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Abstract: Various algorithms for satisfiability problems require vastly different times to solve typical prob-
lems. The time used when solving random problems is discussed for five algorithms. The results from
asymptotic analyses are surveyed. Plots of the average number of nodes per problem are given for random
problems with 50 variables. The plots give contours for the number of nodes as a function of the number
of clauses and of the probability of that a literal is in a clause. They show the strengths and weaknesses of

each algorithm.

Introduction

The best algorithms for NP-complete problems
appear to use exponential worst-case time. Yet
some algorithms can solve typical problems quite
rapidly. This paper summarizes asymptotic studies
of five algorithms for the satisfiability problem and
gives new curves showing the average time each al-
gorithm uses for solving random satisfiability prob-
lems with 50 variables. The number of clauses per
problem varies between 1 and 500. The probability
that a literal is in a clause also varies. These pa-
rameters have a drastic effect on the average run-
ning time. No algorithm is best for the entire range
of parameters. These studies clearly indicate some
of the strengths and weaknesses of the algorithms.

Although the algorithms are evaluated by their
speed at solving the satisfiability problem, the al-
gorithms can solve any discrete constraint satisfac-
tion problem, and the algorithms are stated for the
broader class of problems. Let R;, ..., R; be rela-
tions on variables z;, ..., z,, where each variable
has a finite set of possible values. The constraint
satisfaction problem is to set the variables so that

Ri(z1,.. . zy) Ao A Ry(z1, ..., 3y) (1)
is true or to determine that this can not be done.
In the satisfiability problem, each variable can have
the value true or false and each R is a clause (the
logical or of literals, where a literal is a variable or
its negation).

Algorithms

This paper has an informal statement of each
algorithm. The original papers have more details.

Backtracking [2]: Select the first remaining
variable from those variables without a value. (If
all variables have values then the current setting
.is a solution.) Generate a set of subproblems by
assigning the selected variable each possible value.
Solve the subproblems recursively, but skip those
subproblems where some R; simplifies to false with
the current variable setting.
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Backtracking is an old algorithm. It is rel-
atively quick when most of the subproblems are
skipped. The version of backtracking given here
finds all the solutions to a problem, so it needs a lot
of time if the problem has a lot of solutions.

Unit clause backtracking [17]: If some re-
lation depends on only one of the unset variables
then select that variable, otherwise select the first
unset variable. Continue as in backtracking.

The improved variable selection results in much
faster backtracking in many cases that arise in prac-
tice [1]. The version of unit clause backtracking
given here also finds all the solutions.

Clause order backtracking [4]: Select the
first relation which can evaluate to both true and
false depending on the setting of the unset variables.
Select variables from this relation until its value is
determined. Process selected variables in the same
way that backtracking does.

By setting only those variables that affect the
value of relations, this algorithm soimetimes avoids
the need of assigning values to all of the variables. It
finds all the solutions, but in a compressed form. A
single solution with unset variables represents the
set of solutions obtained by making each possible
assignment to the unset variables.

The pure literal rule algorithm [12]: Select.
the first variable that does not have a value. (If all
variables have values, then the current setting is a
solution if it satisfies all the relations.) If some value
of the selected variable results in all relations that
depend on the selected variable having the value
true then generate one subproblem by assigning the
selected variable that good value. Otherwise gen-
erate a subproblem for each value of.the selected
variable. Solve the subproblems recursively.

This algorithm has the essence of the pure lit-
eral rule from the Davis-Putman procedure [6]. By
removing most of the good features, an analyzable
algorithm is obtained. It can solve a wide class of
problems in polynomial average time, but it does
not find all solutions.



Iwama’s algorithm [15): For each relation of
the problem count the number nonsolutions. For
each pair of relations that depend on different vari-
ables count the number of nonsolutions. Continue
for triples, etc. Use inclusion-exclusion to deter-
mine the total number of nonsolutions. Subtract
the number of nonsolutions from the number of pos-
sible variable settings to obtain the number of solu-
tions.

The counting for this algorithm can often be
done quickly if there are few clauses or if the clauses
depend on lots of variables.

It is clear that an improved algorithm can be
obtained by combining the techniques of the first
four algorithms. Such an algorithm would be at
least as fast as the fastest of the four. Iwama’s
algorithm is sometimes much faster than the others
and sometimes much slower. It is not so clear how to
best combine it with the previous four algorithms.

Random satisfiability problems

In the random clause model there are v vari-
ables available for forming CNF predicates. A lit-
eral is a variable or its negation. A clause consists
of the logical or of a set of literals. A random clause
is formed by including each of the 2v possible liter-
als with probability p. It is possible for a clause to
contain both a variable and its negation, but this
is not likely when p is well below v=1/2_ A random
predicate is formed by taking the logical and of ¢
random clauses.

The characteristics of the typical predicate var-
ies with the values of v, t, and p. One of the most
important characteristics is the average number of
solutions per problem. When solutions are rare, the
running time of a satisfiability algorithm depends
mainly upon how quickly it can prove that a prob-
lem has no solution. When solutions are common,
the time depends mainly upon how quickly an al-
gorithm can find some solution.

Asymptotic studies of the algorithms have con-
sidered the running time of these algorithms as a
function of ¢t and p as v tends to infinity, where ¢
and p are both functions of v. This paper includes
contour plots for the case v = 50. The number 50 is
large enough that the main features of the asymp-
totic analyses are clearly demonstrated.

Results

The average number of solutions for a random
satisfiability problem [20] is

s=2l1-(1-p)']" (2)

v =50
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Fig. 1. Contours for the number of solutions.

The lower contour in Figure 1 shows the value
of p (as a function of t) that results in an average of
v solutions per problem when v = 50. Above it are
the contours for v2, v3, and v* solutions. Both the
p and t scales are logarithmic. The number of solu-
tions is exponentially small in the lower right corner,
where p is small and there are a lot of clauses. The
number of solutions approaches 2V in the upper left
corner, where p is near 1 and there are few clauses.
When v goes to infinity and p goes to zero, the di-
viding line between an exponential and polynomial
number of solutions is given by [17]

t In2 (3)

v —In(l — e-?7)’

The contours are defined only for integer val-
ues of ¢, consecutive points on the contour are con-
nected by straight lines. Since the scale is logarith-
mic, this is most evident for small values of t. See
Figure 2.

Figure 2 shows the average number of solu-
tions when the settings of irrelevant variables are
not given (as with clause order backtracking). The
outer contour is for an average of v solutions. Con-
tours for v2, v and v* solutions are also given. The
line from the left side to the right side shows, for
each t, that value of p which results in the largest
number of solutions. Listing solutions in this com-
pact form does not have much effect when ¢ is large
and p is small or moderate, but it drastically re-
duces the number of separate solutions in all other
cases.

The contours in Figure 2 are given by [4]

S = 5(t,0), (4)
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Fig. 2. Contours for compacted solutions.

where S5(t,?) is the solution to the recurrence

5(0,4) = 2¢, (5)
S(t,i) = Za,-(i)s(t —1,i+7) (6)

for ¢t > 0, where

ao(7) = 1—(1—p)"(1+p)" ", (M
)= 2 (") e @

k

for i > 0. The asymptotic analysis of eq. 3 has not
been completed.

The remaining figures have the same general
form as Figures 1 and 2, but they give the number
of nodes generated by the various algorithms while
solving random satisfiability problems. Each algo-
rithm generates nodes in time that is bounded by
a low degree polynomial function of the number of
clauses and variables. The exact relation between
the number of nodes and the running time varies
with the skill of the person programming the algo-
rithm and with the speed of his computer. Usually
these details are not as important as selecting an
algorithm with the appropriate features to reduce
the number of nodes.

The average number of nodes for backtracking
is [20]

N=1+ Y 2[1-@1-p> . (9)
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Fig. 3. Contours for backtracking.

The lower contour in Figure 3 shows the value of
p (as a function of t) that results in an average of
v nodes per problem. Above it are the contours
for v2, v3, and v*. The general shape of these con-
tours is the same as the contours for the number
of solutions. However, the contours for backtrack-
ing do not increase as rapidly, particularly above
t = v. By ¢t = 500 the value of p associated with
50 solutions results in nearly 50 nodes. Asymp-
totic analysis [20] shows when v goes to infinity the
boundary between polynomial and exponential time
follows eq. (3) for p below (In2)/v. For larger val-
ues of p the boundary for exponential time diverges
from that for an exponential number of solutions
(See the equations in [20] and the curve in [17]).
In the limit as pv goes to infinity (with p going to
zero), the boundary is given by

L2 o (10)
v puv
In the limit as v goes to infinity when t > v,
there is a region where the average number of nodes
is an exponential function of v while the average
number of solutions is near zero [20]. This region
is of considerable interest because people often use
backtracking to solve problems with just a few so-
lutions [1].
The average number of nodes for unit- clause
backtracking is

N=1-[1-(1-p)>
+y <i>[i’(1 =) TN (L - uu,v),
(11)

— 255 —



where N(t,u,v) is the solution to the recurrence

N(t, 4, 0) = 6106v0, (12)
N(1,0,v) = [1 ~ (1 — p)* = 2vp(1 — p)**~ Y}

N-r
=2 () ()
,ut

x pl~1'+ul(1 _ p)2(u-1)u'+l'
x[1— (1 _p)Zv—l]l—l'—u'
x N(I',v',v-1), (13)
N(lu,v)=2[1- (1~p)* — 2vp(1 - p)*~]'(20)*
l 1—-U"\fu-1
265
x 2,upl—l’+j(1 _p)2(v—l)j+l'
x (1= (1—p)? i
x {N{',v,v-1)

_ [1 _ (1 _p)ﬂv—-2
- 2(v - 1)p(1 - p)> =3}
x (2v - 2)*'}, (14)

for u > 0. This equation comes from an unpub-
lished extension of the work in [17] and [18].
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analysis [17] are too long to repeat here, but they
show that when t/v is large enough, the boundary
for exponential time is closer to that for backtrack-
ing than it is to that for the number of solutions.
Figure 4 suggests that unit clause backtracking does
much better than the lower bound analysis in [17]
would suggest, but the calculations do not go to a
large enough value of {/v to comment on the quality
of the upper bound analysis. Among the algorithms
of this paper, unit clause backtracking is the fastest
when ¢ is large and p is small.

The average number of nodes for the clause or-
der backtracking is [4]

N = N(t,O), (15)
where
N(0,7) =1, (16)

N(t,§) = 1+ bo()[N(t — 1,i) — 1]

+bi(4)
i1
x {2[1 _ (1 _ p)zv—i—j+1]t—l
+N(t—1,i+7) -1}, (17)

Fig. 4. Contours for unit clause backtracking.

The lower contour in Figure 4 is for an aver-
age of v nodes. Contours for v?, v3, and v* are
also given. (These contours stop at t = 153 because
of floating point overflow and because of the large
amount of time required to solve the recurrence for
large t.) Each contour is between the corresponding
contour for the number of solutions (Figure 1) and
the one for the number of nodes for backtracking
(Figure 3), but much closer to the one for the num-
ber of solutions. The formulas for the asymptotic

and

bo(i) =1 — (1 —p)¥(1 4+ p)* ", (18)
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Fig. 5. Contours for clause order backtracking.

The outer contour in Figure 5 is for an aver-

age of v nodes. Contours for v?, v
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and v* are also



shown. The line from the left side to the right side
shows, for each ¢, the value of p that results in the
largest number of nodes. This algorithm is much
better than simple backtracking, particularly when
t is not large or p is large. A comparison of Figures
2 and 5 shows that much of the speed of this algo-
rithm is associated with the compact representation
of solutions. When ¢t is large and p is small the al-
gorithm is only slightly better than backtracking.
Among the algorithms in this paper, clause order
backtracking is the fastest when ¢ is moderate and
p is small. The analysis of a simpler algorithm in
[11] suggests that clause order backtracking should
run in polynominal time when pv is below some
constant.

The average number of nodes for the pure lit-
eral rule algorithm is [13]

N(0,v) = N(t,0)=1
N(t,v) =1+ (1 - p)*a(t,v — 1)

+§:(3p%1_py4Na_@u-1)

i>1
(21)

(20)

10-2

10-2
1 10

100

‘ 500

Fig. 6. Contours for the pure literal rule algorithm.

The outer contour of Figure 6 is for an average of v
nodes. Contours for v?, v® and v* are also shown.
The line that is near the middle on the right side
shows, for each ¢, the value of p that results in the
largest number of nodes. Asymptotic upper bound
analysis [19] show that this algorithm uses polyno-

mial time when
Inv

t< —

) (22)

P>e (23)

or
Inv

tp<e )
v

(24)

where ¢ is any fixed small number. Among the al-
gorithms in this paper, the pure literal algorithm is
fastest when t is small and p is not large.

The average number of sets of clauses consid-
ered by Iwama’s algorithm is given by [15]

v= 3 (Ju-pra-a-pir e
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Fig. 7. Contours for Iwama’s algorithm.

The upper contour in Figure 7 is for v nodes. Con-
tours for v?, v3, and v! are also given. The average
time [15] for Iwama’s algorithm is polynomial when

Int

v

p> (26)

Among the algorithms of this paper, Iwama’s algo-
rithm is fastest for large p.

Discussion

The algorithms in this paper have drastic varia-
tions in their average running time for random sat-
isfiability problems, depending on the parameters
used to generate the problems. Each algorithm has
a region where it is best (except backtracking is
never quite as good as either unit clause or clause
order backtracking). It is straightforward to add
the unit clause rule and the pure literal rule to
clause order backtracking to obtain an algorithm
that has the good features of all the algorithms cx-
cept Iwama’s. The problem of how to best combine



the ideas of Iwama’s algorithm with the backtrack-
ing type algorithms is more challenging, and it is
important.
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Fig. 8. The contours for a combined algorithm.

Figure 8 shows the contours that result if the
best algorithm is used in each region. The outer
contour is for v nodes. Contours for v?, v3
v nodes are also given. The upper part of each
contour comes from Iwama’s algorithm (except the
t = 7 point on the upper v contour comes from the
pure literal rule). The rapidly sloping lower left part
of each contour (except for the v contour) comes
from the pure literal algorithm. The lower part of
each contour comes from clause order backtracking.
The unit clause algorithm is becoming best just as
it is becoming to hard to compute the contour. On
the v contour, it is best for t > 135. Starting at ¢ =
135 the v contours for both clause order and unit
clause backtracking are given. (Due to the small
scale this extra contour looks like a thick place in
the v contour). For the higher contours it is not
best until after ¢ = 153 (where the calculation for
unit clause backtracking was stopped).

and

There are a number of algorithms for satisfia-
bility and constraint satisfaction problems that ap-
pear to have promising average time performance
but which appear hard to analyze (for example [14,
16]). The contours in this paper suggest useful
places to measure the preformance of these algo-
rithms.

Other analyses

The type of model for random clauses used in
this paper is often called a random clause model.
Both backtracking [2] and unit clause backtrack-
ing [18] have also been analysed with a fixed clause

model. In this type of model each clause is a ran-
dom selection of s literals.

Some analyses concern algorithms that always
run in polynomial time and often solve the prob-
lem. Sometimes, however, they give up. Analyses
of these algorithms give the conditions under the
probability of finding solutions is high. In the ran-
dom clause model, the algorithm that tries a ran-
dom truth assignment solve can a large fraction of
the problems in the region where most problems
have solutions [7], i.e.

Int

> (27)
(It takes a somewhat larger value of p for most prob-
lems to have solutions than it does to cause the av-
erage number of solutions per problem to be near
one. Solutions occur in bunches, so a random prob-
lem with a solution in one branch of a search tree
is more likely to have solutions in other branches
[21].) The algorithm that says the problem has no
solutions if it has an empty clause has a high prob-
ability of detecting the lack of solutions [7] if

Int
< o (28)
The unit clause rule is often effective for values of
p between the two bounds in eq. (27) and eq. (28)
[8].

Probabilistic analyses with a fixed clause model
have found conditions where many resolution proofs
have exponential length [5] and where all search re-
arrangement backtracking algorithms often require
exponential time [9]. Also backtracking where vari-
ables are selected from the shortest clause has been
analyzed in this model {10].

Numerical techniques

The function associated with each figure was
evaluated algebraically at p = 0 and p = 1. The
values at intermediate points were found numeri-
cally. In those cases where the peak value was not
at an end point, the peak was found using a combi-
nation of quadratic interpolation and bisection. At
all times the program remembered the value of the
function for three values of p, where the peak was
known to lie between the two extreme values. Each
new value of p was requireed to differ from the pre-
vious values by at least a factor of 1.0001 (except
on the last step), and the search was stopped when
the peak was located within this accuracy. Once
the peak value was known, the contours were found
by using similar techniques.

Some of the recurrences took a long time to
solve. The recurrence for unit clause backtracking



took time O(t*v) (the time would have been O(vt®)
except that direct computation of the sum over j
can be avoided), the one for clause order backtrack-
ing took time O(tv?), and that for the pure literal
rule took time O(t?v). Therefore several additional
techniques were used in most programs to speed up
the finding of contours. The evaluations done to
find one contour were sometimes useful for finding
other contours. Also, in some cases, the calculation
for one value of ¢ resulted in values for all smaller
values of ¢t. For each ¢ and for each result (con-
tour or peak) the programs remembered the three
points closest to the contour or peak (subject to
the requirement that one point be on each side of
the result). Once the contour was found for three
values of ¢, additional points on the contour were
computed by extrapolation. The extrapolation was
checked by evaluating the function at the extrapo-
lated point and at a point a factor of 1.0001 away.
When the extrapolation was outside the permitted
tolerance, the step size was reduced. When it was
inside the tolerance, the estimated error was used
to predict the next step size. In the case of the unit
clause rule, the procedure was refined by extrapo-
lating based on the ratio of the expected number
of nodes to expected number of solutions. The ex-
pected number of solutions is easy to compute, and
using this ratio permitted larger step step sizes. The
extrapolation of contours resulting in the need to
compute only about one twentieth of the ¢ values
for large t. Usually only two function evaluations
were needed for each contour.
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