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ABSTRACT

This work examines implementational aspects of the method of analytic centers due to
Sonnevend (1985) when applied to solve a class of convex programs — where the objective
and also the constraints are given by convex functions whose Hessian matrices fulfill a rel-
ative Lipschitz condition with a Lipschitz constant A > 0. In Jarre (1988) the theoretical
properties of a zero order variant of the method are examined: the existence of a two-sided
ellipsoidal approximation for the set of feasible points around its center and a proof, that
the zero order variant of the algorithm starting from an initial center of the feasible set
generates a sequence of stricly feasible points whose objective function values converge to
the optimal value. However. this zero order algorithm is of theoretical interest only.

Here we introduce two extrapolation schemes to predict the next center and show. that full
efficiency of the method can only be obtained when accelerating it by some (higher order)
extrapolation scheme. We further present some numerical experiments which indicate.
that by using extrapolation the speed of convergence of the method is considerably faster
than the worst case bound of O(y/m|ln ¢|) iterations.
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In this talk we first present the basic ideas of the method of analytic centers due to
Sonnevend (1985). For a zero order variant of this method already the early works of
Renegar (1986) and Gonzaga (1987) presented theoretical proofs of a low computational
complexity when solving linear programs. In Jarre. Sonnevend and Stoer (1938) it is shown
in some preliminary numerical experiments. that higher order variants of the method of
analvtic centers yield considerably faster algorithms. which are not only of low theoretical
complexity but also interesting for practical applications. Here. we will emphasize. that
the results obtained for solving linear programs also hold if the method is applied to
solve a class of convex programs. We consider the class where the objective and also the
constraints are given by twice continously differentiable convex functions whose Hessian
matrices fulfill a relative Lipschitz condition with a Lipschitz constant 3 > 0. More
precisely the problem under study is to find

\* = min{fp(z} | r € P }.

Here P:={r€ R"|f(x)<0 for 1<i<m}

is supposed to be bounded and to have a nonempty interior P?, and the f, € C*(P) are
smooth convex functions for 0 < i < m whose Hessian matrices fulfill

IM>0 Vyy+heP® and Vie R":

1T(D2f,(y + h) = D*f(y)z] < MAll, T D*fuly)+
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This condition is affine invariant and invariant under scaling of the functions f,. It can be
restricted to values of h with [|A||, < 0.5 and in this modified form the condition allows
certain singularities of the constraint functions at the boundary of the feasible domain.
{The function f(y) = —./7 for example fulfills the condition with M = 3 for y € (0.2c). )
A similar condition has also been suggested by Nesterov and Nemirowsky (1983). We
mention. that the two-sided ellipsoidal approximation of the feasible set which is known
for the linear and the quadratic case (see Jarre (1987). Sonnevend and Stoer (19838)) can
be generalized, i.e. that there exist two similar ellipsoids Ein and E,,: both centered at
the same point such that

where “hllj = hr(z

E;, C{z € R*|f,(z) < 0for 1 <i <m} C Eour.

and E;, and E,,; have a similarity ratio of O((1 +.~\I4/3)m). A fixed portion of the interior
ellipsoid turns out — as in the linear case - to lie in the domain of superlinear convergence
of Newton’s method for computing the center. Using this result one can give a proof show-
ing. that the zero order variant of the method of analytic centers starting from an initial
center of the feasible set generates a sequence of stricly feasible points whose objective
function values converge to the optimal value. Concerning the speed of convergence for a
problem with m constraints one can show (see Jarre (1983)). that an upper bound for the
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gap in between the objective function value and the optimal value is reduced by a factor
of = within O((1 4 M?)y/m|In ¢|) iterations. Here, each iteration involves the computation
of one Newton step. If all constraint functions and the objective function are linear or
quadratic. then the Lipschitz constant for the Hessians D?f, is 3/ = 0 and the bound
of O(y/m|In¢|) Newton iterations to guarantee an error reduction by a factor of ¢ in the
objective function is as good as the ones currently given for lincar programs. However.
this zero order algorithm is of theoretical interest only.

In this talk. we will introduce two extrapolation schemes to predict the next center and
present some preliminary numerical experiments for problems with linear and quadratic
constraints. The experiments show, that full efficiency of the method can only be obtained
when accelerating it by some (higher order) extrapolation scheme. The numerical experi-
ments further indicate. that the speed of convergence is considerably faster than the worst
case bound of O(/m|In¢|) iterations. and that one can expect almost the same computa-
tional effort for solving an arbitrary convex program satisfying above conditions as needed
to solve a (dense) linear program of the same size.

Outline of the method:
For A > A* let P()) denote the feasible set P intersected with the level set {z| folr) < A}
where the objective function is "better” than )\,

P(\):=Pn{r] folz) <}

Assume without loss of generality that the objective function folr) = <Tr is a linear
function. (If not one can introduce an artificial variable Zn+1 and an additional constraint
fo(¥) = Zn41 < 0 and minimize z,4;.) The method follows a homotopy path \: > — A~
of some interior point in P(A) which is "easily” computable and depends smoothly on all
constraints: A very convenient point (Sonnevend (1985)) is the analytic cznter () of
P(A). In Jarre (1988) it is shown, that for each parameter A > \* the analytic center
r(A) of P({}) exists and is the unique point r in P(\)° minimizing the strictly convex
logarithmic barrier function

2z, A) = —In(\ = fo(r)) - Zln(—f,(‘r)).
=1

It is invariant under affine transformations of P and invariant under scaling of the func-
tions f,. It is further shown, that if a point y € P(\)* is "sufficiently close” to x(\). then
Newton’s method starting at y to minimize ¢ will converge superlinearly to z{\).

Here we will examine possibilities to find a first estimate (extrapolation) Te41 for 2(Ap4q)
using a given approximation y; & r(\;) for some values \;, > Ak41 > A*. Jgyq is to be
close enough to z(\¢4;) such that Newton’s method starting from 74, will converge in a
few steps to a point yg4; which is up to mashine accuracy equal to o{\gyq).

The analytic center r = r{\) of P()) is characterized by the equation

ZDf-(I) = 0 (*)

T
Dea(e. ) =:g(z.A) = ,\—rT:r+ —filz) —
- 1=1 !
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One can show ( Jarre 1988}, that H(r.\) := D;g(r.\) is positive definite if P° is nonempty
and bounded. Differentiating (x) with respect to \ yields ‘

dr  dg(zr.\) dx c
D.glz. M =r + =——— = H(z. \)—~ = ———=—— =
A AR T TN T e el
Defining
Glz.\) = Hiz,\) (A= <L)’
we get
'(A) = dz =G Hr, \)e
dA B

The vector /() is thus easily computable and can be used for extrapolation. as done for
example by Adler. Resende and Veiga (1986), Fiacco and McCormick (1968). Gonzaga
(1987), or Karmarkar (1984). Yet in the case of higher order extrapolation it might be
advantageous to use an extrapolation scheme based on the knvwledge of the previous cen-
ters rather than a scheme based on the Taylor expansion of the curve r(\), see Sonnevend
(1986).

Model algorithm:
Let yo = x(\o) be given for some \g > \*. Set k = 0. Define 8¢ := (Ao — cTy0)/(100,/m).
step 1t Let \pyq 1= Ap — Ag.

step 2: Define jp4y =yt — ArGlyr, \i) "1z as first approximation to r(\ggq). (linear
exirapolation).

step 3: Test whether Jg 4, is in P(\g41)° and whetheritis a "sufficiently good” approxi-
mation to £{Ag41). I not let Jg := 1A with 0 < ¢ <1 (reduce step length) and goto
1. Else goto 4. )

step 4: Test whether 741 is 'too close’ to £(\g41). If so (and if the step length had not
just been reduced), let Ay := xgdg with k¢ > 1 (enlarge step length) and goto 1.
Else goto 5.

step 5: Use Newton’s method with starting vector jr4; to minimize p(z, \gy1) ie. to
approximate r(\g4;) more closely. Let the result be y;,;.

step 6: Test for convergence, e.g. check whether 2{\;,; — Tyip1] < €. T so, stop, else let
Agg1 := Op (try to keep the old step length) and k:=k +1 and goto 1.

Comments

In step 3 the vector i, is "sufficiently good” if it can be expected that Newton’s method
for finding the minimum r(Ag41) of w(r, \e41) gives a sufficiently precise approximation
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to r(Ag41) within few iterations if jx4; is used as starting point. This can be expected if

Jk+1 € P°(A\gy1) and if the gradient §pyq := D, (2. ’\‘""'l)lr:é»;l is small, say

g | < = x | ; M.
deg1llde 1l < - OIS“"’SL‘S" 1D f.(y)| (*x)

with digr := min{(Aey1 = fo(Ge41))- fildhar) 1< < m} and =~ = 0.1. (See also Jarre.
Sonnevend and Stoer (1988).) Similarly the test in step 4 will check whether the gradient
Jk+1 is too small. say whether (**) holds with v = 0.01. Asa consequence of Jarre (1987).
the quantity 3{\¢4y — < yeyq| used in the stopping test in step 6 is an upper bound for
the error cryk_n - A",

In some numerical experiments we also investigated higher order extrapolation schemes
which are based on the knowledge of the previous centers as suggested by Sonnevend
(1986). The linear extrapolation in step 2 of the model algorithm is then modified in the
following way. Let Ag_j, \e—;41,..., \g and Yk—jy,---» Y& be given as best approximations
t0 o(Ak—;)....2(\z) computed so far. Fix \¢4; as in step 1 of the model algorithm and
construct an interpolating function & with

i) =y, =010

and define Jeg1 = E(Apy)

The choice of j < k determines the order of extrapolation.

Other extrapolation schemes may be based on a paraneter different from \ and the value
of \r41 might not be given explicitly. This however does not cause any difficulties. since
(in case of a linear ojective function fo) for any point Zi41 in P one can easily determine
a parameter A such that the norm of the gradient gy is minimal.

NUMERICAL EXPERIMENTS

To gain insight into the practical behaviour of the method and the possibilities of accelera-
tion offered by different types and orders of extrapolation, it has been tested on small size
problems (with up to 300 unknowns and dense matrices). In particular this implementa-
tion is intended to illustrate the global convergence behaviour and the dependence of the
number of iterations on the dimension of the problem.

Example 1

Within these examples we show the influence of the order j of interpolation on the perfor-
mance of the method. j + 1 is the number of "analytic centers” - k—j <! <k, used for
extrapolation. The results refer to a randomly chosen problem of the form

n
min — E L
TEP 4
)=1

P={r>0:4r <10%.}
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where 4 is an n X n matrix whose entries are random numbers uniformly distributed
between 1 and 1000 and ¢ = (1,...1)T € R", taken from Iri and Imai (1936). Here.
n = 10. The objective function was counted 10 times. mainly to improve the performance
of the zero order method. The results show. that it is advantageous to use higher than first
order interpolation. thereby exploiting the smoothness of the curve x{ \) of analytic centers.
Using the order j = 0 for extrapolation roughly corresponds to a variant of a method used
by Renegar (1986) and j = 1 or 2 seems to be comparable to the ones of Adler Resende
and Veiga (1986). This table however cannot serve as a basis for a comparison of the
methods. as the underlying algorithm is laid out for large step extrapolation rather than
efficient updates of the Hessian matrix which are easier to devise in the case of short step
lengths.

TABLE 1 The influence of the order j of extrapolatiom.
J #it #Hess folTena) — A*
0 556 308 3.7-107°
1 34 34 3.0-107"
2 28 29 2.7-1078
3 27 27 4.710°8
4 26 26 2.1-10°%
5 26 27 ©1.5.1077
5" 22 23 5.2.10-%

All examples were based on extrapolation by polynomials #(\) in the parameter A, with
the exception of the last example in row 5%, where polynomials Z(t) in the parameter
t = r(A\)/(r{\)+ p) were used. which of course corresponds certain rational functions in r.
Here the proper choice of p is essential for fast convergence. From other experiments we
obtained an acceptable value of p = ¢ £{1g)~ \*. which can be obtained from an ellipsoidal
approximation of P using the first center. The stopping test always was Tr—\ <1077,
The results reported here for n = 10 are typical: similar results were obtained for other
dimensions n as well.

Example 2

This example is a problem with a convex quadratic objective function and linear con-
straints. The objective function is given by folz) := T Qr + Tz where Q is a diagonal
dominant tri-diagonal-matrix with random entries. and ¢ a uniformly distributed vector.
The constraints are as in example 1. Each problem was run three times with different
random numbers. the average is listed in the table. The number of constraints was chosen
m = 2n.

TABLE 2 Quadratic objective function (Phase 2).
n #it #Hess #grad w
10 14 15 188 0.584
20 17 20 229 0.586
30 16 21 249 0.536
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Example 3
Another set of test problems with nonlinear constraints was given by:

file):= ;I‘TQ,I + b,Tr + 7

where the Q, are diagonal dominant tri-diagonal-matrices with random entries. the b, are
uniformly distributed vectors and the ~, are negative real numbers. Each problem was run
three times with different random numbers. the average is listed in the table. The number
of constraints was chosen m = n/3.

TABLE 3 Quadratic constaints (Phase 2).
n #it #Hess #grad w
10 10 12 161 0.202
20 12 12 159 0.329
30 12 12 151 0.305
60 13 15 157 0.346
100 13 14 153 0.328

FINAL REMARK

It is shown. that the algorithm besides its nice theoretical properties is also interesting
for practical applications. in particular when accelerating the method by some higher
order extrapolation. In the description of the implementation we tried to preserve the
conceptual simplicity of the method and therefore suppressed many minor details {(how to
choose the constants. step size correction. or when to update the Hessian matrix) which
nevertheless turned out to be useful for improving the running times of the algorithm.
Finding good error bounds for higher order extrapolating functions is a difficult open
problem. Since an error bound is crucial for the proof of the full efficiency of the above
method. we cannot give a tight complexity bound for the accelerated method yet. But in
all numerical examples higher order extrapolation gave a remarkable speedup such that
the total number of iterations seems to be almost independent from the dimension. This
observation supports the basic idea of Sonncvend’s method, to use a suitable high order
extrapolation scheme for following a single path of analytic centers.
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