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On the Polynomiality of the Time Complexity
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This paper proves that the multiplicative penalty function method for linear pro-
gramming may run in polynomial time. It is shown that the multiplicative penalty
function is reduced by a factor of 1 — m per iteration by directly applying the
Newton method, where m is the number of constraints of a given linear programming
problem in inequality form. This reduction may be attained without performing any

exact line search.



1. Introduction

The Interior method is now recognized as a powerful method to solve a large-scale linear
programming problem. The multiplicative penalty function method (Iri, Imai [1]) is an inte-
rior method which minimizes the convex multiplicative penalty function defined for a given
linear programming problem by the Newton method. In [1], the local quadratic convergence
of the method was shown, while the global convergence property was left open. Recently,
Zhang and Shi [2] proved the global linear convergence of the method under an assumption
that the line search can be performed rigorously. However, it is not shown that the exact line
search can be executed in polynomial time, and so this result does not imply the polynomi-
ality of the multiplicative penalty function method. Also, the reduction factor they showed
was comparatively large. , o

This paper proves that the multiplicative penalty function method for linear program-
ming may run in polynomial time. We make use of a key proposition given in Iri and Imai
(1] about the global convergehce of the method, and partly employ some result in Zhang and
Shi [2] to bound the quadratic term in Taylor expansion of the function. It is shown that
the multiplicative penalty function is reduced by a factor of 1 — m per iteration by
directly applying the Newton method, where m is the number of constraints all in inequality
form. This reduction may be attained without performing any exact line search, and its rate
is much better than the rate in [2]. This implies that the multiplicative penalty function
method solves the linear programming problem in O(m*L) iterations, where L is the size of
the input problem, and the most time—consur.ning part of each iteration is to solve a system

of O(m) linear equations.

2. Preliminaries

We consider the following linear programming problem:

‘min ¢lz
st Aa:>b ‘

where ¢,z € R*, b€ R™ and AcR™ ", In the sequel we assume the following:
1) The feasible region X = {z | Az > b} is bounded.
2) The interior Int X of the feasible region X is not empty.
3) The minimum value of cTz is zero. ‘
Con31der the multlphcatlve penalty functlon for thlS lmear programmmg problem;
F(x)-—(c :c)m+1/H(a :z:_b) ‘(’wGIntrX)
L. =1 G e
where a; € R" is the i-th row vector of A. This functlon is introduced in [1]. .
Define § = n(z) and H = H(z) for z € Int X by

(o) = Sprask = (m o+ 1) = 3

a:—b



and

V2F(z)
F(z) -

The multiplicative penalty function method directly minimizes the penalty function F(z)

H(z) =

by the Newton method, starting from some initial interior point. This paper estimates
the reduction in the penalty function per iteration by this method. Roughly, we show the

following:
ollowing Fat) 1
F(zv). — L= 16m(m + 2)2

where z(*) and £(**1) are the v-th and (v + 1)-st solution by the method.

3. Main Propositions

Claim 3.1.
1 41 ) :
F(z +t€) = F(z) + €TV F(z) + 2 /0 /0 OV F(z + thu€)érdrdg. O

Claim 3.2. If F(z + tApf) < F(z) for 0 < A\, p <1,

F(z + t€)
F(z)

T Lot
<1+t r,+t2/0 A T H(z + thub)ErdAdp. O
Lemma 3.1. For ¢ and ‘K \satisfying
1o,T 2 2 1
el < <
,2t ¢ H(=) < K7, K= 16m(m +2)’
e+ thuf €lnt X for 0 <\, u < 1 and ‘
1,1 T _. L
2 /0 /0 ETH(z + tub)ErdAdy < dm(m + 2)2 K2 O

Let € = &(z) be the Newton direction of F(z) at =:

H(@)E = ~n(z)
Lemma 3.2. (Iri, Imai [1]) For ¢ and K satisfying
1 5T, ~ 1
~t’¢ H(z)é = K* K< —n
gt ¢ Hla)b =K, = T6m(m +2)’
we have r
€ n<—-K. 0O
Theorem 3.1. For t and K satisfying
242 K2 @ K?<_ -
e A=K K< g oy



:c—!—tEEIntX,a,nd B
F(z +t) <

K 2 2 '2.
(o) 1— K +4m(m+2) le

Corollary 3.1. Setting K to 1/(8m(m + 2)?), and then determining ¢ by
30 H@)E = K,

z+tf €Int X, and

F(z + tf) 1
Fo) = Temmt2E -

4. Proofs
Proof of Claim 3.1: Omitted. 0O
Proof of Claim 3.2: Omitted. 0O

To prove Lemmas, we provide several additional claims, including some of the results in
Zhang and Shi [2].
Define L(z) by

*ay 7 alz — by

(m+1)c a; anm
clz alz — b’

@)= |

Lemma 4.1. (Zhang and Shi [2]) For any £,

1

msTL(z)L(x)Tf < T H(@)E < (m+2)€L(z)L(2)"¢. O

In fact, it is shown in Zhang and Shi [2] that

1 _}_m+2 \/m +4m
2m

2m(m + 2)

¢TL(z)L(z)T¢ < fTL(x)L(m)Te < ¢TH(z)¢

and
m2+4+3m+1

m-+1
Lemma 4.2. For t and K satisfying

ETH(z)E < T L(z)L(2) "¢ < (m + 2)€T L(2) L(=z) "¢

1 2¢T 2 2 1
= < P
gt H@E <K KU < oy
we have ‘
26T L(z)L(z) ¢ < 4m(m + 2)K?
and hence

22(C & l o[ _af¢ <1
(m+1)%t ( z) and ¢ (a;-rx—b 4foreach1,. O



Proof: From Lemma 4.1,

1

T T ]
)t LEL@TE S EH(EE < K.

Since

26T L(z) L(z)TE = (m + 1)%#2 (‘F—é)? + 2 ( Tf )2 <4m(m+2)K? < !
cfz alz — - -4’

the latter half follows. 0O

Claim 4.1. For s,t with ¢t > 0 and |s/t| < 1/2,

11 g2)
A, < 2‘
/0 /0 o S)w)zd)\dp < (s/t)
Proof:

11 g2) s s
b b aremptie = =+ )

For z = s/t, 2% — z + In(1 + z) attains the minimum value 0 at = = 0 for |z| < 1/2. The

lemma follows. 0O

Proof of Lemma 3.1: From Lemma 4.2, we have

Ly p (_&)2 _ <(a§f(w+t£) — b)) — (a;rx—bi))z
47 afz—b) alz —b;
Cﬁw+m—a)lf
alz — b
Hence, )
0< = <(a (z+t6) —b;) _'?:

2~ aTm—b

o

and so af (z + t€) > b; for each 4. This implies that z + ¢£ is in the interior of the feasible
region X.
Using Lemma 4.1,

2 /0 ' /0 e H(z + Ape)Erdrdy

< (m+2)2 /0 ' /0 ' ETL(z + tAp€)L(z + tAué) TEAdAdp

el 2 m al 2
= (m+ 2)/01 /01 (<(m + 1)2ZTTvt+fT€)) + ; («;;F(x ':t:\ftf) — bi) ) AdAdy

‘From Lemma 4.2,

T£ 1

!
< andt
S3my1 2™

T
;,I:-f—f——b—l -;— for each 1,



and we can apply Claim 2.1, and then have the following.

2 /0 ' /0 e H (3 + I ue)Erddu

9 tele 2 om tal ¢ ?
<(m+2) (((m+1) _——CT(it-l-t)\,u{)) +121 (a IR ) )
= (m + 2)at’¢" L(z)L(z)T¢. '

Applying Lemma 4.2 to this, we obtain the lemma. O
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