(pi) N Unm(p;) N Um(pi) # 9; and
let U be a connected component of U (pi) NUm(p;) N
Un(pi). Then there is a Voronoi vertex v of Vp,(S)
such that at least two of the three points determining
v are in {p;,p;,p1}, and v lies in U.

Proof. Let Uj; be the connected component of
Un(pi) 0 Un(p;) that contains U. By Lemma 3.5,

there is a Voronoi vertex v in U;; determined by p;,
p; and some other point py,. If v also belongs to Uy,
then we are finished. Otherwise, since U; cannot be
completely contained in Up(pi) N Um(p;) (cf. Lemma
3.7), the boundaries of U; and U;; intersect, say, at a
point u. Since the boundaries of U; and Ujj consist of
Voronoi edges, u is necessarily a Voronoi vertex, and
its determining points include p; and p; (resp. p; and
p;j) if u is common to the boundaries of Uy (p;) and
U (pi) (resp. Um(pi) and Upn(pj)). This completes
the proof. O
Lemma 3.9. The total number of distinct triples
(p,q,r) such that p, g and r are contained in a voronoi
set of V,,,(S) is O(m?n).
Proof. If m > n/2, then the lemma is trivial: there
are only O(n3) triples. Otherwise we proceed as fol-
lows. Notice that, for any triple (p,q,7) contained
in a voronoi set, Up(p) N Up(q) NUn(r) # 0. By
Lemma 3.8, we can associate each such triple with a
Voronoi vertex of V;;;(S). We now need to show that
a Voronoi vertex is not charged against too many dis-
tinct triples. First we observe that the number of dif-
ferent regions U,,(z), for z € S, containing a Voronoi
vertex is m + 2; this follows because if R;, R, and
Ry are the three Vororoi regions of V;;,(S) incident
with a Voronoi vertex and if the set of m points as-
sociated with Ry is {pi,pa,...,Pm}, then only the
regions Up(pi), i = 1,2,...,pm, may contain the
Voronoi region R;; furthermore, since the voronoi sets
of two neighboring Voronoi regions differ by exactly
one point, Ry, Ry and Rs together have only m + 2
different points. Now consider a Voronoi vertex v and
suppose that ps,ps,p. are the three points determin-
ing v. By Lemma 3.8, if a triple (p,q,r) is associated
with v, then (a) v € Un(p) N Um(g) N Um(r), and (b)
at least two of p,q and r are in {pq, ps, pc}. There are
three ways to choose the two points from {p,q,r} as
possible determiners of v. For a fixed choice of two
determiners, say, p and ¢, our accounting scheme may
assign to v all the triples (p, ¢, r) that satisfy condition
(a). However, as noted above, there are only m + 2
choices of z for which v lies in Uy (z). Not counting p
and ¢, we are left with m choices for r. Consequently,
the vertex v gets associated with at most 3m triples.
Since there are altogether O(mn) Voronoi vertices in
Vin(S), the number of distinct triples is O(m?n). O
Given two points p; and p; of S such that Up, (p;) N
Un(p;j) # 0, let S;; be the union of all voronoi sets
that contain both p; and p;.
Lemma 3.10. The sum of |S;;| over all pairs p; and
pj with Un(pi) N Um(p;) # 0 is O(m?n).
Proof. If a point p; belongs to S;j, then the triple
(pi,pj, ) is such that Un(pi) N Up(p;) NUnm(pi) #
0. In summing |Si;| over all pairs p; and p;, with
Un(pi) N U,(p;) # @, we count each such triple three
times. Thus, three times the number of distinct triples
(p,q,7), with Upn,(p)NUp(g) NUm(7) # 0, is an upper
bound on the sum of |S;;}’s. This quantity is O(m?n)
as shown by Lemma 3.9. O
Lemma 3.11. The sets S;;’s for all pairs (p;, p;) with
Um(pi) " Un(pj) # @ can be computed in total time
O(m?n + nlogn).



Proof. We assume that the Voronoi diagram V,(S)
is given in a standard form, where the edges of each
face are listed in a cyclic order and the edges incident
to each vertex are listed in an angularly sorted or-
der. With each edge e, we store the two points p and
g whose bisector contains e and, with each Voronoi
vertex v, we store the three points p,q and r that de-
termine v. Computing V;,(S) with this representation
takes O(m?n + nlogn) time [1].

Consider a set S;; and a point p; that belongs to it.
Observe that Uny, (pi)NUm (9 )NUm(pr) # 0. We define
p1 to be a type-one point of S;; if Un(pi) N Um(p;) C
Um(pi) and a type-two point otherwise. Observe that
if py is a type-two point, then the boundaries of Up(p1)
and U, (pi) N\Um(pj) intersect since Lemma 3.7 states
that Up (91) € (U (i)NUm(p;)). Now, if p; is a type-
one point of S;;, then p; belongs to every voronoi set
whose Voronoi region lies in Up, (pi)N\Upm (pj). Thus we
can find all the type-one points of S;; (there are only
m of these) by choosing any voronoi set that contains
both p; and p;. Next, if p; is a type-two point, then
the common intersection of the boundaries of Un,(p1)
and U (pi) N Un(p;) is a Voronoi vertex of Vi,(S5).
Thus the type-two points of S;; can be discovered by
traversing the boundary of U (pi) N Um(p;); that is,
these points are associated with the Voronoi vertices
encountered during the traversal.

Since there is one-to-one correspondence between
the pairs (p;, p;) for which we need to compute S;; and
the voronoi edges of Vj,(S) (cf. Lemma 3.5), we can
explore all distinct pairs by processing all the edges of
Vin(S). If e is an edge that is part of the bisector b;;,
then we start the computation of Sj; by determining
a Voronoi region that is incident to e and contains
both p; and p;. (Notice that ordinarily an edge e is
incident to only four regions.) We initialize S;; to
be the voronoi set associated with this region. (This
takes care of all type-one points of S;;.) We then
traverse the boundary of Up(pi) N Un(p;) by visiting
adjacent Voronoi regions. Whenever we encounter a
Voronoi vertex, we add a new point to S;;; these are
the type-two points of S;;. (To check whether or not
an edge is on the boundary of U, (pi)NUn(p;), we only
need to look at the two points that determine the edge:
the edge is on the boundary if and only if p; or p; is one
of its determiners.) That such a traversal correctly
computes Sj; follows from the preceding discussion.

Finally, we need to establish the running time of
our algorithm. The cost of the algorithm is dominated
by the number of edges of V|,,(S) traversed during the
algorithm. We claim that the algorithm traverses each
edge of V,(S) at most 2in times. The proof of the
claim is as follows. Given an edge e on the boundary
of U (pi)NUm(p;), consider a point p; such that e also
belongs to the boundary of U (p:i) N U (pr). Clearly,
the intersection of the two boundaries is a Voronoi
vertex, and we proved in Lemma 3.9 that there are at
most m choices of p;. Similarly, there are at most m
choices of p; for which e also belongs to the boundary
of Un(p;) N Um(pr). Thus the edge e is traversed at
most 2m times. Since there are O(mn) Voronoi edges
in Vjn(S), the bound claimed in the lemma follows.
]

Theorem 3.3. The k-diameter problem for n points
in the plane can be solved in O(k®*%nlogk + nlogn)
time and O(kn) space.

4 Concluding Remarks

Given a set of points S, we have presented efficient
algorithms for selecting & points from S with a min-
imum diameter or variance. We also established new
combinatorial bounds for the total number of pairs in
all the voronoi sets. Specifically, a niive bound for
the number of distinct pairs (p,q) such that p and ¢
are contained in some voronoi set of Vi (S) is O(k%n),
where |S| = n; this follows because there are O(nk)
voronoi sets and O(k?) pairs per voronoi set. We show
that the number of such pairs is in fact O(kn). Gen-
eralizing this, we show that the number of distinct
triples, with all three points contained in some voronoi
set, is O(kZn). These improved bounds are used to
speed up our algorithms, and we expect that they will
find other applications.

The underlying theme of all our algorithms is the
use of a higher-order Voronoi diagram. They appear
to be a natural tool for this class of problems, although
it would be interesting to see if fundamentally different
techniques exist for these problems.
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