7o Ty X 4L 84
(1989 6. 23)

2% DI DRBURIED N TD 2IRTLHES D
P IRFIYT Ny v TEEE

BREF TR 512 &3 pE 3
TRIRBKEE K PR KET %R
SIUM T ¥R

AwX Tt VHLORESIHTE27 525) v IR Ny v v 7 icBBET 28> ORIHIC>\WTE)
ROIWTNTY XLERET 50 ZETIRVIOBEIR. BN vy 7OMMEASBRRICE 3 XS54
SN REETHR LICHET 2B TH 50 Cofth. BAF v F7OMMEE B/ NS 3 X 5 1Ak
DEBBIOVTHERT 5. ChoolBEIcH LT, #hPhEmEERE S AENEER RS (%o
EWT AT XLAERET 25, WFH LI EHE L COBBOEBIESIC BT 28 & ROMS RS\
TWEDBHHTH D0 BRI THREANSETNVT Y XA TRTEEOITEBRLMNLELE Ly,

Clustering/Hashing Points in the
Plane with Maxmin Criteria

Tetsuo Asano*, Hiroshi Imai** and Keiko Imai***
* Osaka Electro-Communication University, Japan
** Kyushu University, Japan,

*** Kyushu Institute of Technology, Japan.

ABSTRACT

This paper presents efficient algorithms for several problems related to clustering and
hashing points in the plane. One of the problems is to find a projection to maximize
the minimum relative gap among projected points. Another problem is to maximize the
maximum relative gap. The former problem can be solved by a plane sweep method and
the latter one by a topological sweep, both based on the ideas of wall and interval in the
arrangement of lines in the dual space. All the algorithms presented run in linear space.

I
I

1 Introduction

This paper considers several optimization problems related to clustering and hashing points in the
plane. We are given a set § of n points in the plane. For # with 0 < 8 < , define z(8) by
%(0) = z;cos 0 + y; sin 0,
and denote the jth smallest value among z;(0)(i = 1,...,n) by 2}(8)(7 = 1,...,n) and define the width
w(f) and the internal maximum and minimum gap cmaz(f) and cmia(#), respectively, as follows:
w(6) = 2,(6) — (6),
emes(8) = iz, ..mc1(2L4110) — 24(6)),
emin(6) = Minizs, .1 (442 (6) — 2H(0)).
The problem of minimizing w(8) for 0 < < 7 is the well-known width (or, linear approximation)
problem for points, and can be solved in O(nlogn) time. Considering the two extreme gaps defined above,

there arise the following problems:

P1: maxogs<x %%ﬂ
P2: maxo<s<s Cmin(0)

P3: maxococr cmas(o)

P4: maxogo<r Eﬁgﬂ

P5: minococ(w(8) — cmaz(0))

The problem P1 was originally motivated by Sprugnoli [Sp77] in connection with perfect hashing functions
for a static set of keys. The first efficient algorithm for this problem was given by Comer and O’Donnell
[CO82]. Their algorithm runs in O(n?logn) time using O(n?) space. Algorithmically, a main problem in
solving P1 is the problem P2. In this paper we present a linear-space algorithm.

The problem P3 is the linear maxmin approximation (cutting) problem. The problems P4 and P5 are
its variants, and may be useful in clustering two sets of points which are approximated well by two parallel
lines. All the problems may be regarded as a problem on clustering/hashing points in the plane under
some maxmin criteria. The results obtained are as follows:

P1, P2 an O(n?a(n)log®n) time and linear space algorithm, where o(n) is the functional inverse of
Ackermann function and grows very slowly (almost constant). This is less efficient in time but much more
efficient in space compared with the existing algorithm.
P3, P4, P5: an O(n?) time and linear space algorithm.

2 Maximizing the Minimum Relative Gap

We are given a set S of n points p; = (;, %) in the plane. For 8 with 0 < § < x define z;(6) by
z(0) = zicos 8 + y;sin b
and denote the jth smallest value among z;(6)(i = 1,...,n) by z;(§)(7 = 1,...,n). The maximum distance
between two projected points is called the width of the point set and denoted by w(¢) while the minimum
distance is called the minimum gap and denoted by ciin(#). Formally, they are defined as follows:

w(8) = 2,(8) — %1 (9),

cmin(0) = mini=1,...a—1(2{4, () — 2(6)).
An example is shown in Fig. 1.

In this paper we represent a projection line by its slope instead of its angle §. Let y = —(1/a)z be
a projective line with a # 0. By L(z;,¥,a) we denote the line passing through the point (zi, i) and
perpendicular to the line y = —(1/a)z, that is, the line y = a(z — z;). The projection of a point (z;, ;)
onto the line is the intersection between the two lines y = —(1/a)x and L(z;,vi,a). It is easily seen that
L(z;, yi, a) intersects the y-axis at y = y; — az; and the distance between two projective points for (zi, %)
and (x;,y;) is proportional to that between those corresponding intersections with the y-axis [Ed87].

Our method is based on a dual transformation from a set of points {(z;, %) |i =1,...,n} to a set of
lines {b = y; — az; | i = 1,...,n} in the ab-plane. It is well known that for an arbitrary value of a the
vertical distance between two lines b = y; — az; and b = y; — az; is proportional to the distance between
corresponding intersections with the y-axis.

Let A be the arrangement of above-mentioned lines. Consider a vertical line @ = a*. The line intersects
every line b = y; — az; at b = b;(a”) = y; — a”z;. Let (b1(a*),b2(a*),...,ba(a*)) be a sorted sequence of
those ordinates in the increasing order. Then, for § = tan~'(—1/a*) the width w(4) and the minimum
gap cmin(f) are given by (ba(a*) — b1(a*))sin 8 and (minj=1, . a-1(bj+1(a*) — bj(a*))sind), where § > 0 is
assumed (see Fig. 2). Thus, we have

Cmin(8) _ minj=1,.n-1(5i41(e") - bj(a*))
w(8) ba(a®) — bi(a*)

Therefore, it is convenient to define w(a) and emin(a) by

w(a) = by(a) — by(a), and

Cmin(a) = minj=1, . a-1(bj+1(a) - bj(a)).
Then, we have

w(#) = w(a)sin §, and

cmin(8) = Cmin(a)sin 8, where & = tan~!(—1/a).
In the arrangement A of n lines as above the kth wall is a sequence of edges which can be joined to the

top wall (upper envelope of the arrangement) by a vertical line segment intersecting k — 1 lines in between
them. The region bounded by kth and (k+1)st walls in the arrangement is called the kth interval. For
each interval I; we define its silhouette SIL;(a) to be a function of a which gives the vertical width of the
interval for each value of a. As is easily seen, we have
Cmin(@) = minj=, . u—1 STL;(a), and
Cmaz(@) = maxj=y,..a—1 SIL;j(a).
Thus, we can find an optimal value of a to maximize the minimum gap ¢min(a) by sweeping the arrangement
while keeping the lowest silhoette. Since the maximum value of cyin(a) is achieved at an intersection
between silhouettes, i.e., when two (not necessarily adjacent) intervals become of equal length, a topological
sweep [EG86] cannot be applied. On the other hand, the maximum value of the maximum gap cmqz(a)
can be found by a topological sweep since it is achieved at a vertex of the arrangement.
Fig. 3 illustrates the notion of walls and silhouette.
We build a binary tree I-TREE as follows. Leaf nodes of ' TREE store the silhouette of intervals defined
above. Then their parent nodes keep the lower envelope of the silhouette stored in their sons. Thus, the
root keeps the lower envelope of silhouettes of all the intervals.

Our basic strategy is a plane sweep. Thus, we proceed a vertical sweep line from left to right. We do

not stop at every intersection between two different silhouettes since there may be O(n®) intersections:
Suppose that we have only four intervals I, I, I3, and Iy. Then, in our algorithm we first compute the lower
envelope of SIL; and SIL; and that of SIL; and SIL4. The lower envelope of the two resulting sithouettes
is computed. Thus, every intersection between SIL, and SIL, is visited while some intersections between
SIL, and SIL3; may not be visited if they do not appear in the final lower envelope.

The sweep line stops at every intersection between silhouette for two brother nodes in I-TREE (referred
to as balancing points) and every vertex at which the width of some interval becomes zero, that is, upper
and lower edges of the interval intersect (referred to as zero points). Note that zero points corresponds to
vertices in the arrangement.

It is shown below that the number of zero points is O(n2) and that of balancing points is bounded
above by O(n%a(n)logn). If we could implement operations needed for each zero or balancing point in
O(log® n) time, we would have an algorithm which runs in O(n%a(n)log’ n) time.

[Lemma 1] There are at most O(n?a(n)logn) balancing points in total.
Proof: Let v;,v2,...,Vs—1 be leal nodes of I-TREE corresponding to intervals I, I5,..., I,_;. Let u be
an arbitrary internal node of I-TREE such that the set of leaf nodes in its descendents is {vr, vi41,---, s}
We denote the number of vertices in the silhonette SIL, by c(v). The lemma follows from the following
three observations.
Observation 1 I-TREE has O(logn) levels.
Observation 2 c(x) < a(n')(c(w) + c(vi41) +--- +c(v,)), where »' = c(v) + c(vig1) + -+ + (v,).
Observation 3 c(v;) + c(v2) + -+ - + c(va—1) = O(n?).

Observation 3 follows from the fact that each intersection in the arrangement of n lines appears as
vertices of silhouettes of three consecutive intervals.

Observation 2: It is not so hard to see that the silhoette SIL, for the internal node u is equal to
the lower envelope of SIL,,, SIL,,,,, ..
segments in the plane consists of O(ma(m)) vertices, we have the observation. O

., SIL, . Since the lower envelope for an arbitrary set of m line

The following is a detailed description of the algorithm. First of all we describe data structures: two
heaps, B-HEAP and Z-HEAP and a balanced binary tree - TREE.

B-HEAP is a heap to store the value of a together with two intervals at which the lengths of those

intervals become equal to each other (called dalancing point).

Z-HEAP is a heap to store the value of a together with an interval at which the length of the interval

becomes zero (called zero point).

I-TREE is a balanced binary tree which has all the current intervals at its leaf nodes in the vertical order.
The parent of two intervals is the interval having a shorter length. Thus, the root is the interval
having the shortest length.

LOW is the name of the current line on the lower envelope.
UP is the name of the current line on the upper envelope.

MaxRatio stores current maximum ratio of the resolution divided by the span.

I
-~
I

(input) $ = {(z;,w)|i=1,...,n}.
MazRatio is set to positive infinity.
Map each point (z;,%:) to a line s; : b = 3 — ax;.
Sort the set of lines in the increasing order of (—z;, ¥;).
Let (s1,82,...,3s) be the resulting sorted sequence.
Define n — 1 intervals I} = (s1,332),J2 = (82,33),...,Jac1 = (8a—-1,5a) with lengths d(I;) = vi — ¥i41 —
a(zi —zip1)yi=1,...,n = 1.
For each interval I;
Compute the value of a such that d(I;) = 0.
Put a tuple (a,(si, $i4+1)) into Z-HEAP.
(if d(I;) # 0 for any value of a then skip the operation).
Construct I-TREE:
Let I, I5,...,I,_, be leaves of I-TREE.
Build I-TREE level by level. The basic operation is the comparison of the lengths of two intervals
I; and I; where a is negative infinity. The comparison is done as follows.
/* Note that the difference of the lengths is given by d(I;) — d(I;) = ¥ — ¥i41 — ¥j + Yj+1 —
a(zi — Tig1 — T + Tj41)%/.
ifz; —xi41 — i+ zj41 >0 then d(I,‘) > d(IJ’)
else if z; — zi4) — zj + zj41 = 0 and y; — yip1 — ¥j + yj+1 > O then d(L;) > d(I;)
else d(I;) < d(I;).
Also, compute the value of a such that d(I;) = d(I;) holds.
if such a value exists then
if d(I;) < d(I;) then put (e, I;, I;) into B-HEAP
else put (a,I;, I;) into B-HEAP.
Let UP = s, and LOW = s,.
while(B-HEAP or Z-HEAP is not empty)
Compare the minimum elements of B-HEAP and Z-HEAP.
if B-HEAP < Z-HEAP then {
Extract the minimum element (a, I;, I;) from B-HEAP.
Replace I; with I; in the nodes except the leaves.
Then, if the root is replaced, compute the ratio
ratio = d(I;)/d(UP, LOW)
and if it is less than MazRatio then update MazRatio, where d(UP, LOW) is the distance
between UP and LOW.
Delete all the elements in B-HEAP which contain I;.
For each node of I-TREE that contains [,
Find its brother node Iz and compute the balancing point between I; and I;
to put it into B-HEAP.
}
if Z-HEAP < B-HEAP then {
Extract the minimum element (a, I;) from Z-HEAP.
Let I; be (51, 52).

if s; lies in the upper envelope then let UP be s;.

if 82 lies in the lower envelope then let LOW be s;.

Find the upper interval I, = (so, 51) and the lower interval I = (s2, s3).

Then, the intervals (so, 81), (81, 52), and (s2, s3) should be replaced in I-TREE with (so, 52),
(s2, 81) and (81, 53), respectively, while computing the corresponding balancing points.

Delete all the elements containing those old intervals from B-HEAP and Z-HEAP.

For the new intervals (s, 52), (52, 51), and (sy, s3), compute its zero point to be put
into Z-HEAP.

[Theorem 1] It is possible to find an optimal projection to maximize the minimum relative gap cmix (8)/w(8)
in O(n2a(n)log® n) time using linear space.

(Proof) The correctness of the algorithm might be obvious from the above description. The computational

complexity follows from the fact that there are O(n?) zero points and O(n%a(n)logn) balancing points

and operations for each such point can be done in O(log2 n) time. Since there is at most one balancing

point and at most one zero point for each node of I-TREE, the space needed is linear in the number of

nodes of I-TREE, which is O(»).0

3 Maximizing the Maximum Relative Gap

The problem P3 can be solved in O(n?) time and linear space using the topological sweep. The problems
P4 and P5 also can be solved by the topological sweep while a naive application leads to O(n?logn) time
since we have to know the corresponding value of w(§). We can modify the topological sweep by using the
ideas of wall and interval defined above.

First of all, we compute the upper and lower envelopes of the arrangement of lines in the dual plane.
Then, we partition the region bounded by those envelopes into vertical slabs by vertical lines through
vertices on the envelopes. Note that the number of those slabs is O(n).

Next, we perform a topological sweep. Here for each interval of the arrangement we prepare an pointer
to the sequence of slabs. Thus, the elementary step of the sweep at an intersection v of the arrangement
consists of
(1) computing the vertical distances to the lines immediately above and below the point v (let intervals
above and below v be (i — 1)-st and (i + 1)-st intervals),

(2) computing the relative gaps (width of the interval divided by the width of the corresponding vertical
slab) in each of the intervals since the slab pointed by the pointer of that interval until the slab including
the point v, and

(3) updating the pointers.

In other words we merge slabs with each interval. The merging process for some interval may require
quadratic time while we need only O(n) extra time for the process in each interval other than the time

required by the topological sweep. Therefore, the time required is O(n?) in total.

REFERENCES

[CO82] D. Comer and M. J. O'Donnell: Geometric Problems with Applicatios to Hashing, SIAM J. Com-
put., vol.11, No.2,pp.217-226, 1982.

[Ed87] H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical Com-
puter Science, vol. 10, Springer-Verlag, Berlin, Heidelberg, 1987.

[EG86] H. Edelsbrunner and L.J. Guibas, Topologically Sweeping an Arrangement, Proc. 18th Ann. ACM
Symp. Theory of Computing, pp. 389-403, 1986.

[Mat88] J. Matousek: Line Arrangements and Range Search, Inform. Proc. Lett., 27, pp-275-280, 1988.
[Go83] G.T. Toussaint, Solving Geometric Problems with the "Rotating Calipers”, Proceedings of IEEE
MELECON '83, Athens, Greece, 1983.

Fig. 1. Projection of points onto a line.

~
Yi — azi'(\ bi(a) :
~\ : 45
* 1
s =—2z 1
\‘\ (xi)yi) y ¢ \:\
tu (et
Y; — AT %k (zj,95) ™ bj(a®) s
“\\ AN t
~ ‘\ N
s S]
L(.‘B;, Yi, a) : :
0 y—y=alz—z)
0 — a=a"
tanf = —%

(a) Points in the xy-plane. (b) Dual plane.

Fig. 2. Dual transform.

Fig. 3. Walls, intervals and silhouette.

(2) Small numbers represent walls and I,,[3,..., I, are intervals.

(b) The silhouette for the interval I,.

Il
L
Il

