7T Y X A 18—5
(1990. 11. 22)

MIGF2RBEEMO 1 KA~ F v /&

43
SRS B R

VISIov4 79 bR ERBLT, 2o sREEOBO <y Fr SERD
ZHEESBRONL, VISIVA T Y P icB3 3V~ AREBT. BT 2EELCRES
NTVBEY2—NEEOBOBBEELRR /NPT S I 2@t ES(LT 2 &, rko 1 &5t
DML = » F /7F'1ﬁh.faz>o

n
min E |2; — a;]
i=1
st. 21 <2z3<--<z,

CCT g (i=1,...,n) BEAShIEHRT. 2; (i=1,...,n) REKTH 5, C ORER
BHREGREHERETS 2, CoMBicxd LT, Bic OR?) oFBo 71T Y TANE X
GNTVB2e ABTR., F—WBEELTE—TEHV, $LTLVTYXLD—-HEL X
B3lLiIcED, COMRBEY O(nlogn) OFHTHRIT S E%ERT,

One-Dimensional Geometric Fittihg Problem of Two Corresponding Sets of Points

Hiroshi Imai

Department of Information Science, Faculty of Science
- University of Tokyo, Bunkyo-ku, Tokyo 113, Japan -

This paper gives an O(n logn)-time algorithm for the following problem:

’ n
min le;—-—ail
i=1
st. 2y <2< <2,

- where a; (i = 1,...,n) are given constants and z; (i = 1,...,7n) are variables. There has
been given an O(n?)-time incremental algorithm, and we improve it by using heaps as a
data structure and modify the incremental algorithm partly. This problem is a kind of
the geometric fitting problem between two corresponding sets of points on a line which is
related to some VLSI layout design problem. :

]
—
]

1. Introduction
This paper considers the following geometric problem:

n
minz |2; — a;]
i=1

st. 21 <2< - <2,

where a; (i = 1,...,n) are given constants and z; (i = 1,...,7n) are variables. This problem
is a kind of the geometric fitting problem between two corresponding sets of points on a
line which is related to some VLSI layout design problem [2,3].

An O(n?)-time incremental algorithm is given in [2]. This paper gives an O(nlogn)-
time algorithm for this problem by using heaps as a data structure and modify the incre-
mental algorithm partly.

The problem treated here is a very special case of the linear programming problem.
When applied to VLSI layout design, this problem might be too restrictive. However,
formulating the problem of removing jogs in the VLSI compaction problem [3] in a similar
way to this problem would be useful, scince then the interior point algorithm for linear
programming with planar structures [1} can be applied.

2. Preliminaries

We here consider two special cases of the problem. When a; < a3 < --- < a,, this
problem is trivially solved, since then z; = a; is a unique optimum solution. However, if
a; (i =1,...,n) are not in nondecreasing order, the problem is never trivial.

Next consider the problem where all z; (: = 1,...,n) are set to be equal. The Weber
problem for a set of points is to find a center point that minimizes the sum of the distances
of the center point with points in the set. Although the two-dimensional Weber problem
is very hard to solve rigorously, the one-dimensional problem is easy to solve. For the .
one-dimensional Weber problem, the following is well known.

Lemma 2.1. An optimum solution of the problem of minimizing Y., |z — a;| is the
median among ¢; (i=1,...,n). 0O

For simplicity, suppose that a; (i =1,...,n) are distinct to one another. If n is odd,
the median is the [n/2|th largest value among a;. If n is even, (n/2)th and (1 + n/2)th
values are both considered to be the median in most cases, and any value between them
is optimum for the problem.

To avoid the degeneracy for even n, we suppose that

e —a;| = 1+ &)z —ai) z—a; >0
T _(2—0,;) 23—-(1;<0

for sufficiently small positive number ¢;. Then, the optimum solution is uniquely deter-
mined, and is the [r/2]th value among a;. We will simply call this value the median.

il
™o
I

3. Incremental Algorithm ;
In this section, we describe the incremental algorithm given in [2]. In that paper,
some of inequalities among z; are set to hold with equalities. In this case, the problem is

stated as follows: o :
minz Z |2; — ai]
ji=liel; (P)

s.t. (31 Sa!g 5---3::,,,

where a; (i = 1,...,n) are given constants, ; (i = 1,...,m) are variables, and {I; |
j=1,...,m} is a partition of {1,2,...,2} (m < n) (I; # I; for j # j' and U;."=1I,- =
{1,2,...,n}). We will consider the problem in this general form.

During the incremental algorithm, adjacent sets among I; are merged into one and
z; for ¢ in the merged set are set to be equal to one another. To maintain the adjacency
relations among I;, we use a list L which is initially empty.

The incremental algorithm consists of m stages. In the first stage, it starts with
computing the [|I;]|/2]th value b; among a; (i € I,) and then setting z; = b;. Thisis a
optimum solution for the problem consisting of only the set I;. Add I, to the empty list
L. ‘

In the jth stage (j > 2), the algorithm adds the constraints concerning I; to the
current optimum solution for Iy,...,I;_; which has been computed already. Add I; at
the tail of the list L. Let b; be the [|I;]/2]th value among a; (i € I;). Let I' be the
predecessor of I; in the list L (if I;_; has not yet been merged, I' = I;_,). Let b’ be the
value for 2; (i € I') in the current solution (b' is the median among a; (i € I')).

If ¥ < bj, set z; = b; for i € I; (this is the optimum solution for I,...,I;), and
proceed to the (j + 1)st stage. Otherwise, merge I; and I' into one (accordingly update
the list L), and regarding the merged set as I; repeat this procedure for this updated I;.
Here, if the predecessor of the merged set in L is empty, proceed to the (j + 1)st stage.
The algorithm halts after the mth stage. .

For the validity of this incremental algorithm, see [2]. We here give an example.
Consider the problem with

n=9, m =5, :
I1 = {1,2,3}, Iz = {4}, Is ={5}, I4 = {6,7}, Is = {8,9}
ag<ag<ag<a;<azy<ar<az<aq<as

Surprisingly, a total order among a; suffices to determine the optimum solution.

In this example, 2; = 2; = 23 is set to a, after the first stage. Then z4 and z; are
set to a4 and a5 in the second and third stages, respectively. For I, the median among ag
and ay is ag, and this value is compared with the current value ag of 25 of the predecessor
- I3 of I in L. Since ag < a5, Is and I, are merged. For this merged set, the median is a.
This value is further compared with the value a4 for the predecessor set I, of the merged
set in L. Again, a7 < a4, and so I, is'merged into I3 U I;. For this merged set, the median
is a7, and is greater than the value a, for the predecessor set I; in L. The fourth stage
thus finishes. Now, I5 is processed, and its median ag is compared with the median a7 in

Il
w
I

the predecessor in L. Since ag < a7, these two sets are merged. The median becomes ayp,
which is less than a;, and these are further merged with I;. Thus, finally all the sets are
merged in this example, and the optimum solution is z; = a3 (¢ = 1,...,5).

The median of a set can be found in time linear to the size of the set. Using this
algorithm, it is easy to show that this incremental algorithm can be implemented so as to
run in O(mn) time [2].

4. Improved. Algorithm
We now consider how to implement the incremental algorithm to run in O(nlogn)
time. First observe the following.

Lemma 4.1. Suppose a set I is in the list L just after some stage.\ Then, the values
in I greater than the median of I will not become the median of any set in the list L.

Proof: After the stage, I will be scanned again when its successor Tin L has the
median b smaller than the median b of I. Then, I and T are merged into one. Since b<b,
the median of the merged set is not greater than b, and so the values in I greater than b
cannot become the median of the merged set in L. -

After I is merged with f, the merged set may be further merged with its predecessor
I' when the median of the merged set is less than or equal to the median of I'. In such
a case, the median of the set after merging I' does not exceed the median of the original
I'. Since the original I' is the ancestor of the original I in L, its median is less than the
median of the original I. Hence, the values in the original I greater than b cannot become
the median of the set in L. ;

 Using this argument inductively proves the lemma. O

- Note that, during the jth stage, the values greater than the median of I; may become
the median of a set in L (e.g., a7 in the above example).

We now present a modified incremental algorithm with early merging. To maintain
and compute the median of sets in L efficiently, we use mergeable heaps. For a set I in I,
we maintain a heap consisting of values less than or equal to the median in I. The median
is the maximum in the heap. Also, the number of elements in I not contained in the heap
is kept (the number of elements greater than the median).

In the jth stage, I = I; is handled. We first compute the median b of I by a linear-time
algorithm. We also add I to the list L, and, for this I = I;, construct a heap consisting
of all elements of I;. Let I' be the predecessor of I in L and ' the median of I'. Suppose
b < b’ (otherwise, we are done). Then I and I' have to be merged. We first merge two
heaps for I and I' into a heap h. Let I" be the predecessor of I' in L and 4" be the
median of I". We repeat to extract the maximum from the heap h to find the median of
the merged set. Since we know the number of elements greater than the median in I', we

“know how many elements should be extracted from the heap (simultaneously we maintain
the number of elements greater than the median in the merged set).

In so doing, we compare each extracted maximum with b". If all the extracted maxi-
mums are greater than or equal to b” and the median of the merged set is already found,
the median of the merged set is not less than b and we proceed to the (j + 1)st stage.

Il
=N
]

Otherwise, some extracted maximum, which is greater than or equal to the median of the
merged set, is found to be less than b"”. Then, it is seen at this point that the median
of the merged set is less than 5", and hence I" will be further merged to the current set.
At this point, we merge the heap for I" with the heap h even before the median of the
current set is found (this is early merging), and repeat this procedure for the merged set,
including I", and the predecessor I'" of I".

As shown in Lemma 4.1, the elements greater than the median in the set I', I", "
above are greater than the median of the merged sets and cannot become the median. The
elements greater than the median in I = I; may become the median in the merged set.
In the above algorithm, all the elements of I; is first collected into a heap and so all the
elements of I are checked for the median correctly. The validity of this modified algorithm
follows.

The above algorithm improves the simple incremental algorithm in a point that, while
computing the median of the merged set of I and I', whether I" should be merged further
is checked simultaneously and that I” may be merged correctly before the median of the
merged set of I and I' is computed. This enables us to eliminate extracted maximums
from the merged set of I and I' from further consideration.

We now analyze the time complexity of this modified algorithm with the data struc-
ture. Each element is removed from the heap at most once, and the number of times two
heaps are merged into one is at most n — 1. Finding and deleting the maximum in the
heap and merging two heaps can be done in O(log n) time (e.g., see [4]). Hence, the total
complexity is bounded by O(nlogn).

Theorem 4.1. The problem (P) can be solved in O(nlogn) time. 0O

5. Concluding Remarks

In this paper we have shown that the simple incremental algorithm for some special
one-dimensional geometric fitting problem can be implemented so as to run in O(nlogn)
time. It is left open whether this problem can be solved in linear time, say by the pune-
and-search method.

As mentioned in the introduction, the problem treated here is a very special case of
the linear programming problem, and might be too restrictive to apply it to a general
VLSI layout desing problem. However, formulating the problem of removing jogs in the
VLSI compaction problem, considered in [3], in a similar way to this problem would be
very useful, since then the interior point algorithm for linear programming with planar
structures [1] can be applied. This issue will be discussed elsewhere.

Acknoledgment

This research was supported in part by the Grant-in-Aid of the Ministry of Education,
Science and Culture of Japan and the Okawa Institute of Information and Telecommuni-
cation.

Il
o
Il

References ‘

[1] H.Imaiand K. Iwano: Efficient Sequential and Parallel Algorithms for Planar Network
Flow. In “Proceedings of the SIGAL International Symposium on Algorithms”, Lec-
ture Notes in Computer Science, Vol.450, Springer-Verlag, Heidelberg, 1990, pp.21-30.

[2] M. Ohmura, K. Yokoyama, S. Wakabayashi, J. Miyao and N. Yoshida: On Improve-
ment of VLSI Module Placement Based on Critical Nets (in Japanese). COMP38-52,
IEICE, 1988.

[3] M. Sato, W. Yamamoto, N. Nakajima and T. Ohtsuki: A Chip Compaction Algorithm
with Jog Insertion (in Japanese). SIGAL 90-16-11, IPSJ, 1990.

[4] R. E. Tarjan: Data Structures and Network Algorithms. SIAM, Philadelphia, 1983.

Il
o
Il

