FIAITYXL 1218
(1989. 11. 21)

Monotone Polygon Containment Problems Under Translation

Jui—Shang Chiu and Jia—~Shung Wang

Institute of Computer Science
National Tsing Hua University, Hsinchu, Taiwan 30043, R.O.C.

Abstract

We investigate the problem of determining whether a polygon I can be translated to

fit irside another polygon E without constructing the whole boundary of the feasible

region. In the case of rectilinearly 2—concave polygons, an O(mn log? mn) algorithm is
presented where m is the number of edges of / and n is the number of edges of E. Since
the feasible region may have O(m?n?) edges, this algorithm is more efficiently to solve the

problem. Also, an O{mn log m) algorithm is presented to solve the case of monotone

polygons.

1. Introduction

The polygon containment problem is the problem of
determining whether a polygon I can be translated to
fit inside another polygon £. This problem has been
studied by Chazclle [4], Fortune [6}, Baker et al [3],
Avnaim et ol [2], and Martin et al [7]. In the case that
both polygons I and F are rectilinearly convex, Baker
et al [3] derived an algorithm that runs in time O(mn
log m) where m is the number of edges of I and n is
the number of edges of E. And, in the case of
rectilincar polygons, Avnaim et al [2] proposed an
O(m?n?) algorithm which is worst—case optimal. Both
algorithms find the whole feasible region.

Unfortunately, it remains open whether we can
design a more efficient algorithm in gencral that
determines the relationship of containment without,
constructing the whole boundary of the Teasible region.
This paper presents a family of decision algorithms for
the problems that (1) both polygons are rectilinearly
convex, (2) both polygons are rectilincarly 2—concave,
and (3) both polygon arc monotone. These algorithms
will terminate on the first—ound feasible placement if
there exists one. Naturally, in most of cases, the
family of algorithms will run faster than the one that
finds the whole feasible region.

2. Terminology
Given two polygons E and I'in the plane, £ is fixed
and [is mobile. We try to translate 7 to determine

—123 —

whether I can fit inside L. If yes, report a feasible
placement (or the whole feasible region) of I A
placement of [is uniquely determined by a position of
a specific point of 1. This point is called the reference
point. A feasible placement is 2 placement of I such
that I is contained in E. A feasible region is the set of
all feasible placements of I It can be the union of a
finite number of polygons, line segments and points.

A polygon P is simple if it has no hole and its edges
are nonintersecting. P is rectilinear if it is simple and
its bounding edges arc cither horizontal or vertical. P
is horizontally (vertically) convex HC (VC) if it is
rectilincar and its intersection with any horizontal
(vertical) line is cither a single line segment or empty.
P is rectilinearly conver (or l—concave {10}) if it is
both HC and VC. Pis 2—concave if there exist one HC
and one VC such that the intersecion of these two
polygous is .

A chain C = (ul,...,u”) is a planar straight—line

graph with vertex set {ul,...,un} and edge set
{(ui,uH_l), i=1,...,n=1}. Cis said to be monotone with

respect to a straight line Lif any line orthogonal to {
intersects C'in at most one point. A simple polygon is
said to be monotone if its boundary can be decom-
posed into two chains monotone with respect to the
same straight line I A chain whose edges arce cither
horizontal or vertical is said to be X—monotone (Y-

monatone) if its intersection with any line orthogonal

to X—axis (Y—axis) is either a single line segment or
empty. It is appearance that a rectilinearly convex
polygon can be decomposed into two X—monotone (or
Y—monotone) chains.

3. The Rectilincarly Convex Case

Given two rectilincarly convex polygons I and E'in
the plane as shown in Fig. 1. Clearly, Iis contained in
E if all horizontal edges of I are inside of E. The set of
horizontal edges in the upper and lower X—monotone
chains of 7 (E) are denoted by % (‘ilE) and .2’1 (.z’E)

respectively. To determine the relationship of

containment for a placement of I, the comparisons can
be done between % and %y and between .z'l and "’VE

independently. That is, [is contained in E if %/ lies
below ¥ and % lies beyond £, However, each edge
in %; (_2’1) will hit a set of corresponding edges in % p
(.Z’E) if 1is sliding up (or down). We associate cach
edge e, € %, (.‘/1) a hit pair (e, ep), where ¢ is an
edge with lowest (highest) height selected from the hit
set of ¢ That is, ep, will be the first edge in the set
hit by e Note that only those edges in the hit pairs

will affect the relationship of containment. Thus, only
one comparison is nceded for cach hit pair to
determine that relationship.

4 .
2 Upper chain
— ,
' h €
' \ 3
h
. t 62 1
c\ H ' ' ‘»‘1
'
— " H
h E [« | I — !
; T . ' = {c’,c el
) ' Voo ¥y = {elen sy J
A a L e e
—— ! 4= {e e €0
e’ N ' [P L
. PuSne— .
.o —— ° ¥, = {en,e2,e3)
' I
Vo€l 1 6 .
o7 Lower chain .2’1 = {64.05‘06)
¢ |

Fig. 1. An example of rectilinearly convex polygons.

As I slides to right for a small distance, the hit
pairs are unaffected. However, as [slides to right for a
certain distance, one edge of I will change its corrcs-
ponding edge in the hit pair. For such a discrete
distance we called a sliding step. For cach sliding step,
exactly one hit pair will be changed. Note that a
change of hit pair represents that the height an edge

can move upward (or downward) before hitting its

corresponding edge is also changed. It is possible to
translate [vertically for such a height that % can lie

beyond .ZE and %, can lie below U Therefore, the

relationship of containment for the new placement
should be reconsidered.

Since each edge of / may hit O(n) edges of E totally
in the trip of I, there are at most O(mn) sliding steps
concerning with the hit pair changes. lence, there are
O(mn) critical placements in the worst case. A
straightforward approach to determine the relationship
of containment is to test all the critical placements.
This will cost O(m?n) time. However, it is possible to
associate two functions for a hit pair (e[, eE), one i8

about what height edge e; can move upward (or
downward) before touching edge e, and the other is
about what distance edge e; can slide to the right

before changing its hit pair. Note that for a feasible
placement of /, e should not be higher than ep if €€

2(1, and e should not be lower than en if ey € .z’l

Hence, these two functions can be used as guidances
for the movements of [in a given placement. The
height function can be used to determine a feasible
placement and the distance function can be used to
determine the distance for one sliding step.
The functions e, cE) and h(c], eE) for a hit pair
(el, cE) arc defined as follows:

epy — ey if e €%y,

ey ep) = ey —epy ile e %
epright.x — crright.x
Mep ep) = if ez € the right part of chain,

cErig}lt.x - el.left.x

otherwise;
where ep.y (epy) is the y—coordinate of g

(e)), epright.x (el.right.x) is the x—
coordinate of the right endpoint of e (cl),
and el,le[tAx is the x—coordinate of the left
endpoint of ¢

The value (e, cE) represents the maximum distance

such that e, can move upward or downward without
I I

—124 —

hitting its corresponding edge ep And, the value
h(e;, eE) gives the minimum distance to the right such

that ¢, will change its own hit pair. See Fig. 2.

[' eE
: ,—f;—x_\
L —_—
1 CI ! ht
\ A S
' U h : ___—_} '
' H 1 ' [l
P .
1 Hd | ' '
1
() (b)
: :
1)
L -
: ¢ ol
—‘:;‘—. e['r—”b'——_
He o L .
E A o
1}
I! - .
‘e
© [C)]

Fig. 2. The functions o(ep, eE) and h(e, eE) for the hit
pair (ep, ep)

We also define three guiding measures as below:
Vg = min{v(ep eE) | €€ ?lI},
v y=min{v(e, ep) | ;€ L},
h=min{h(e;, ep) | e € % or e € L.

The value vy, represents the maximum height I can
move upward such that 7[1 can lie below ?IE The
value —v_, represents the minimum height I must
move upward such that .i’l can lie beyond ’{E‘ And,

the value h represents the distance [can move to right
such that exactly one hit pair will be changed. It is not
hard to verily that there exists a feasible placement if
and only if Vg 2 7V 4 Hence, by vy, and v one

determines whether 7 can be translated vertically to fit
into E, and by h one determines the distance for such
a sliding step.

By organizing these information of hit pairs into
priority queues (1], we can adapt the plane—sweep
strategy elficiently. While I slides from the left to the
right step by step, we can determine the feasible
placement by computing the guiding measurcs. The
process will terminate as soon as the first feasible
placement is found and reported.

We now describe the algorithm as follows:

—125—

Step 1. Decompose both polygons I and E into two
X—monotone chains respectively;

Step 2. Let I slide step by step from where the
lower left corners of Ql and QE are

overlapped to where the lower right corners
of Q; and Q. are overlapped, where Q,

(Qp) is the smallest rectangle containing /

(E). And in each sliding step, we compute
the values v,, (or v_z) and h. Whenever

Vg > —v o2 feasible placement is reported
and the process is terminated successfully.

Here, we analyze the worst—case performance of the
above algorithm. We have showed that therc are
O(mn) sliding steps in the worst case. In each sliding
step, we need to update the distance h and the height
Vg, OF ¥ g We keep track of these values by using
three priority queues. So, to extract the minimum
values of vy, (or v_z) and h, and to update their valucs

need O(log m). Thus, the time needs to construct and
maintain the data structures in Step 2 takes O{mn
log m) time in the worst case. As for Step 1, the time
needed to decompose I and F each into two chains
respectively can be done in O(m+n) steps assuming all
of the edges in [and E are given in the clockwise
order. Therefore, the worst—case complexity of the
above algorithm is O(mn log m).

Though, in the worst case, the time complexity of
the above algorithm is the same as Baker el als [3].
However, the former is capable of finding the first
fcasible placement and then stop carly. In contrast to
this, the latter can not report the answer before the
whole feasible region has been found. Since the feasible
region may have O{mn) edges, our algorithm runs
faster for the most of cascs.

To find the whole feasible region, the additional
works are to slide every step and to report the feasible
region within each sliding step. The total time is still
O(mn log m).

If 7 and E are not rectilincarly convex, then the
algorithm may fail. Because the edges of concave part
become obstacles so that the polygons I and I can not
be decomposed into two X-—monotone chains respec-
tively. Ilowever, if both polygons £ and [are VC or
HC, our algorithm still succeed after a slight modifi-

cation on the distance function A(-,-).

4. The Rectilinearly 2—Concave Case

We now consider the case that both polygons I and
E are rectilinearly 2—concave. An efficient algorithm
to determine whether E contains [is presented. This
algorithm runs in time O(mn log? mn). Also, a similar
algorithm is presented to find the whole feasible
region. The time complexity becomes O(mn log mn +
k), where k is the number of edges of the whole feasible
region. In the worst case, k may proportion to
O(m?n?).

It is observed that a 2—concave polygon P can be
regarded as the result of intersection by one horizon-
tally convex polygon HCp and one vertically convex

polygon VCP See Fig. 3. Suppose we can transform [/
into HC] and VCI’ and Finto ”CE and VCE‘ It's not

hard to see that the feasible region of [inside £ is
exactly the intersection of feasible region IHC inside

IICE and VCI inside VCE Fig. 4 depicts a typical

example.

(@ (b)

Iig. 3.
(a) The rectilincarly 2—concave case,

(b) The horizontally convex casc.

(c) The vertically convex case.

(©)

To ,solve the containment problem of 2—concave
polygons, we first turn to solve the problem in both
the horizontally convex and vertically convex cases.
We have proposed an algorithm to solve these two

cases in Scction 3. The remaining problems are: (1)

how to transform a 2—concave polygon into one HC
and one VC, (2) how to find the whole feasible region,
‘and (3) how to determine the relationship of contain-
ment as soon as possible.

©
Fig. 4. The feasible regions.

Nicholl, et al. {8] proposed a linear time algorithm
to obtain a minimum area rectilinearly convex polygon
which contains the given rectilincar polygon. This
algorithin can be also used to transform a 2—concave
polygon P into one HCP and onc VCP in linear time.

As polygons I and E are transformed, the feasible
placements for the HC case and the VC case can be
found independently. Note that the feasible region in
cach case can be regarded as a union of feasible
rectangles. And there exists at most, ({mn) feasible
rectangles in both cases. Because we have known that
the whole feasible region of [inside £ can be
considered as the intersection of two feasible regions
obtain in the HC and VC cases respectively. Thus, to
find the feasible region becomes to compute the
intersection of two sets of feasible rectangles. This can
be done in time O(mn log mn + k) (9], where k is the
number of edges of the feasible region. Thercfore, the
total time for computing the whole feasible region
takes O(mn log mn + k).

However, il we simply want to determine whether £
contains /, naturally it is not nccessary to find the
whole feasible region for both the VC and HC cases.
We may slide 1/Cy and VC} to scarch for a feasible

—126 —

rectangle alternatively. And as a feasible rectangle for
HC (VC) case is found, we begin to examine whether
it intersects with any found feasible rectangles in the
VC (HC) case or not. The process is terminated as
soon as there exists an nonempty intersection being
found.

To take the advantage of answering rectangle
queries, we apply the dynamic data structures pro-
posed by Edelsbrunner [5]. Thus, the rectangle
insertion needs O(log? mn), and the query of rectangle
intersection takes O(log? mn + €) time where e is the
number of edges being intersected. Therefore, the total
time for finding a feasible placement needs Amn
log? mn) in the worst case.

The algorithm is described as follows:

Step 1. Transform polygons I and E into ”CI’

VCI’ IICE and VCE respectively.
Step 2. Slide VCI horizontally until there is a new

feasible rectangle found. Otherwise, report
that no feasible placement is possible and
terminate the process.

Step 3. Insert the new one into the set of found
feasible

rectangles va, and then

examine whether it intersects with the set
of found feasible rectangles Eye- U the

answer is yes, report it and terminate the
process.

Step 4. Slide IICI vertically until there is a new

feasible rectangle found. Otherwise, report
that no feasible placement is possible and
terminate the process. .

Step 5. Insert the new one into the set of found
feasible

rectangles oo and then

examine whether it intersects with the set
of found feasible rectangles Rye- 1 the

answer is true, report this solution and
terminate the process.

Step 6. Repeat step 2 to step 5 again.

In the 2—concave case, we showed that there indeed
exists a more cfficient algorithin that determines the
relationship of containment without constructing the
whole feasible region.

127 —

5. The Monotone Case

A monotone polygon can be decomposed into two
monotone chains. Consider the case as shown in Fig. 5.
To determine the relationship of containment, as the
rectilinearly convex case, we may associate each edge
of I a hit pair and then compare the edges within the
hit pairs. However, one comparison of height between
a hit pair is insufficient, since the height changes
continuously as I slides to the right.

E Upper chain

Lower chain
Fig. 5. An example of monotone polygons.

For a given hit pair (cl, CI'))’ when edge ¢ of 711
(,Z;) moves upward (downward) for height 1(el, cE), it
will hit edge ep of Up (.X’E) and generate a contact
point. We say that these two edges e;and e generate

a contact point if one of the following two situations
occurs: (1) either one endpoint of ¢ lies on en (edge

contact), or (2) onc endpoint of e lies on e; (vertez

contact). Sce Fig. 6.

Consider an edge contact induced by an endpoint v,
of ¢y and the edge ey as if ¢; has been translated
vertically. Imagine that ¢p starting from this contact,
slides rightward along € Uy will keep contact with e
until ¢; hits another edge ¢j> And then hit pair
(ep e;;) is changed to (ep ep). We define v, ep) to
be the vertical distance between endpoint v, and edge
e h(c[, eE) to be the horizontal distance such that
edge ¢ can slide along ¢, to the right until another
contact point is generated, and s(ej, ;) to be the
slope of such a sliding ol Cl that keeps contact with
) Note that we do not really slide 7 up and down,

but instead 7 is slid to the right step by step.

/ﬂ")
e

€ +w)
1

(a) cdge contact: casc 1

e, e
i

(d) vencx contact: case 1 (e) vertex contact: casc 2

Fig. 6. lllustration of five situations for the edge contact
and vertex contact.

Now, consider a vertex contact induced by the edge
€ and an endpoint v of e as if € has been moved

upward for the height v(eI, ¢p). lmagine that e,

starting from this contact, slides rightward passing
thru U € will keep contact with v until ¢ hits
another edge e at the distance h(el, cE) on the right
of epn .

Let a straight line containing cdge e be formulated
by an equation y = a(¢)-r + b(¢). The values of
s(ep eE), ey eE) and h(ep, ep) for the hit pair
(eI, eE) can be computed as follows:

(1) edge contact (vl, ep):

slepep) = alep);

a(cp)-epright.x + bep) — epright.y

e ep) = if a(e)) 2 a(ey),

a(ep,) - eplelt.x + bley) — eplefly

if a(cl) < a(ch.);

(epright.x — e right.x
if a(e)) 2 alep),

VpX — el.right.x

Mep eE) = if there exists an edge epon
the right of ep intersects e, while
eis sliding along ey

epright.x — eI.left.x

L otherwise.

(2) vertex contact (e, vp):

S(ep eE) = a(¢1)?

ey ep) = vpy —(alep)-vpx + bep)s

'va — epright.x

if there exists an edge ep,on the
e, ep) = right of e intersects ejon v
while e, is sliding thru v,

vpX = eI.lel'L.x

otherwise.

If [is moving to the right in such a way that there
always exist some edges in E keeping contact with
edge ¢, the locus of the reference point of / will form a

contact chain. Note that this contact chain preserves
the monotone property. It may consist of at most =
line scgments. Each cdge of [is associated with a
contact chain. We denote the set of upper contact
chains by 6)2(and the set of lower contact chains by

% . Sce Fig. 7.

Fig. 7. The upper contact chains (dotted lines) and the
lower contact chains (broken lines).

The upper (lower) contact chain of ¢; gives some
information about the feasible placement of 1. That is,

the reference point p, of I should be located below

(beyond) the upper (lower) contact chain of ¢ In

—128 —

general, for a feasible placement of I, the reference
point p, must lie below all of the upper contact chains

and beyond all of the lower contact chains. Let C% be

the intersection of all the lower regions bounded by
s’u, and C_g be the intersection of all the upper

regions bounded by & o Clearly, there exists a

feasible placement if and only if the intersection of Coy

and C I8 not empty.

Note that the number of intersections between the
upper (lower) contact chains may proportion to
O(m?n) in the worst case. However, the boundaries of
Cy and C ,may consist of at most O(mn) edges. In

order to compute C% and Cjefﬁciently, the inter-
sections of chains between €, (6’_2) that do not
contribute to Cp, (C) should be discarded.

Fortunately, this subproblem can be solved effi-
ciently using the divide—and—conguer strategy.
Consider Fig. 8. There are four chains, Cj, G5, C3 and
Cy in ifi[To compute C%, we first divide 6’% into

two sets {Ci, (o} and {Cj3, C4}, then compute the
intersection Ci-o of C; and , and the intersection
C3-4 of C3 and Cy individually. The boundary for the
intersection region still form a monotone chain with
possible doubled number of edges. Finally, we comnpute
the intersection region of Ci-» and Cz-4, that is C?Z .

Sce Fig. 9. It is not hard to sce that, in general,
the number of edges manipulated by this divide—and-
conquer process is O(mn log m).

Fig. 8. The number of intersections between gg[

is an magnitude of order over the number

of edges of sz

—129 —

G
(&)
Ci2
(a)
(@]
(e
Cs
(b)
Cra®, . ~ s

Fig. 9. A divide—and—conquer approach to compute Cy

According to the above discussions, we adopt a data
structure, binary merge tree, to help the process. In
the leaves of this tree, we store all the upper (lower)
contact chains. Two chains are then merged into a new
chain as their parent node. The merging process is
performed from bottom to top. Thus Cy, (C_Z) can be

obtained in the root of tree. Sece Fig. 10.

Fig. 10. A binary merge tree for the upper contact,

chains.

To solve the monotone polygon containment
problem efficiently, we also use the planesweep
approach. The edges of upper (lower) contact chains
are generated serially. Initially each chain may contain
al most one cdge. As I'is sliding to the right, the next
cdge of the contact chains is generated step by step.
Since only one new edge in a upper (or lower) contact

chain is gencrated in a sliding step, only a path in the

binary merge trce should be updated. This path is
specified by the new updating chain to the root. After
a new edge of C,, (C.z) is gencerated, the intersection

between Cy, and C , within the sliding step can be

computed. The process is terminated as soon as there
exists an nonempty intersection being found.

Here, we analyze the worst—case performance of the
above algorithm. There are O(mn) sliding steps. In
each sliding step, we need to compute the distance
h(-,-), height o(-,-) and slope s(-,-) for some hit pair
and generate a new edge of some contact chain. Then
a path of the tree from this chain to the root should be
updated to generate an edge of Cy 0t C 4. Since there

are totally m lcaves in two trees and both are
balanced, the updates along the path cost at most
O(log m) time. Therefore, the worst—case complexity
is O(mn log m).

Similarly, to find the whole feasible region, the
additional work is to report the intersection region

found between Cygy aud C ,in every step. The total

time is still O(mn log m).

6. Discussions

If a rectilinear polygon I can fit inside a recti-
lincarly convex polygon F, there must exists a
rectilinearly convex polygon [which contains I and is
contained in K. Since [can be computed in lincar
time 8], so we can deal exclusively with rectilinearly
convex polygons. FFor a similar reason, if [is recti-
lincar and £ is rectilinearly 2—concave, [can be
considered as a rectilincarly 2—c0n’<:a,vc polygon.
Furthermore, if [is simple and £ is mdilotone, I can
be considered as monotone. Morcover, if some edges of
I (E) are circular arcs and preserve the monotone
property, the algorithm for the monotone case may
still work. However, some modifications are neceded
such as to compute the distance and to compute the
intersection between arcs and line segments.

We have presented a family of algorithms for the
restricted cases in which both polygons are recti-
lincarly convex, 2-—<concave and monotone. The
complexity of these algorithms depend not only on the
number of edges of polygons but also on the size and

shape. And in these restricted cases we showed that it

Is possible to develop a more efficient algorithm that
determines the relationship of containment without
constructing the whole feasible region. Ilowever, in the
cases that both polygons are k—concave where k£ > 2,
the problem remains open.

REFERENCES
1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman,
The Design and Analysis of Compuler

Algorithms, Addison—Wesley, Reading, Mass.,
1975.

(2] F. Avnaim and J. D. Boissonnat, "Simul-
tancous Containment of Several Polygons," 8rd
ACM Symposium on Computational Geometry,
pp. 242—250, 1987.

(3] B. S. Baker, and S. J. Fortune, and S. R.
Mahancy, "Polygon Containment under
Translation", Journal of Algorithms, Vol. 17,
pp. 532—-548, 1986.

4] B
Problem," Advances in Computing Research,
Vol. 1, pp. 1-33, JAI Press, 1983.

(5] . Edeclsbrunner, Dynamic Data Structures for

Chazelle, "The TPolygon Containment

Orthogonal Intersection Queries, Rep. F59.
Tech. Univ. Graz, Institute fiir Informations-
verarbeitung, 1980.

[6] S. J. Fortune, "A Fast Algorithm for Polygon
Containment by Translation," Automela,
Language, and Programming, 12th Colliquium,
in Lecture Notes in Coinputer Science 194,
Springer—Verlag, New York, pp. 180-198, 1985.

(7] R. R. Martin and P. C. Stephenson, "Putting
Objects into Boxes", Compuler Aided Design,
Vol. 20, pp. 506514, 1938.

(8] T. M. Nicholl, D. T. Lee, Y. Z. Liao and C. K.
Wong, "Constructing the X—Y Convex Hull of
a Sci of X=Y Polygons,", BIT, Vol. 23, pp.
456-471, 1983.

9] P. Widmayer and D. Wood, "A Time— and
Space—Optimal Algorithm for Boolcan Mask
Opcrations for

Orthogonal Polygons,"

Computer Vision, Graphics and Image
Processing, Vol. 41, pp. 1427, 1988.

[10] D. Wood and C. K. Yap, "The Orthogonal
Convex Skull Problem," Discrete Compu-

tational Geomelry, Vol. 3, pp. 319-365, 1988.

—130 —

