FHTYZXL 12-33
(1989. 11. 22)

Optimum Resource Sharing in Pipeline Synthesis

Kazutoshi YOKOYAMA, Shin’ichi WAKABAYASHI, Jun’ichi MIYAO,
and Noriyoshi YOSHIDA

Faculty of Engineering, Hiroshima University
Shitami, Saijo-cho, Higashi-Hiroshima, 724 JAPAN

Abstract

Conditional resource (module) sharing is one of the
procedures performed during behavioral synthesis of
pipeline design. Conditional resource sharing is to
share resources among mutually exclusive parts of
conditional branches to reduce the layout area of a
circuit. In this paper, we assume that the behavioral
description of a circuit to be synthesized is given by
a data flow graph. First, we formulate the prob-
lem, and a set of subproblems of conditional resource
sharing is given. Next, we define a module sharing
graph to determine module sharing, and give algo-
rithms to solve the subproblems optimally in poly-

nomial time.

1 Introduction

In automatic pipeline synthesis of a circuit, a data
flow graph, which gives a behavioral description of a
circuit, is given as input, and a synthesis algorithm
produces a pipeline data path which can realize the
behavior given by the data flow graph [2]. Pipeline
synthesis consists of following two tasks: allocation
of hardware resources (sometimes called modules) for
operations in the data flow graph, and determination
of the pipeline stages. In designing a pipeline data
path, two objective functions must be minimized, one
is the total layout area, and the other is the number
of pipeline stages. In order to minimize the layout
area, a synthesis algorithm tries to share hardware
resources. However, sharing resources may increase
the number of stages, that may cause performance
degradation.

In general, it is possible to share hardware re-
sources which are not used simultaneously. There are
.two types of resource sharing, one is unconditional re-
gource sharing that shares hardware resources among
disjoint time steps, and the other is conditional re-

—225 —

source sharing that shares resources among mutu-
ally ezclusive parts of conditional branches [1}. In
pipeline design, it is possible to share hardware re-
sources only amohg mutually exclusive parts of con-
ditional branches. In this paper, we discuss condi-
tional resource sharing problems in pipeline synthe-
sis, and propose new algorithms to solve them.

For the conditional resource sharing problem
in pipeline synthesis, an algorithm is proposed in
[1]. However, since the algorithm described in [1]
is heuristic and its behavior is controlled by user-
defined parameters, the optimum solution may not
be obtained. We discuss the subproblems of con-
ditional resource sharing which can be solved opti-
mally, and show new algorithms to solve them.

This paper is organized as follows: In Section 2,
basic terminologies are defined. We present the for-
mulation of the pipeline data path synthesis as a
conditional resource(module) sharing problem in Sec-
tion 3. Given this formulation, we show an essential
property of module sharing, and introduce an impor-
tant data structure Module Sharing Graph, in Sec-
tion 4. We also show new algorithms for conditional

module sharing. In Section 5, we present conclusions.

2 Preliminaries

2.1 Data Flow Graph

We assume that the behavioral description of a cir-
cuit to be synthesized is given as a data flow graph
with a mapping which specifies what operations are

to be performed in the circuit.

[Definition 1] A date flow graph DFG = (V, E, 0p) is
a directed acyclic graph, where V = {v1,va,...,v,}U
{vi,v0} is a set of nodes and E = {e;,e2,...,6,} C
V xV is a set of directed edges satisfying the follow-

ing three conditions:

(1) The indegreeof v = the outdegreeof vo =0. We
call v; and vo the input port and the output

port, respectively.

(2) For every node v;(1 < i < p), there exists a
directed path from v; to vo via v;.

(8) op:V — OP is amapping from V to OP, where
OP is a predefined set of arithmetic/logic oper-
ators such as +, —, A (logical-AND), v (logical-
OR), etc. , which are allowed to be used in the
circuit description. We call the set OP the op-
erator repertory. =]

The semantics of a given data flow graph DFG
= (V, E,op) is as follows: Assume that a node v; has
s incoming edges and ¢ outgoing edges. This means
that the operation op(v;) is applied to s operands,
which are given from its neighboring nodes, and the
result is sent to ¢ neighboring nodes. For the precise
interpretation of the circuit description, some order-
ing of incoming edges of a node is assumed. Note
that the data flow graph presented here specifies a
data path of the circuit and does not specifies its con-
trol flow. We assume that the control flow of a circuit

is described in some other way.

We introduce a partial order among nodes of the
DFG to formulate the execution ordering of opera-
tions of DFG.

[Definition 2] Let V = {vy,vs,...,v,} U {vr,v0} be
the set of nodes of a given DFG. For every pair of
nodes, u and v, in V, u precedes v if there is an
edge from u to v, denoted by u > v. The transitive
closure of > is denoted by >1, and the reflexive and
transitive closure is denoted by >*. O

[Definition 3] A data flow graph DFG = (V, E, op)
is said to be serial if there exists a simple directed
path from v; to vo via all nodes except v; and vo
inV. [m]

2.2 Mutually Exclusive Data Flow
Graph

As mentioned in the Introduction, it is possible to re-
duce the layout area of pipelined data path by sharing
hardware resources (i.e., modules) among mutually
exclusive parts of conditional branches in the behav-
ioral description of a circuit. To simplify the problem
of conditional resource sharing, in this paper, we only

consider the problem of resource sharing between two

mutually exclusive parts of behavioral description of
a circuit. To formulate this problem, we introduce an
extension of the data flow graph, called a mutually

ezclusive data flow graph.

[Definition 4] A mutually exclusive data flow graph
MED = (TB, FB) is a pair of two data flow graphs
TB = (TV,TE,op) and FB = (FV,FE,op), called
a true block and a false block, respectively. TV =
{ti,ta,...,tm} U {tr,to} is a set of nodes of TB,
and TE = {tey,tes,...,te,} C TV x TV is a set
of edges of TB. ; and {p are called the input
and output ports of T'B, respectively. For the false
block FB, FV = {f1, fa,.... fa} U {f1,fo}, FE =
{fei, fez,...,fes} CFV X FV, fr and fo are simi-
larly defined. TB and FB adopt a common operator
mapping function op : (TV U FV) — OP, and share
an operator repertory OP. m]

The semantics of a given mutually exclusive DFG
MED = (TB, FB) seems to be obvious and natural.
According to the evaluation of a predefined condi-
tion, the behavior of a circuit specified by the true
block TB is realized when the condition is true, and
the behavior specified by FB is realized when oth-
erwise. We assume that the evaluation of a given
condition is performed outside the circuit described

by the mutually exclusive DFG.

|Example 1] An example of mutually exclusive DFG
is shown in Figure 1. For convenience, operator sym-
bols and variables’ names are attached to the corre-
sponding nodes and edges, respectively. In the figure,
there are 5 operators and 10 variables in T'B, and 4

operators and 8 variables in FB. 0

Figure 1: An example of MED.

- 226 —

2.3 Hardware Implementation of
Operators

Given a data flow graph DFG = (V,E,op), oper-
ations to be realized by hardware are specified by
the mapping op. However, in general, there are sev-
eral ways to implement an arithmetic/logic operation
specified by op. We introduce a module repertory and
two mappings to formulate this problem.

[Definition 5] Let MO = {moy,mo,,...,mo,} be
a set of hardware modules, which may be used to
realize operations given by a DFG. We call the set
MO a module repertory. Let func: OP — 2MO pe
a mapping from a given operator repertory to the
power set of MO. For each mo € MO, func(mo) =
{opi1, 0pia, . ..,0pix} C OP means that the module
mo realizes the function of operators op;;, opi2, - .-,

op;~. We represent the layout area and delay time of
the module mo as area(mo) and delay{mo), which

are assumed to be natural numbers. a

|Example 2] Figure 2 shows an example of module

repertory. a
func (mo) | area (mo} | delay (mo)
S 3 2
mo, X S 3
mo 7/ 5 3

Figure 2: An example of module repertory.

3 Pipeline Synthesis with Con-
ditional Resource Sharing

3.1 Formulation of the Problem

We formulate the problem of conditional resource
sharing between two mutually exclusive parts of a

circuit described by mutually exclusive DFG.

[Definition 6] For a given mutually exclusive DFG
MED = (TB, FB), a pipeline module allocation PM
A = (select, assign, stage) is a set of three mappings,

select, assign, and stage, defined as follows.

(1) select : V — MO is a mapping to specify which
types of modules are used to realize operators
associated with nodes. Here, V is a set of nodes

in MED, and MO is a module repertory. For

—227 —

simplicity, we assume that MO contains two

special modules, mo; and mop, and the input

and output ports of MED (t,to, f1, fo) are

always mapped to these special modules, and

noune of other nodes in M ED may be mapped

to them. moy and mogp are called an input pad

and an oulput pad, respectively. We also as-

sume that area(mo;)=area(moo) = delay(mo;)
= delay(moo) = 0.

(2) assign:V — {0,1,...,num_parts,num _parts
+1} is a mapping to specify which modules are
assigned to nodes. We assume that assign is
surjective, and assign(t;) = assign(f;) = 0,
and assign(to) = assign(fo) = num_parts +
1. For v € V, assign(v) is called the parts
number of v, and means that the operation as-
sociated with v (op(v)) is realized by a mod-
ule whose module type and parts number are
select{v) and assign(v), respectively. Let rep-
resent a set of nodes which are mapped to a
parts number r as share(r). Furthermore, for
v €V, let parts(k) = moy if select(v) = mo,

and assign(v) = k.

(8) stage:V — {0,1,...,num_stage, num _stage+
1} is a mapping to specify the pipeline stage
assignment of each operation. We assume that
stage is surjective, and stage(t;) = stage(f;) =
0, stage(to) = stage(fo) = num_stage + 1. O

[Definition 7] For a given mutually exclusive DFG
MED = (TB,FB) and a positive constant msd, a
pipeline module allocation PM A = (select,assign,
stage) is said to be feasible if the following conditions
hold.

(1) ForallveV, op(v) € func(select(v)).

(2) Foralluand vinV, if assign(u) = assign(v)
then select(u) = select(v).

(8) ForalluandvinV,if u >* v then stage(u)
stage(v).

IA

(4) For all v and v in V such that stage(u) =
stage(v) and u >% v, 7| delay(select{u,))
< masd holds for every simple path from u to
v, i.e., u=uy, ug,...,u,=v. We call msd the

mazimum stage delay.
(5) For all i(1 < i < num _parts), [share(i)| < 2.

(8) For all i such that |share(i)| = 2, let share(i) =

{u,v}. Then uis a node of TB and v is a node
of FB, or vice versa, and stage(u) = stage(v).

O

For a given PMA = (select,assign, stage) for
MED = (TB,FB), the total area and the delay of
a pipeline data path synthesized by PM A are repre-
sented as follows.

area(PMA) = E::Y”’"" area(parts(i)),

delay(PM A) = num _stage * msd.
|[Example 3] Figure 3 shows a feasible PM A for MED
given in Figure 1, the module repertory given in
Figure 2, and msd = 5. In the figure, share(5) =
{ts, fs}, share(6) = {t4, f1}, and area(PMA) = 27,
delay(PMA) = 15, respectively. 0

stagel 0 J
stagel | 1] ¢ J2[f; |3[% |J

stage?2

stagel

stages 8[fo-%o] |

parts(1)=mo, parts(5)=mo,
parts(2)=m03 par‘ts(é)=mo1
parts(3)=mo] parts(?7)=moy
parts (4) =mo,

Figure 3: A feasible PM A.

|Conditional Resource Sharing]

Given a mutually exclusive DFG MED = (TB, FB)
and a set of conditions on the total area and the de-
lay time of pipeline data path, find a feasible pipeline
module allocation PM A = (select, assign, stage) such
that the pipeline data path induced by PM A satis-

fies the given set of conditions. @]

3.2 Assumptions

We introduce some assumptions into the problem

formulation stated in 3.1 to derive efficient algorithms.
|Assumptions)

(A1) Given a mutually exclusive DFG = (TB, FB),
both TB and FB are serial.

(A2) For every module m;(1 < i < h), delay(m;)
=1.

(A3) msd =1 o

3.3 Subproblems

Under the assumptions described in 3.2, we formu-
late three subproblems of conditional resource shar-

ing.

|Conditional resource sharing problem (the problem
CMS)|

Given a mutually exclusive DFG MED = (TB, FB),
find a pipeline module allocation PMA = (select,
assign, stage) such that area(PM A) is minimum. O

|Stage constrained conditional resource sharing prob-
lem (the problem SCMS)|

Given a mutually exclusive DFG MED = (TB, FB)
and a positive integer k, find a pipeline module al-
location PMA = (oelect,dsaign,stage) such that
num _stage < k and area(PMA) is minimum O

|Area constrained conditional module sharing prob-
lem (the problem ACMS))

Given a mutually exclusive DFG MED = (TB, FB)
and a positive integer k, find a pipeline module al-
location PMA = (select,assign, stage) such that

area(PM A) < k and num_stage is minimum.]

4 Allocation Algorithms

4.1 Allocation Pair

To solve the problems stated in 3., we introduce a

set of some useful concepts on module sharing.

|Definition 8] For a given MED = (TB, FB), a pair
of nodes u € TV and v € FV is said to be an al-
location pair if there exists a module mo such that
op(u) € func(mo) and op(v) € func(mo). We de-

note an allocation pair of u and v by [u,v]. [}

[Definition 9] For a given MED = (TB,FB) and
two allocation pairs on MED, p; = [uy, v;] and p; =
[ua, vo], py and pp are said to be twisted each other
if either one of the following conditions holds.

(1) u; =% ug and vy >+ vy,

(2) ug % u; and vy > vy, 0

The following lemma can easily be derived from

the above two definitions.

[Lemma 1] Given a feasible PM A = (select,assign,
stage) for MED = (TB,FB), no two allocation
pairs in MED, which are twisted each other, share
modules in PMA. o

[Definition 10] Given a mutually exclusive DFG M E
D = (TB, FB), a set of allocation pairs § = {[(1,

foils |tszy fo2)i-- - ltey, fo]} is said to be a feasible
sharing if the following conditions hold.

(1) No node in MED appears more than once in
S.

(2) No two allocation pairs are twisted each other.

D

It is obvious that, if a feasible sharing S is given,
a feasible PM A is easily obtained. For each alloca-
tion pair in S, a module with minimum area, which
realizes two functions specified by two nodes in the
allocation pair, is selected and assigned. For the re-
maining nodes in MED, a module with minimum
area is selected and assigned, which is not shared
by some other node. We denote PMA constructed
from a given feasible sharing in the above manner
by PMA(S). We also denote the number of stages
given by PMA(S) by num_stage(S). Note that,
when S = ¢, the resulting PMA(@) achieves the

minimum delay.

[Definition 11] Given a mutually exclusive DFG M E
D = (TB,FB)j, for every v € TV U FV, let lv(v) be
the length of the longest path from ¢; or f;. [m]

The following lemma states an important prop-
erty on feasible sharing.
[Lemma 2] Given a mutually exclusive DFG MED =
(TB,FB), let § = {[tln .fl], [tslsfslla[tsz‘ fsz]v‘ i)
[ts+s fs«]}(7 > 0) be a feasible sharing for MED =
(TB,FB) such that ¢y >+ t5 >F fH >+ -0 >+
logs S1 >F for >F foo =% oo =T foq. Let [, f]
be an allocation pair for MED such that {,, > ¢
and foy >t f. Let ' = Su{|t, f]} and Astage =
num _stage(S') — num_stage(S). Then the following
holds.

(1) In case of [TV|—1v{tsq) > |FV]|—1v(fsy) and
[TV~ |FV] 2 lu(t) = lv(f) 2 lo(tsy) — lu(Ssq),
Astage = 0.

(2) Incaseof [TV|—lu(tsy) > |FV|—1Iv(fsy) and

l(t) =1v(tey) < Wo(f)—lv(fey) and [TV |-lv(t)
> |FV]|=1v(f),

—229 —

Astage = lv(t,) — lv(fey) — lu(t) + v(f).

(8) In caseof |TV|-lv(t,,) > |FV|~lv(fey) and
lw(t) —1v(tey) > l(f) —1v(fey) and |TV|-lv(t)

< |FV|-lv(f),
Astage = lv(t)=1v(f)=lv(tey) Hu(fe) +|FV|
—|TV]|.

(4) In case of |[TV|—lv(t,y) < |[FV|—1v(fs,) and
() —lv(tey) < lv(f)—1v(fey) and [TV |-luv(t)
2 |[FV] - 1v(f),
Astage = lv(f) — lv(t) + |TV| - |FV|.

(8) In case of |[TV|—lv(tsy) < |FV|—1v(fsy) and
lo(t) —lv(tsy) > W(f)—1v(fs) and [TV |=lv(t)
< |FV|-1u(f),

Astage = lv(t) — lv(f) — lv(tey) +1v(/fs).

(6) In case of |TV|—lv(lsy) < |FV|—1v(fs,) and
[TV = |FV| < lv(t) —lv(f) < 1v(tey) = lv(fea),
Astage = 0.

(Proof) Let PMA(S) = (select, assign, stage). Since
the MED is serial,
num_stage(S) = stage(l;~) + maz{|TV| — lv(t,,),
EV] = 1ol f0))-

On the other hand, let PMA(S') = (select', assign’,
stage'). Then
stage (1) = stage(lsy) + maz{lv(t) — lv(t,),

(1) ~ 1o(fu)),

and

num_stage(S') = stage'(t) + maz{|TV| - lv(t),
|FV] - to(1)}

Therefore,

Astage = num_stage(S’) — num_stage(S)
= maz{lv(t) — lv(ts,), lv(f) — lv(fs4)}
+maz{|TV| - 1v(t),|FV]| - lv(f)}}
—maz{|TV| = lv(ts4), |FV| = lv(fs)}-
By the expansion of three maz functions, we get the
Lemma. (Q.ED)

4.2 Module Sharing Graph

We introduce a directed graph, which is an important

data structure to solve the module sharing problems.

[Definition 12] Given a mutually exclusive DFG M E
D = (TB,FB), a module sharing graph MSG = (P,
Q, w,d) is a directed graph defined as follows.

(1) P ={p,p2,- - pPa} U {ps,pt} is aset of nodes,
in which each node p;(1 <1 < a) is correspond-

ing to an allocation pair of MED. p, and p;
are corresponding to [t;, fi] and [to, fo, re-
spectively.

(2) @ = {g,92,---,98} U {(pe. i), (pispe)}1 <
i < a} U{(pspe)}CP X P is a set of directed
edges, in which each edge ¢; = (p;,pe){1 < ¢ <
B) is defined only when two allocation pairs
corresponding to p; and pi are not twisted each
other, and p; and pi share no node in MED.

(8) w: P — N is a mapping to specify how
large the area is reduced when an allocation

pair shares a module. Precisely speaking, for

a node p, which is corresponding to an alloca-
tion pairlt, f], w(p) is defined as area(mo¢) +
area(moy) — area(mogs) where mo; and moy
are modules which realize op(t) and op(f) with
minimum area, respectively, and moyy is a mod-
ule which realize both op(t) and op(f) with

minimum area.

(4) d:Q — N is a mapping to specify how much
the delay time is increased when an allocation
pair is adopted. Precisely speaking, for edge
¢i =(pj,px) where p; and pi are correspond-
ing to [ta, fo] and (L, fa], let d(g;) be Astage=
num _stage({[ta, fo|, [tc, fa]}) — num_stage({ [t.,
Jv]})- For remaining edges, let d(q) = 0. O

[Example 4] Given a MED in Figure 4, module
repertory in Figure 5, M SG for MED is shown in
Figure 6. [m]

Figure 4: A serial MED.

func (mo) | area (mo) | delay (mo)
mo — 3 1
mo, X 5 1
no / 5 1
mo, N 2 1
mog \ 2 1

Figure 5: A module repertory.

f,l

Figure 6: A M SG for MED.

From the construction of M .SG, we can show the
following lemma.
[Lemma 3] A module sharing graph is acyclic. a

The following is a main theorem in this paper.

[Theorem 1] Given a mutually exclusive DFG M ED
= (TB, FB) and a module sharing graph MSG =
(P, Q,w,d) for MED, there exists a pipeline module
allocation PMA = (select,assign, stage) such that
area(PMA) = area(PM A(¢)) — wo and
delay(PM A) = delay(PM A(¢)) + do
if and only if there exists a simple directed path S
from pg to p; in MSG such that
wo=3"7o w(pe:) and do=32720 d((Psi: Pai1))
where S = peo(= ps), Pe1, Pszs - - -, P4(= P1)-
(Proof) IF part: From the definition of M SG, we
know that a sequence of allocation pairs, which is
corresponding to the path S, is a feasible sharing of
MED. Consider PMA(S). Then we have
area(PMA(S)) = area(PM A(¢)) — wo,
delay(PM A(S)) = delay(PM A(¢)) + do-
ONLY IF part: Let S’ be a set of node pairs, each of
which shares a module in PMA. It is obvious that,
in MSG, there exists a path which is corresponding
to S (QE.D)

-—230 —

4.3 An Algorithm for the Problem
CMS

We present an algorithm for the problem CMS, called
algorithm ACMS. In order to minimize the total area
of the data path, area(PMA), wy, must be maxi-
mized. From Theorem 1, we can get the solution by
finding the path S on M SG such that 37 w(p,) is
maximum, where S =pso(= ps), Ps1,Psz, - .-, Poy(=
pt). The following shows the outline of the algo-
rithm.

|Algorithm CMS|
stepl: Construction of M SG = (P,Q, w, d).
step?: Topological sort of P.
{Let pto(= 0s), Pt1,Pe2s - - -, P, Pratr{= pt) be

the result of topological sort.}
stepS: {Find the path S such that 37, w(p;) is
maximum. }
fori— 0toa+1do area(py)«— 0;
fori —0toa+1do

for all j such that (p¢;, pti) € Q do

area(pe) — maz{area(pu), area(pe;) + w(pu)};

Next, we discuss the time complexity of the algo-
rithm. Let [TV| = m and |FV| = n. Since [P|
= O(mn), and |Q| = O(m?n?), time complexity of
stepl is O(m?n?). step2 uses topological sorting and
step3 uses a longest path algorithm on M SG, and
hence time complexity of step2 and step3 are both
O(m?n?).

[Example 5] Consider MED in Figure 4, the mod-
ule repertory in Figure 5, and M SG for MED in
Figure 6. The algorithm finds the path p,,[t;, f2),
[t2, fd, [ts, /5], pe, and a feasible sharing S = {{t1, S,
[t2, f4], [ts, f5]} is obtained. Figure 7 shows the ob-
tained PMA(S). In this case, area(PM A(S)) = 29,
delay(PMA(S)) = 8, respectively.]

4.4 An Algorithm for the Problem
SCMS

We will show an algorithm for the problem SCMS,
called algorithm ASCMS. To solve the problem SCMS,
we must find the path S on MSG such that 377,
d((piypi+1)) < kand 37 w(p;) is maximum, where
S = peo(=Ds)s Ps1,Ps2,---,Psy(=pt). The following
shows the outline of algorithm ASCMS. In the algo-
rithm, step3 uses the procedure weight-constrained

longest path (WCL) on a directed acyclic graph. Pro-

—231 —

stage(

parts(]) emo

stage] 1

parts (2) =mo.

6tage? 2

stage3 parts (2} RO,

parts{S) =mno

stageé 1

stageS parts (6)..05

(051]
A

stageé 6

parts (7} "o,

stage? 7 pur‘ts(?)-mn3

Lad
~

stage8 8 parts(7) =mog

stages

Figure 7: A feasible PM A in Example 5.

cedure WCL determines a longest path from p, to
pti(€ P) under a given stage constraint. For each
pii € P, area(py;, j) denotes the path S’ such that
f:ol d((ps1, Per41)) = j and Elﬁzl w(pyn) is max-
imum, where §' = pyo(= Ps)y Pe1 Ps2s - Psrp (=
Pzi)‘
[Algorithm ASCMS)|
stepl: Construction of MED = (P,Q, w,d).
step2: Topological sort of P.
{Let pio = (ps), 1y Pezs - -+ » Pto Pratr (= pt) be
the result of topological sort.}
step3:
|Procedure WCL|
fori —0toa+1do
for j < 0tok do area(p,j) + 0;
fori 0 to a +1 do
for all j such that (p¢;, pri) € Q do
for h « 0 to k — d((p;, pui)) do
area(pi, h + d(pej, pii)) —
maz{area(py, h + d(pe;, i),
area(p;, h) + w(pa)) };

Time complexity of stepl and step2 are same as algo-
rithm ACMS. Time complexity of step3 is O(m?n?)

under the assumption that k is a constant.

|[Example 6] Consider M ED in Figure 4, the module
repertory in Iigure 5, A SG for MED in Figure 6,
and k = 7. The algorithm finds the path Pas (U1, f2],
{ts, /5], pe, and gets a feasible sharing § = {lts, 12).
[ts, £4]}. delay(PM A(S))=T satisfies the condition

stagel pnrts(l)-nol
stage2| 2|4 f parts (2) *so,

parta(3) --ol
parts(4) =ma,

stage3 |3 @ 4
stageé |5 E 6

stageS

parts (5) =Rog
parts (6] =m0 1

[N
HE!
~

parts (7} =ag,

~
l
~

parts(8) =m0y

I

stageé

stage? parts(9) “Rog

0

stage8| 10 o fo

Figure 8: A feasible PM A in Example 6.

delay (PMA(S)) < 7. Note that the feasible shar-

ing obtained in Example 5 does not satisfy the stage

constraint. Figure 8 shows the obtained PMA(S).
[w}

4.5 An Algorithm for the Problem
ACMS

We present an algorithm for the problem ACMS,
called algorithm AACMS. We can solve the problem

ACMS in the same manner of the problem SCMS.
The difference between them is that step3 uses the
procedure weight-constrained shortest path (WCS).
In WCS, stage(pti, j) denote the path S’ such that
YA wipen) = i and Ty d((per,per41)) is min-
imum, where S’ = pgo(= Ps) Perts- .- Perg(= Pti)-
The following shows the outline of the algorithm.

—_—

[Algorithm AACMS)
stepl: Construction of MED = (P,Q,w,d).
step2: Topological sort of P.
{Let peo(= ps): Pt1:Pr2s -« - » Ptas Prat1(= Pt} be
the result of topological sort.}
step$:
|Procedure WCS|
fori — 0 to a+1do
for j — O to k do stage(pu,j) < O;
fori — 0 to a +1do
for all j such that (p¢;, pii) € Q do
for h — O to area(PM A(¢)) do
stage(pi, h + w(pe)) —
min{stage(pu, h + w(pu)),
stage(pe;, h) + d(pej,)i

Time complexity of stepl and step2 are same as algo-
rithm ACMS. Time complexity of step3 is O(m?n?)
under assumption that k and PM A(¢) are constants.

|[Example 7] Consider MED in Figure 4, the mod-
ule repertory in Figure 5, MSG for MED in Fig-
ure 6, and k = 32. The algorithm finds the path
P, [tas Jil [tas f3), e, and gets a feasible sharing S
= {{t2, f1],[ts, f5]}. Figure 9 shows the obtained
PMA(S). area(PMA(S)) = 32 satisfies the con-
dition area(PM A(S)) < 32, and delay(PM A(S)) =

7 acheives the minimum delay. [m}

stagel olbe ll

stage2| 2|2’ f parts(2) =m0,

1
parts(3) =no
T S
stage3 {3 4 E parts (4) =sa,

staged 5 t‘, 3 parts(S)-no‘

parts (6) =moy
stageS |6 7 parts (7) =m0,
parts {8) =aog
stageé (8 parts(?)-no3

-

I

o
-

=]
-

stage?

Figure 9: A feasible PM A in Example 7.

5 Conclusions

In this paper we have discussed the conditional re-
source sharing problems in pipeline synthesis. We
formulated the subproblems, and presented new al-
gorithms to solve them. To solve subproblems, we
showed an essential property of module sharing, and
developed an important data structure, Module Shar-

ing Graph.

There are some topics of future research on con-
ditional pipeline synthesis, that are currently under
investigation. These are: (1) extension of algorithuns
so as to allow more than two conditional branches,
(2) development of an algorithm when a data flow
graph is not serial.

References

[1] K. S. Hwang et. al. : “Constrained conditional
resource sharing in pipeline synthesis,” Proc. of
ICCAD-88, pp.52-55 (1988).

[2] N. Park et. al. : “Sehwa : A software package for
synthesis of pipelines from behavioral specifications,”
IEEE Trans. CAD ,7, 3, pp.356-370 (1988).

—232 —

