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On Translating a Set of C-oriented Objects in Three Dimensions

Xue-Hou TAN, Tomio HIRATA and Yasuyoshi INAGAKI
Faculty of Engineering, Nagoya University,

Chikusa-ku, Nagoya 464, Japan

Recently much attention has been devoted to the problem of translating a set of
geometrical objects in a given direction, one at a time, without allowing collisions between
the objects. This paper studies the translation problems in three dimensions on sets
of “c-oriented objects”, that is, objects whose bounding edges has a constant number
of orientations. Applying some methods from computational geometry, these problems
can be solved with better worst-case bounds than those for the corresponding general

problems. The algorithms find uses in computer graphic systems.
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1 Introduction

Motivated by applications in computer graphics and VLSI layout, much attention has
recently been devoted to the problem of translating sets of objects, such as line segments
and polygons in the plane or polyhedra in three dimensions, without allowing collisions
between the objects. In [5] Guibas and Yao have presented an algorithm for computing
the translation order of rectangles in the plane, and then generalized it to include line
segments and convex polygons. However, the algorithm for line segments and convex
polygons needs two passes. A one-pass algorithm is later discovered by Ottmann and
Widmayer [13]. On the other hand, Nurmi [12] has modified Guibas and Yao’s algorithm
for line segments to work with arbitrary polygons, and also developed the algorithms for
computing the translation orders of line segments, planar polygonal faces and polyhedra
in three dimensions.

The translation algorithms for sets of objects in three dimensions have applications in
the hidden surface elimination problem. If we use the orthogonal projection which moves
the view point to infinity and thus takes a direction of view (in our case, a direction of
translation) as input for a hidden surface elimination algorithm, a “painter’s” algorithm
that paints the objects onto the image buffer in reverse order of translation can produce
the realistic image of given objects. Real time applications, such as flight simulation and
computer animation, require efficient algorithms for the translation problems.

A successful experience in computational geometry is that orthogonal objects can be
handled much easily than arbitrary objects. This suggests that the problem of translating
a set of parallelepipeds might be solved much efficiently than arbitrary polyhedra. In this
paper we consider the translation problems in three dimensions on sets of “c-oriented
objects”, a more general class of objects than orthogonal ones. The notion of “c-oriented
objects” was introduced by Giiting [6]. Polyhedra in three dimensions are called c-oriented
if the bounding edges of all polyhedra have at most a constant number of orientations.
Many practical scenes, such as architecture and furniture, have this property. So apart
from theoretical interest of different algorithmic complexity classes, the results of this
work may find applications in computer graphic systems.

The organization of the paper is as follows: Section 2 gives a brief review of the general
approach to solving translation problems, and defines three “c-oriented” variants of the
translation problem in three dimensions. Section 3 presents efficient algorithms for these
problems, and Section 4 elaborates on an algorithm presented in Section 3. Section 5
discusses some properties of c-oriented objects.

2 The Translation Problem

The general translation problem can be described as follows: Given a set of disjoint
objects, find an order in which the objects can be translated to infinity one after the other
in a given direction, such that during the translation no object collides with another, Two
immediate problems are how to detect the existence of a translation order and compute
the translation order if it exists.

Let us recall the approach to solving translation problems (also see [12]). First, a
binary relation dom (dominates) on the set of objects is constructed. X dom Y means
that X must be translated before Y. Before giving the exact definition of dom, we first
define other two relations on the set of objects. One is the relation edom (dominates
eventually); X edom Y if and only if there exist points z on X and y on Y such that
the line segment from y to z is parallel to the translation direction. The other is the
relation idom (dominates immediately); X idom Y if and only if X edom Y and all
the line segments from Y to X parallel to the translation direction do not intersect any
other objects. Examples for idom and edom in the plane are shown in Figure 1. Clearly
idom™ = edom™ where idom™ (edom™) denotes the transitive closure of idom (edom).
Thus dom can be defined as idom™*. It suffices to know either idom or edom. Generally
the idom relation is sparse but difficult to compute, while the edom relation is easy to
compute but dense. This makes it difficult to compute either idom or edom exactly. Often
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we take a compromise solution, that is, we find a subrelation edom’ of edom such that
(edom’)* = idom™, and edom’ has a suitable size and can easily be computed.

Second, dom (= (edom’)*) is examined for asymmetry, namely, A dom B implies
NOT (B dom A). If dom is asymmetric, it defines a partial order on the set of objects,
and any linear extension of dom gives us the total order of objects. Otherwise, the
translation order does not exist. To test dom for asymmetry, we transform the edom’
relation into a directed graph G(V, E), where V is the set of objects and E has a directed
edge (X,Y) if and only if X edom'Y . Hence dom is asymmetric if and only if G'is acyclic.
By a depth-first search [16] we can determine the existence of cycles of G in O(|V| + | E|)
time or, in our terms, in O(n+ |edom’|) time where n is the number of objects and |edom’|
is the size of the edom’ relation.

Finally, if dom is asymmetric we can topologically sort [9] the edom’ relation in O(n +
|edom’]) time to obtain a linear extension of dom.

From the discussion above, we conclude that the kernel of a translation algorithm is to
compute the edom’ relation, and this computation dominates the time complexity of the
algorithm. In the remainder of this paper, we will focus on computing the edom/’ relation.

We study three c-oriented versions of the translation problem in three dimensions.
Before defining these restricted problems, we first define the notion of “orientations”.
An orientation in three dimensions is a vector with the positive z component which
passes through the origin. We describe an orientation a as two (counterclockwise) angles
from the z and y axes. A left-handed coordinate system is used as shown in Figure
2. This definition extends in the obvious way to higher dimensions. (The definition of
“orientations” in the plane can be found in [15].)

Line segments in three dimensions are said to be c-oriented if there exist ¢ orientations
ai,ag, -+, & such that all line segments are restricted to be parallel to any one of them.
Planar polygonal faces (and polyhedra) are said to be c-oriented if the bounding edges of
all faces (and polyhedra) are c-oriented. It is obvious that a set of c-oriented faces has no
more than ¢ normal vectors. A face, whose normal vector is parallel to «, is said to have
the orientation «. The three problems we consider are completely characterized by their
input sets:

Problem A: A set of c-oriented line segments in three dimensions.
Problem B: A set of c-oriented polygonal faces in three dimensions.
Problem C: A set of c-oriented polyhedra in three dimensions.

3 (-oriented Objects in Three Dimensions

We assume that a polyhedron is represented by its bounding polygonal faces; a face is
given by its normal vector, pointing away from the polyhedron, and the set of its edges;
finally, an edge is given by two endpoints such that the order of endpoints tells us the in-
terior of the face. We also assume without loss of generality that the translation direction
is the positive z direction.

Problem A (C-oriented Line Segments)

When input is a set of c-oriented line segments, the n given line segments are first
projected onto the (z,y) plane. An edom/ relationship between two segments is then con-
structed if their images intersect. To compute the intersections of the images, Chazelle
and Edelsbrunner’s algorithm [2] might be used. Their algorithm solves the line segment
intersection problem in O(n log n+ k) time and O(n+ k) space, where k is the number of
the intersections. In [15] a simpler algorithm for the c-oriented line segment intersection
problem is given, which is optimal and runs in O(n log n + k) time and O(n) space.

Problem B (C-oriented Polygonal Faces)

Now we consider the problem of translating a set of c-oriented polygonal faces. If two
faces are related by edom/, their projected figures must intersect. (However, the reverse
may not be true. Two projected faces intersect if and only if they are related by edom.)
Two faces intersect in the projection either if their edges intersect or if the images of them
intersect although their edges do not.

Our algorithm for computing the edom’ relation then consists of two parts. The first
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part computes the edom’ relationships due to the edge intersections in the projection. In
order to simplify the algorithm, we report an edom’ relationship at every edge intersection
in the projection, namely, all the edom relationships between the faces with projected edge
intersections. The problem is again reduced to that of finding edge intersections in the
projection, which can be solved in O(N log N + k) time and O(N) space, where N is
the number of edges of the faces and k the number of edge intersections in the projection
plane.

-The second part of our algorithm finds the edom’ relationships which are determined in
the case where two faces intersect in the projection but have no edge intersections. Having
found all the edom relationships due to the edge intersections, we can assume that the
faces have no edge intersections in the projection. To compute the edom’ relation in a set
of such faces, again one might find all the edom relationships. The result will depend on
the number s of these face pairs. Observe that s can be O(n?), where n is the number of
the faces.

The s bound can be reduced to 2n. That is, there exists a subrelation edom’ of
edom on the set of the faces without edge intersections in the projections, such that
(edom’)* = idom* and |edom!| < 2n. We accomplish this by associating with each
face F the point f with the maximal z-value as its representative point. An important
property about the representative points is that, A idom B either if face A is the face
nearest to point b (the representative of face B) in the +z direction (Figure 3a) or, in
turn, face B to point a (the representative of face A) in the —z direction (Figure 3b).
Note that if all of the given faces are simple, i.e., they have no holes, the representative
point of a face can be any one in its interior. The problem now is reduced to finding for
each representative point two faces nearest to it in the +z and —2z direction respectively.
Thus at most two edom’ relationships are output at every representative point.

In the next section we will establish an algorithm of O(N log 2N) time and O(N log N)
space for finding the nearest faces for the n representative points. We assume in the
following section that no faces are parallel to the z axis. (If face A parallel to the z
axis is the face nearest to point 6, face A and face B must have edge intersections in the
projection).

Combining these two results above, we obtain an algorithm of O(N log 2N + k) time
and O(N log N) space for computing the edom’ relation in a set of c-oriented faces. For
comparison, let us consider the complexities of Nurmi’s algorithm [12] that computes the
edom’ relation in a set of arbitrary faces. His algorithm runs in O((k + N) log N) time
and space. Note that there is no better bound on the size of £ than O(N?), hence the
terms in & may dominate the complexities.

Problem C (C-oriented Polyhedra)

The algorithm for translating a set of c-oriented polygonal faces can simply be modi-
fied to work with c-oriented polyhedra (for details see [12]). When the original algorithm
outputs an edom’ relationship between two faces of distinct polyhedra, the modified one
outputs the edom’ relationship between the polyhedra. When the original algorithm re-
ports an edom’ relationship between the faces belong to the same polyhedron, the modified
one outputs nothing. Thus, the asymptotic complexities of the modified algorithni for a
set of c-oriented polyhedra are the same as those for the set of bounding faces of all
polyhedra.

4 The Algorithm for the nearest faces

In this section we present an algorithm that reports the nearest faces for the n rep-
resentative points in the +z direction, which works with the —z direction in the obvious
way. For conventions, let o x f denote the orientation which is the vector product of «
and G in the left-handed coordinate system.

To find the nearest faces, a plane, perpendicular to the y axis, is swept through the
space in the positive y direction. At any position the intersection of the sweep plane with
the set of faces is a set of line segments. A single face may produces several collinear
segments if it is concave or has holes. The sweep plane coordinate system is chosen such
that the positive z direction is vertical (Figure 4). From the assumption that no faces are
parallel to the z axis, the segments in the sweep plane can not be vertical.
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To support the plane sweep, a data structure is maintained representing the dynamic
set of line segments in the sweep plane. The structure must be able to answer queries
about the face immediately above any point of the sweep plane in the z direction. When
a representative point p is encountered, a nearest face is asked for p. Clearly the answer
is one whose segment in the sweep plane first intersects the vertical half-line emanating
from p to +o0, namely, the half-line (z,, 2,)—(z,, +00). See Figure 4.

To report this segment in the sweep plane, we first find the segments whose z-
projections contain p, then locate on these segments the segment immediately above p in
the z direction, and hence determine the face nearest to p. How can these two searches
be efficiently performed?

When the sweep plane is swept, two endpoints of a segment in the sweep plane move
at different speeds to the left or right. It is difficult to answer point enclosure queries with
respect to the varying segments in the sweep plane. At this point, our restriction to c-
oriented faces becomes crucial. Observe that the movement of a segment is characterized
by the orientations of the edges (of a face) along which two endpoints of that segment
move. The segments in the sweep plane can thus be split into at most c? disjoint sets
according to the combination of edge orientations. Of course some sets may be empty.
Let S, s denote the set of the segments whose left and right endpoints are respectively
characterized by edge orientations o and 3, and 6’ the orientation in the (z, z) plane
which is the projection of orientation # in three dimensions. When the sweep plane is
moved, the segments in S, 4 are fixed with respect to the (¢/,/)-coordinate system in the
(z, z) plane, where of and ' are the orientations perpendicular to orientations o’ and A’
in the (z, z) plane respectively. Then it suffices to answer point enclosure queries with
respect to the set S, 4.

The second search locates the segment immediately above p in the sweep plane. Note
that all the faces represented by S,; have the same orientation, namely, the o x 8
orientation. In fact, S, denotes a set of parallel segments in the sweep plane (Figure
5). On the segments of S, 3 whose z-projections contain p in the sweep plane, we can
locate the segment immediately above p by finding one nearest to p in the direction
perpendicular to the segments. That is, in three dimensions, of S, 5 the face nearest to
p in the z direction is the same as that in the o x 3 direction. So the task is a simple
binary search on the o x 8 coordinate.

Combining the discussions above, the segments in the sweep plane are first partitioned
into at most ¢? disjoint sets S, 5. This means that we will use ¢? different data structures,
one for each set. The cardinality of the union of all sets are O(N). Within each set S, 4,
a segment is represented by a triple (o, 85, (o x 8)o), where o and B are the &' and &'
coordinates of the edges in the (z, z) plane which form the left and right endpoints of
the segment, and (o x ) is the o x B coordinate of the face in three dimensions which is
represented by this segment. Suppose that a query point p is now met, and represented
in the (o, ", & x 8)-coordinate system as the triple (a7, B;, (o x B),). Of the set S, 4, the
segment immediately above p in the sweep plane is obtained by the following searching:

Given of, A7 and (o x B),, find a triple (o, &, & x ) from S, 5 whose
a x f is minimal in the set {(/, F,a x f) | &/ < o), and f7 < B and

(@ xpB), < axp}

To solve this searching problem, we regard S, s as a 3-dimensional point set (each point
has three coordinates) and thus search for the point with the minimal « x 3-coordinate in
the 1/8 space ([—o0, af}, [A7, 0o], [(@ x §)p,0]). The standard data structure supporting

this kind of searchings is 3-dimensional range trees (see [11, 14]). Using the 3-dimensional
range tree over the o, B’ and a x @ coordinates, the above searching can be implemented
in O(log ®N) time. The structure requires O(N log 2N) space and can be updated in
O(log 3N) time.

In our special case (where all ranges are not intervals, but half-spaces) we can save a
factor log N on the time and space bounds. To achieve this, priority search trees (see [10])
are used. A priority search tree stores a set of n points (z,y) in linear space. It supports
the computation of the minimal z-coordinate of any point in a semi-strip zp < z < 1,
and y < y; with logarithmic running time. To solve our problem, we organize the
last two levels of range trees into one level of priority search trees over the (a x B, —F")
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coordinates. More specifically, all points in S, g are stored in the top level range tree over
the o’ coordinates and the set of points associated with each node is then organized into
a priority search tree. It follows that the range-priority search tree permits the retrieval
of the minimal o x f-coordinate of any point in the 1/8 space in O(log ?N) time taking
O(N log N) space. A point can be inserted into or deleted from the rang-priority search
tree in O(log 2N) time. Since all faces are given beforehand, the semi-dynamic versions
of the ¢? range-priority search trees suit to our purpose.

The sweep plane also stops at the vertices of all faces. Whenever a vertex is encoun-
tered, certain segments disappear, and other segments occur in the sweep plane. The
projection of the sweep plane in the (z,y) plane is a line, called the sweep line, which is
parallel to the z axis and advances in the positive y direction. Figure 6 shows the change
of a face while the sweep line is moved. On meeting a vertex of a face F, we have a diffi-
culty in determining the segments of ¥ to be deleted from and inserted into the structures.
For example, a vertex v in Figure 6 does not give us any information about the edge pair
(b, €}, which defines the segment to be deleted from the range-priority search trees. To
overcome this difficulty we use, as a subsidiary data structure, a balanced binary search
tree for each face currently cut by the sweep plane. The intersection of the sweep line
and a projected face in the (z,y) plane is a set of collinear segments, which are totally
ordered from z = —o0 to 2 = +oo and thus maintained in F’s binary search tree. When
a vertex is scanned, we first determine the segments to be deleted and inserted in F’s
binary search tree, and then we can update the range-priority search trees correctly. The
total cost of the balanced trees in the whole process of the sweep is O(NV log N) time and
O(N) space. More specific description can be found in the companion paper [15].

We have given an approach to finding the nearest faces. During the sweep, O(N)
segments are inserted into and deleted from the range-priority search trees. When a
representative point is met, we query all ¢? range-priority search trees for the nearest
faces. The real nearest face is selected from these ¢® candidates. Thus, we obtain an
algorithm of O(N log 2N) time and O(N log N) space for finding the nearest faces,
where N is the total number of edges in the scene. Taking c into account the time
complexity is O(N log 2N + c* n log 2N), since only n nearest face queries are dependent
on ¢, where n is the number of faces. The space requirement is independent of c. In
practical uses, ¢ must be rather small to make our algorithm efficient.

5 Discussions

In an effort to bridge the gap in complexity between orthogonal objects and arbitrary
objects, there have been a number of papers in “c-oriented” geometry [3, 6, 7, 8, 4, 15,
17]. In this paper it is once again shown that problems involving c-oriented objects
can be solved with similar efficiency as the corresponding problems involving orthogonal
objects. The general rule for processing c-oriented objects is to decompose a problem
by orientations, which seems powerful to the decomposable problems (see [1]). Further
topic of interest in this area is to look for other problems whose c-oriented variants can
be solved efficiently, and furthermore, classify the subclass of the decomposable problems
which can be decomposed by orientations.
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