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Abstract

The well known continuous modular design problem is considered in this paper. Fully
utilizing the special structure of the corresponding geometric programming problem and
its dual a new algorithm is derived. This algorithm is based on the subsequent solution
of generalized Kénig problems which provides an efficient feasible direction. The optimal

step size is easily computed. ,
An efficient convergent implementation follows from the well known results on the

feasible direction methods.
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1.INTRODUCTION.

Evans [3,4] was the first who considered the modular design

problem (MD). He proposed an algorithm as well. The continuous
modular design problem mathematically can be stated as:
m ’ n ’
min ( £ n.B)(L T 7)) (1.1)
1=1 vt j=1 1)
nltjza;J i=1,...,m; j=1,...,n (1.2)
ni,tjzo i=1,...,m; j=1,...,n (1.2)
The economic interpretation is as follows: Parts i=1,...,m are

to be grouped into a module and in applications j=1,...,n several
of this module are to be used. m, denotes the number of part i in
the module (decision variable), T, denotes the number of modules
required in application j (decision variable), a;) is the number
of part i units required in application j, so the inequality
nitjza;j represents, that the demand for part i in all application
m
j have to be satisfied. B; is the unit cost of part i, so [ n,8,
Ti=1
is the unit cost of the module. 13 is the demand for application
n
j, so Y} tjwj is the total demand for the module. Obviously the
J=1
objective is to minimize the total cost. According to the above

interpretation, we assume that a;’>0, B;>0, 7;>0, that implies
tj>0 and n, >0 for v i,3.

This problem was extensively studied in the last decades Evans
(3], Charnes and Kirby [1] applied general methods to solve this
specially structured nonlinear programming problem. Although
Charnes and Kirby [1] recognized that MD is a geometrical
programming problem (GP), they did not utilized this fact. They
transformed MD into a separable convex programming problem. Passy
(8] explore the potential of the geometrical programming
structure, but the convergence of his algorithm is still an open
question. Smeers [11] made some suggestions on improving Passy’s
approach. To the best of our knowledge, last time Schaftel [9] and
Thompson [10] studied this problen. Designing simplex-like
algorithms they examined both the mathematical programming
properties and applications of this problem as well.

We will utilize the special GP programming structure of MD,

so our approach is close to Passy’s approach. We will use the



exponential formulation of GP instead of the posinomial format. In

n

the previous papers the [} rj=1 assumption (not restrictive) was
j=1

introduced, and so a linear objective was obtained. We will not

use this assumption.

The special structure of the corresponding primal and dual GP
problems are explored in the next section. Finally our algorithm
is presented and its convergence is proved.

2. MD As A GP PROBLEM.

By some simple transformation MD can be transformed into GP
problem. By means of positivity assumptions the following
notations can be introduced for the new variables H, v, u, Vj and

parameters Bi, 7;' aU.
K, -B, m -
n, =e ; B=e ; lglniﬁlse ;
-V —7J -, n -v
T =e 7 ; ¥'=e H o '=e I Y T v =se H

J J 1) 3
i=1
So the MD problem (1,1),(1,2),(1,3) is as follows:
min (e e )
-, =By —u
e

A

e

-

s k]

-

-v -7 -v

eJJs_e

—
-

. -V %4
e 1e J z e .

Denote vj=vj+wj, “i=“1+B:' oc”=a”+Bi+arj for all 1i,j.
The exponential function is monotone, so this problem is

equivalent to the following primal GP problem.

GP primal max u+v

“1+Vj—a1j .
e =1 vVi,j (2.1)
m -“xﬂ‘

T e =1 (2.2)
i=1

n -y +v

Te =1 (2.3)

j=1
This primal GP problem obviously fulfills the Slater regularity

condition. Its dual and the equilibrium conditions (see e.g.[7,2])
is as follows:



m n ’ n cl n 05
GP dual min( ¥ Y 5;;“,,+l°9——iil—“:r" +log——lii——17—— )
e Le, Lo
1=1 j=1 7
(L¢) (L9)
N 1=1 3=1
L&,¢ =0 vi (2.4)
j=1
;Elg" -9, =0 v (2.5)
Lg, =1 (2.6)
=1
Te =1 (2.7)
i=1 ’ . .
§1jzo, clzo, 0120 vi,Jj

Obviously the dual GP problem satisfies Slater regularity as well.

Equilibrium conditions:
ui+vj-al

£,,= €, ,° . vi,j (2.8)
_“1+“ 2 .
gy =e L&y vi (2.9)
i=1
-y +V n
v =e T v3 (2.10)

J
j=1
Conditions (2.6), (2.9) imply equality in (2.2). The same way

(2.7) and (2.10) imply equality in (2.3). So by substitution
variables ﬁj and Ci can be eliminated.

Since both the primal and the dual problem is Slater regular
(so feasible) the duality theory of GP guarantee optimal solutions
for both of these problems, which can be obtained by solving the
following nonlinear inequality (equality) system of the primal,
dual and equilibrium constraints. .

Primal: “1+V1 = @ v i,j (2.11)
m _“1+“ :
T e =1 vi (2.12)
i=1
n -v +v
T e =1 V3 (2.13)
j=1
n -‘J,l+u

Dual: Y Eij = e vi (2.14)
J=1
m -V +v
veE =e v (2.15)
i=1 1)

£ =z 0 vi,J (2.16)
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Equilibrium: Eij(ul+vj-aij) =0 vi,Jj (2.17)
Remark 2.1. Based on the observations taken above an equivalent

form of the primal is as follows:
m n - -p
max -log Y Y e v
1=1j=1 (*)
MtV s a

From this form it is obéiouslihat primal problem depends only on
the sum of ”1+Vj and so the primal feasible set (ui,vj) is
unbounded, but it is bounded if we consider the primal feasible
set in terms of (ui+vj).

If vj, [ is given, then v and.u is easily computed, then the
dual constraints define a generalized Kénig problem (constraints
of a transportation problem) that can be solved effectively by
network flow methods (see e.g. [5,6]). Our algorithm is based on

this property.
3. THE ALGORITHM

Initialization: Let u? and V? arbitrary "small" numbers such that

(2.11) holds. (e.q. u:=min{ai1} and vj=min{a1j-uj))
. J 1
General iteration: Primal feasible u: and v? is given. Using

k
m U
(2.12) and (2.13) we have uk=—log Y e ! and
Kk i=1
k b —vj k k k
v = -log } e . Let I (0)={ (i,3j) : Rty = a } and
)= 3 |
k k —uk k k —vk
-+ i -V +v 3j
denote &8*=e ! =& _ and o*=e ! = e
i k 3 k -
m _“i n -Vj
re Ye

i=1 j=1
Step 1. Solve the following generalized Kénig problem

n
L&, =3 vi
j=1
n " .
rg =o Y]
oY 3
£,%20 vi,J
£ =0 if (i,3)e¢I*(0)

1]

a. If gf is a solution for the Kénig problem, then g;,
k k

k . .
Ko, vj, 4, v are optimal solutions.

If the Konig problem is infeasible, then there are sets

Case

fI
[$)]
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Pc(1,...,m} and Re{l,...,n) such that Ak=26'f-20'};>0 and

i€epP JER
(i,3)eI*(0) if ieP and j¢R.
R R
k k k
o ... C c.e O
j n
]
1 k
p ¢I*(0)
3
J
P
)
n
(Figure 1.)
Step 2. Let A’=min(aij-uf-v:: ieP, Jj¢R}>0
| &9 k
(E8(E)
l"=%logiff—;—lgijr >0
(ZSNE)
N 1P JER
A= min(A’,A’")
p*+ak ieP pE-ak jeR
k+1_ )71 . skt
Koy k . ! 5 k .
M i¢P v J&R

i J
k=k+1 (start the next iterational cycle)

Remark 3.1: By efficient network flow methods it is easy to solve
the generalized Kénig problem. Either the optimal solution EU or
the sets P and R are the output of this module.

Remark 3.2: The value A’ denotes the maximal step size within the

primal feasible region in the direction defined by P and R.
Remark 3.3: The primal objective u+v attains its maximal value at

step size A’’ in the above mentioned direction. This can be
verified by some elementary computation.

Remark 3.4: The primal objective strictly monotonically increases

at each iteration. The algorithm improves step by step the primal
objective, while preserves primal feasibility and equilibrium
conditions. Optimality is reached, when a dual feasible solution
is obtained.

Remark 3.5.: Optimality is really obtained at case a. since the

actual solutions are both primal and dual feasible, and
equilibrium conditions also holds.
Remark 3.6.: A"

problem.

is the value of the maximal flow at the Kénig




4. THE ALGORITHM AS A ZOUTENDIJK’S FEASIBLE DIRECTION METHOD

Primal feasible Mo vy is given (as at an iteration). Consider

the primal problem as in Remark 2.1.
m - n -V
min log ¥ e + log Y e J
1=1 j=1 . (4.1)
“1+Vj = a
As we have seen the objective is a convex function. So the methods
of feasible directions can be applied. The subproblem to locate a

feasible direction is as follows.

i

Hiﬁj =0 (i,3)e1(0)
-1 = Hi =1 i; (i,3)e1(0)
Sl=v, s1  j; (i,3)eI(0) (4.2)
mo e-ui n e-VJ
min - ¥ B———— -V
1=1 m =K j=1 I n v, :
T e Ye
t=1 t=1
m

The objective can be stated as max Y Hiaff
1=1 ]
defined in the general step of the algorithm).

Remark 4.1.: Since 61>0 and 0J>O so lower bound assumptions can be

[ g B-]

vo (8 and o is
L 1 1 J

left out, since at optimality these are consequences of the upper
bound constraints, So problem (4.2) is as follows.

Hl+VJ =0 (1,3)eI(0)
u =1 i; (i,j)eI1(0)
v.o=1 J; (i,j)eI(0) (4.3)

J

m_ n_
max Y “161+ ) Ve,
i=1 j=1

Its dual problem can easily be formulated.

n
Y §11+ Ci = 61 Vi
j=1
m
+ = j
1§1€11 ﬂj oj vj
Enzo, ¢, =0, 19Jzo vi,Jj (4.4)
E‘J =0 if (i,3j)eI(0)
L] n
max Y C1+ r e
R S
the minimization of YL +Y¥ is equivalent to the
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m n
maximization of Y} Y E:J’ So it is easy to see, that dual
1=1j=1
(1,1)€1(0)
problem (4.4) is a max flow problem which is equivalent to the

generalized Kénig problem of the algorithm. This way the solution
of Kénig problem either gives an optimal solution for MD problem
or the sets P and R gives optimal solution for problem (4.3). So
the following theorem is proved.

Theorem 4.1. The algorithm presented in section 3. is a special
implementation of Zoutendijk’s [13] feasible direction method.

The fearly well developed theory of the feasible directions
method can be applied to guarantee and prove convergence. It is
well known, that feasible direction methods in the simple form
that it is presented do not necessarily converge in general [12].
This drawback can be avoided e.g. by € tolerance technique. The
detailed description of the € tolerance variant and a direct proof
of convergence is a subject of another paper.
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