TIVITYZL 122
(1989, 11. 20)

Complexity Issues in Drawing Directed Graphs

Pcter Eades
Geometric Algorithms Laboratory
Department of Computer Science, University of Queensland
St. Lucia Quecnsland Australia 4067

Abstract

We review a well established methodology for drawing directed graphs nicely, that is, so that
they are casy to understand and remember. The methodology inspires several interesting ques-
tions about the algorithmic tools required. This paper poses some of these questions, and com-

ments on progress toward answers.

1. Introduction

Many recent development tools for
softwarc engincering and programming involve
the representation of entitics and their relation-
ships as dirccted graphs. The availability of incx-
pensive but powerful graphics workstations has
lead to systems which allow the user to visually
display and manipulaic these directed graphs.
The usefulness of this visualisation depends on
the layout of the graph: a "nice” drawing can be a
great aid to a software designer, but a poor draw-
ing can be confusing or mislcading. Thus there
has been considerable interest in aesthetic layout
algorithms, that is, algorithms for drawing
dirccted graphs so that they are casy o understand
and remember. An annotated bibliography of
thesc algorithms is available [6].

The current interest has mainly been from
practitioners who are more concerned with the
architecture of the visualisation process than the
complexity of the algorithms. In this papcr we
outline some of the complexity issucs which arisc
in aesthetic layout of dirccted graphs.

A general method for drawing directed
graphs according to the four acsthctic criteria
listed below has been developed by a number of
authors (for example, [14], [16], [19]) and has
been integrated into several graph drawing sys-
tems.

C1: All arcs should follow the same general
direction.

Cy: Vertices should be distributed evenly over
the page.

Cs: There should be as few arc crossings as
possible.

Ca: Arcs should be as straight as possible.

The general method is a “successive
refinement” technique: a drawing is refined
according to each criterion in tum, from C; to Ca.
There are four steps S;, So, S3, S4, where S;
attempts to fix those aspects of the drawing which
relate to criterion C;, while lcaving other aspects
of the layout free.

Each of these stcps attempts to optimise
some quantifications of the associated criterion.
By stating these quantifications in precise terms,
we can show that for cach criterion there is at
least onc optimisation problem which is NP-hard.
We examine the complexity of some of the optim-
isation problems arising from the four steps.

Fast algorithms are essential for interactive
graphics; this fact, together with the NP-hardness
results mentioned above, justifies heuristic imple-
mentations of Steps §; to S4. Many such algo-
rithms arc available, but they are mosty proposed
by practitioners who are not concerned with
rigorous analysis. In this paper we roview

mathematical results such as “performance
guarantees” for the performance of these heuris-
tics, and indicate areas where analysis is yct to be
done.

As an aside, we introduce a new heuristic
algorithm for Stcp §3. Basically, by solving a
system of lincar equations we can cnsurc that the
x coordinate of cach vertex is at a weighted aver-
age of the x coordinates of its ncighbors. We can
show that the drawing so obtaincd has several
desirable propertics besides avoiding crossings:
for instance, it displays somc symictry.

In the last section some brief remarks are
made about drawing planar digraphs.

2. The Four Steps

2.1. Step S;: Remove Cycles

An acyclic digraph can be drawn so that all
arcs are monotonic in the same dircction (say
downward). For a digraph with cycles, we nced to
reverse some arcs so that it becomes acyclic.

A sctR of arcs inadigraph G =(V,A) isa
feedback arc set if the reversal of every arc inR
makes G acyclic. In Step Sy, we choose a feed-
back arc set R, and form the acyclic digraph G'
from G by reversing the arcs of R. Steps Sz, §3,
and S can then be applied to obtain a drawing of

G' with all arcs pointing downward. If we then ‘

reversc the arcs of R again, we get a drawing in
which all arcs except those of R arc pointing
downward. Of coursc wc want IRl to be as
small as possiblc.

We denote the smallest size of a feedback
arc setof G by r(G).

Unfortunately, the problem of computing
r(G) is NP-complete ([81), even for graphs which
are quite sparse. (For instance, it is NP-complecte
for orientations of graphs of maximum degree 3.)
This justifies heuristics.

We would like a heuristic with a proven
performance bound K; that is, we would likc to
answer the following problem.

Problem 1: Feedback Arc Set Approximation
INSTANCE: A digraph G .

OUTPUT: A feedback arc set R of G with
IR <£Kr(G).

We would like to know whether Problem 1
is NP-hard.

Some results are presented in [4]. How-
ever, the results of [4] concentrate on "tourna-
ments” (orientations of complete graphs). In
practice, tournaments are seldom drawn; most
digraphs required in diagrams are reasonably
sparse. It would be particularly interesting to
determine the complexity of Problem 1 on sparse
digraphs (for example, where 1A 1 <¢ V1 for
some constant ¢).

2.2. Step S,: Layering

A layering of a digraph G =(V,A) is a
partition of V' into subsets Ly, Ly, ---,L,, such
that if u—veA where uel; and vel; then
i > j. A digraph with a layering is a layered net-
work. The height of the network is the number h

of layers; the widthis w = 1 29 1 Lm |-

Such networks are conventionally drawn so
that all vertices in layer L,, lie on the horizontal
line y = m, as in Figure 1.

Ly O Q

Figure 1: a layered network

Note that a layered network must be acy-
clic, and the drawing convention ensures that all
arcs point downward.

The span of an arc u—v with uel; and
velL; is i —j. The network is proper if no arc
has a span greater than one.

Step S5 constructs a proper laycred network
from an acyclic digraph while attempting to kcep
the vertices sprcad cvenly over the page.

If we assume that each vertex is approxi-
mately the same size, and requires a minimal
separation distance to the next vertex in both hor-
izontal and vertical directions, then we can mcas-
ure the width of the drawing as the width of the
layering, and the height of the drawing as the
height of the layering. Thus to achieve criterion
C, we nced a layering of given width w and
height A, where w and A measure the dimensions
of the page to be uscd. Thus we are interested in
the following problem.

Problem 2: Minimum Size Layer Assignment
INSTANCE: An acyclic digraph G, intcgers W
and H .

OUTPUT: A layering of G with width at most W
and height at most /1.

Unfortunatcly, Problem 2 is NP-hard, for
the following rcason. Supposc that cach vertex of
an acyclic digraph G rcpresents a task to be per-
formed on one of the processors of a multiproces-
sor. Onc unit of time is required for cach task.
The arcs of G represent precedence constraints
between the tasks. The multiprocessor schedul-
ing problem is 1o assign the tasks 1o a sct of w
processors so that all tasks are completed in time
h. This can be done if and only if a layering of
width w and height 4 can be found. Thus the
multiprocessor scheduling problem is esscntially
the same as the layer assignment problem.

The layered network must be made proper,
because Step S3 below assumes that there are no
arcs with span greater than onc. (because it is
difficult to handle crossings between long arcs).
Thus we replacc cach such arc u —v with a path
u=vo—vy— - —=v;;=v, adding the
dummy vertices vy, vy, -+, V. In Figure 2,
dummy vertices have been added to the newwork
of Figure 1.

+~——0

A
éﬁé

Figure 2: dummy vertices

ia
O

Dummy vertices cause problems for three
rcasons. Firstly, the time used by step § 3 depends
on the total number of vertices, dummy plus real.
More vertices means more time, thus it is desir-
able to reduce the number of dummy vertices.
Secondly, bends in the arcs in the final drawing
occur only at dummy vertices. Although some
straightening can be achieved by other means,
again it is desirable to alleviate the problem by
reducing the number of dummy vertices. Finally,
short arcs are €asier to follow than long arcs.

The number of dummy vertices for a layer-
ing Ly,Loy,...,Ly is 3 (i—j), where the sum is
over all arcs u—v with uelL; and veL;. This

quantity is called the total length of the layering.

One can usc total length as the the optimi-
sation goal for the layering. If so, then we are
interested in the following problem:

Problem 3: Dummy Vertex Minimisation
INSTANCE: An acyclic digraph G .

OUTPUT: A laycring of G with minimal total
length.

Surprisingly, Problem 3 can be solved
cfficiently by linear programming techniques (see
{10]). It would be interesting to know how close
a solution to Problem 3 is to a solution to Problem

2; that is, whether the lincar programming tech-
nique can be used as a heuristic for Problem 2.

2.3. Step S3: Reduce Crossings

The number of arc crossings in a drawing
of a proper layercd network docs not depend on
the precise position of vertices but only on the
ordering of the vertices within cach layer. Thus
the problem of reducing arc crossings is the com-
binatorial one of choosing an appropriatc ordering
for cach layer, not the geometric one of choosing
an x-coordinate for ecach vertex. Although this
combinatorialisation considerably simplifics the
problem, it is stll difficult: the proof method of
[9] implies that the problem of minimising arc
crossings in a layered network is NP-hard, even if
there are only two laycrs.

A kind of "laycr-by-layer sweep” heuristic
can be applicd as follows. First, an ordering of
layer L, is chosen. Then for i=23,...,h, the ord-
cring of layer L; is held fixed while re-ordering
layer L;4; to reducce crossings between layer Ly
and layer L;.

There arc several variations of this basic
method (see [17], for cxample), but each variation
presupposcs a solution to the a problem of the fol-
lowing form: given a fixed ordering of layer L;,
choose an ordering of layer L;,; to minimisc the
number of arc crossings. Sec Figure 3.

The minimum number of crossings for a 2-laycred
network G with a fixed order for the lower layer
is denoted by opt (G). Thus we want to solve the
following problem:

Problem 4: Two-Layered Crossing Minimisa-
tion

INSTANCE: A layered nctwork G with two layers
Lo, L+, and an ordering of L.

OUTPUT: An ordering of L which gives opt (G)
crossings.

Unfortunately, this Problem 4 is NP-hard
[8].

Some cffcctive heuristics are available for
Problem 4. Two of these, called the "barycenter”
and "median"” heuristics, are bascd on the intuition
that to avoid crossings, each vertcx should bc
"close" to the vertices to which it is attached.

O
O
Do

-Q,
0
Ne

6

o e & @
3 4

Figure 3: fixed and free layers

In the barycenter heuristic [19], for each
vertex v we compute the average of the x coordi-
nates the vertices which are adjacent to v. We
denote the number of crossings given by this
algorithm on a graph G by bar (G).

In the median heuristic [8], we compute the
x coordinate of vertex v as the median of the x
coordinates the vertices which are adjacent to v.
Both are cfficient (linear time and space) and very
simple. The number of crossings given by the
median heuristic is denoted by med (G).

Extensive tests ([11], [13]) suggest that
both methods are effcctive, at least for the res-
tricted problem. The following Theorems (from
[8])) give some analytic support to the experience.
med(G) _ 3

Theorem 1: opt Gy =

Theorem 2: —z—%:—((g—)) isO(Wn).

It can be shown (see [8]) that both med (G)
and bar (G') become arbitrarily close 0 opt (G) as
the density of G increases, that is, as

IE11VI2

It is not clcar whether assurances such as
the Theorems above can be given for the more
general problem with more than two layers. We
would like to know the complexity of the follow-
ing problem.

Problem 5: Crossing Minimisation Approxi-
mation

INSTANCE: A proper layered network G with
layers Lo, Ly, <+, L.

OUTPUT: An ordering of cach layer such that the
number r of crossings satisfics r <K ®, where ®
is the minimum number of crossings and K is a
constant.

Even a partial solution to this problem
would be interesting. For instance:

- with the input restricted in various ways (for
example, to sparse graphs), or

- with K a small function of the size of G, (for
example, K = O (loglV I)).

A possible candidate for such an algorithm is

described in Section 3 below.

2.4. Step S4: Straighten Arcs

Bends in arcs occur at the dummy vertices
introduced at step S,. It is desirable to reduce the
angle of such bends by choosing an x -coordinate
for each vertex, without disturbing the ordcring
created at step S§;. Sugiyama [16] has gone
further, in attempting to make arcs as close to
vertical lines as possible, subject to the ordering
constraints. It is possible 1o state this problem as
an optimisation problem:

minimise 3 (x (u)-x (v))?,
U-=v
subject to lincar constraints which preserve the
ordering and a minimal horizontal distance
between vertices. Unfortunately, it is not clear
how this quadratic programming problcm can be
solved efficiently.

A heuristic approach, based on a "laycr-by-
layer sweep" paradigm, is presented in [16] and

refined in [10].

3. A New Method for Step S5
W. T. Tutte proposed the following method

for drawing triconnccted planar graphs. First

choose an outer face F, and draw F as a regular
polygon. For every vertex v not on F, place v at
the barycenter (average) of its graph-theoretic
ncighbours.

A variation of this method can be used to

draw a proper layercd network G with layers
Ly,L,, -+, L, asfollows.

Algorithm Tutte

(1) Choosc two vertices uy,v; from L, and two
verlices uy vy, from Ly .

(2) Fix the x-coordinates of the vertices in
layers Ly and Ly,.

(3) For cvery other vertex u with indegree
d~(u) and outdegree d*(u), assign x-
coordinate x (1) to u, where

[ZX(V)] [Zx(W)]

Ue—v u—-w

x(u)= +

®) 2d™(u) 2d*(u)

A connectivity precondition is needed for this
algorithm to work; the following conditions are
sufficient:

- all sinks (vertices of indegree 0) are in layer
L, , and all sources (vertices of outdegree 0)
are in layer L, and

- the graph formed by connecting all sinks to
a single new sink and all sources to a single
new source is triconnected.

The cquations at step 3 are linear and, in
practice, quite sparse; they can be solved by a
number of numerical techniques.

There are scveral several interesting proper-
ties of the layout computed by this algorithm. For
instance, it can be shown that the algorithm can
display some automorphisms of the graph as sym-
metrics of the drawing.

In a sense, Algorithm Tutte is similar to the
layer by layer sweep described above when the
barycenter heuristic is used at each layer. It
would be interesting to know whether any
thcorem of the form of Theorem 2 could be
obtained for Algorithm Tutte.

4. Drawing Planar Digraphs

Finally, we make some remarks on drawing
planar digraphs. The approach to this problem is
quite different from the more gencral problem.

Firstly note that the feedback arc set prob-
lem has a polynomial time solution for planar
graphs. Thus Step S, above can be achieved and
we can restrict out attention to planar acyclic
digraphs.

A digraph G is downward planar if it is
possible to draw G so that all arcs point down-
ward and no arcs cross. Not every planar acyclic
digraph is downward planar: scc Figurc 4.

T
e
S

Figure 4: planar acyclic digraph
which is not downward planar

There is a recent blossoming of litcrature on
the thcory of downward planar digraphs. For
example, such graphs can be drawn with straight
line arcs in time O(nlogn): scc [3]. Unfor-
wnately the complexily of following problem is
yet to be determinced:

Problem 6: Downward Planarity Test
INSTANCE: An acyclic planar digraph G .
QUESTION: 1s G downward planar?

Note: this problem is often called the upward
planarity test problem.

It is easy to see that for any digraph there is
a set of arcs whose reversal makes G downward
planar. The complexity of following generalisa-
tion of the Problem 6 has not been determined:

Problem 7: Downward Planar Feedback Arc
Set

INSTANCE: A planar digraph G.

OUTPUT: Find a minimum cardinality set R of
arcs of G whose reversal makes G downward
planar.

References

[11 C. Batini, G. Di Battista and R. Tamassia,
"Automatic Graph Drawing and Readability of
Diagrams", IEEE Trans. on Systems, Man and
Cybernetics SMC-18 (1) (1988), 61-79.

[2] J. A. Bondy and U. S. R. Murty, Graph
Theory with Applications, Macmillan 1976.

{3] G. Di Battista and R. Tamassia, "Algorithms
for Plane Representations of Acyclic Digraphs”,
Theoretical Computer Science 61 (1988), 175-
198.

[4] P. Eades, X. Lin and W. Smyth, "Heuristics
for the Feedback Arc Set Problem”, Technical
Report, Department of Computer Science, Curtin
University of Technology, Perth, Australia.

[S] P. Eades, B. D. McKay and N. C. Wormald,
"On and Edge Crossing Problem", Proceedings of
the 9th Australian Computer Science Conference,
Australian National University 1986, 327-334.

(6] P. Eades and R. Tamassia, "Algorithms for
Drawing Graphs: an Annotated Bibliography",
Tech. Report CS-89-09, Department of Computer
Science, Brown University.

{7] P. Eades and N. C. Wormald, "Edge Crossings
in Drawings of Bipartite Graphs", Technical
Report 108, Department of Computer Science,
University of Queensland 1989.

{8] M. R. Garey and D. S. Johnson, Computers
and Intractability - A Guide 10 the Theory of NP-
Completeness, Freeman 1979.

[9] M. R. Garcy and D. S. Johnson, "Crossing
Number is NP-Complete”, SIAM J. of Algebraic
and Discrete Methods 4 (3) (1983), 312-316.

[10] E. R. Gasner, S. C. North, K. P. Vo, "DAG -
A Program that Draws Direct Graphs",
manuscript.

[11] D. Kelly, A View to Graph Layout Problems,
Masters Thesis, University of Queensland 1987,

[12}] C. L. Lucchesi and D. H. Younger, "A
Minimax Relation for Directed Graphs", Journal
of the London Mathematical Society (2) 17
(1978), 369-374.

(13] E. Makinen, "Experiments in Drawing 2-
Level Hierarchical Graphs”, Report A-1988-1,
Department of Computer Science, University of
Tampere.

(14] L. A. Rowe, M. Davis, E. Messinger, C.
Meyer, C. Spirakis, and A. Tuan, "A Browser for
Directed Graphs", Software Practise and Experi-
ence 17 (1) (1987), 61-76.

{151 K. Sugiyama, "A Readability Requirement in
Drawing Digraphs: Level Assignment and Edge
Removal for Reducing the Total Length of
Lines", Research Report 45, (1984) International
Institute for Advanced Study of Social informa-
tion Science, Fujitsu Ltd.

{16] K. Sugiyama, "A Cognitive Approach for
Graph Drawing", Cybernetics and Systems, 18
(1987) 447-488.

[17] H. Trickey, "DRAG: A Graph Drawing Sys-
tem", Proceedings of the Int. Conference on Elec-
tronic Publishing, Document Manipulation, and
Typography, Nice (1988), 171-182.

(18] W. Tutte, "How to Draw a Graph", Proceed-
ings of the London Mathematical Society, 3 (13)
(1963), 743-768.

(19] J. Warficld, "Crossing Theory and Hicrarchy
Mapping", IEEE Trans. on Systems, Man and
Cybernetics, SMC-7 (7) (1977), 502-523.

