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Mmlmal Acychc Forbldden Minors for the Farmly of G1 aphs W1th
- Bounded Path-Width-

Atsushi TAKAHASIII, Shuichi UENO, and Yoji KAJITANI

Department of Electrical and Electronic Engineering .
Tokyo Institute of Technology, Tokyo, 152 Japan

The graphs with bounded path-width, introduced by Robertson and Seymour, and the graphs with
bounded proper-path-width, introduced in this paper, are investigated. These families of graphs are minor-
closed. We characterize the minimal acyclic forbidden minors for these families of graphs. We also give
-estimates for'the numbers of minimal forbidden minors and for the numbers of vertices of the largest minimal
forbidden minors for these families of graphs. '



1 Introdﬁction

Graphs we consider are finite and undirected, but may have loops and multiple edges. A graph H
is a minor of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting
edges. A family F of graphs is said to be minor-closed if the following condition holds: If G €F
and H is a minor of G then H €F. A graph G is a minimal forbidden minor for a minor closed
family F of graphs if G ¢F and any proper minor of G is in . ‘

Robertson and Seymour proved the following decp theorems.

Theorem A [15]: Every mmor—closed family of graphs ha.s a ﬁlute number of minimal forbidden
minors.

Theorem B [14]: The problem of deciding if a fixed graph is a minor of an input graph can be
solved in polynomial time.

The combination of these theorems suggests the existence of a polynomial time algorithm for
the problem of testing membership for any minor-closed family F of graphs. Although many
important problems are known to be reduced to the problem, we cannot have a polynomial time
algorithm unless we can, find all the minimal forbidden - minors for F. Unfortunatcly, it ‘was proved
that there'is no general method to find all the minimal forbidden minors for any minor-closed
family of graphs [6][7), as suspected. However, special argmnents could be apphed for individual

" minor-closed family. In fact, the minimal forbidden minors were found for families of planar graphs
[18], graphs embeddable on the projective plane [9][1], partial 2-trees B3], p.artlal 3-trecs [3][4], and
graphs with path-width at most 2 {5].

We investigate the family F; of graphs with path-width at most k for any % > 0. We introduce
the proper-path-width of graphs and investigate the family P, of graphs with proper-path-width
at most k for any k£ > 1. Fy and Py are minor-closed families. We show that every minimal acyclic
forbidden minor for F}, (respectively Px) can be obtained from those for Fj_; (respectively Py_;)
by a simple composition. We also give estimates for the numbers of minimal forbidden minors for
Fi and Py, and the numbers of vertices of the largest minimal forbidden minors for Fji and Py.

2 Minimal Acyclic Forbidden Minors for Graphs with Bounded
Path-Width

The path-width of a giapll was introduced by Robertson and Séyinour []3]

Definition 1: Givern a graph G a sequence X1, 1\2, -+, X, of subsets of V(G) is a path-decomposition
of G if the following conditions are satisfied. I -

(i) For every edge e € E(G), some X; (1 <1 < r) contains both ends of e.

(@@ For1<i<m<n<r, XinX, CXpn.

The path-width of G, denoted by pw(G), is the minimum value of £ > 0 such that G has a
paLh-decomposxtlon X1, X2, Xy with | X;] < k+1fori=1,2,: .0 .

The {ollowmg lemmas mentioned in [13] w1]l be used later.

Lemma A [13]: If every connected component of G has path width < k, then G has path—wxdth
<k. v

Lemma B [13]): If X C V(G) and pw(G/X) < k, ther pw(G) < k +|X|, where G/X denotes the
graph obtained from G by deleting the vertices in X.

Let Fi be the family of graphs with path-width at most k. It is easy to see that F} is minor-
closed. Let 2(Fi) be the set of all minimal forbidden minors for Fy, and Q,(F%) be the set of all
minimal acyclic forbidden minors for Fi. Obviously, Q,(F%) C Q(F%)-

We introduce the star-composition of graphs which plays an important role in the following.
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Definition 2: Let Hy, H,, and H3 be connected graphs. A graph obtained from Hy, ]iz,‘ and Hs
by the following construction is called a star-composition of H1, Hz, and H3

(i) Choose a vertex v; € H; for i = 1,2, and 3.

(i) Let v be a new vertex not in Hy, Hz, or Hs. _

(iii) Connect v to v; by an edge (v, ;) for i = 1,2, and 3.
The vertex v is called the center of the sta.r composmon ]

We ﬁrst prove the followmg theorem.

Theorem 1: Let k > 1. A tree T is in Q,(F) if and- only if T is a star-composition of (not
necessarily distinct) three trees in Q,(Fx=1). :

Proof: We prove this theorem by a senes of lemmas

Lemma 1: Let Xi, X5, -+, X, be a path-decomposition - ofG and vE V(G) II veX;and v € X
(1<i<j<r),thenve X, for any I (i <1< j). That is, v appears in consecutive X;’s.

Proof: Suppose that v ¢ Xz for some [ (i < I < ]) Then XinX; € X,, contradlctmg (ii) of
Definition 1. O » o

Lemma 2: Let H be a connected subgraph of G, and: X1, X»,---, X, be a path-decomposition
of G. HX;nV(H) # ¢and X;nV(H)# ¢ (1 <i<j<ir), then inV(H);é ¢for a.nyl
(1 £1< ). Thatis, the vertices of I appear in consccutive X;’s. : . :

Proof: Suppose that X, NV(H) = ¢ for some I (z < 1< ]) Fach vertex of H appears in
consecutive X;’s by Lemma 1. Thus, if P = Uizhxs n V(H)y and Q U,_[+,(JY n v()),
PNQ = ¢. Since V(H) is pa.rtmoned into P and @, and H is connected there exist « € P and
v € Q such that (u,v) € E(][) However, {u,v} € X Ior any. z (1< r), contradlctmg (i) of
Deﬁnmon 1o

Lemma 3: Let T be a tree and k be a positive integer. Quppose that for any v € V(T’ ) T'/{v} has
no connected component ‘with path-wu!th k41 or Iore’ and at most two connected components
w1th path—w1dth k. Tl\en pw(T) < Ic : 2 :

Proof: Let To be T, a.ncl let Vo be a. veztex such that To/{vo}. ha.s the maximum number of
connected components with-path-width & :

- To/{vo} has no connected component. thln path wulth k, tllcn pw(T) <k bv Lemma B

I{ To/{vo} has two connected components with path-width k, let T} be one of these components
and v; € V(T}) be a vertex adjacent to vp in T5. We recursively define T; and v; € V(T3) (1 < i < a)
while T:_1 /{v;—i} has a component with path-width k as follows: Let 7} be a connected ‘component
of Ti—1/{vi—1} with path-width k and v; € V(T}) be a vertex adjacent t0 v;—; in T:=1. T has no
connected component with path-width k. Let To41 be the other connected component of Tp/{vo}
with path- width £, and Vag1 € V(Ta“) be a vertex adjacent to Yo in Tp. Define recurswely T; and
v € V(T) (a+1 < i< b) as above. Notice that T/{v,} (1 < 7 < b) has at most. one connected
component with path-width k, for otherwise To/ {v;} has three or more connected components with
path-width k, contradicting the assumptlon of the lemma.

Let. H! (0 < i < b) be the union of components of T:/{v;} with patll w1dth < k, and H;
(0<i< b) be the induced subgraph of T on V(H{)u {v;}. By Lemma A, pw(H!) <k (0Li<b).
By Lemma B, pw(H;) <k (0< 1 <b). Let X = (‘(( ) Y(') Xﬁ:)) be a path-decomposition
of H; (0 <'i < b) such that every X( 9 contains v; nnd |X( )| <k +1 (] < ] < ri). We define
sequences L and R as follows. -

: X(u)) {’Ua_, va—l}’ Xta—l)’ {va—lv 'Ua—2}7 ttty JY(Z)') {va Ui}, X(l)v {'Uly ‘U()}
{90, Va1 X4, {0011, vas2}, X242, -+ {vp2, v-1}, XV, (s, w3}, X®
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It is easy to see that the following concatenation of sequences
LxO R

is a path-decomposition of T, and pw(T) < k.
H Ty/{vo} has just one connected component with path width k, the sequence R above is
empty, and L, X(® is a path-decomposition of T" a,nd we also have pw(T) < k. O

Lemma 4: Let T be a tree and k be a positive mteger 11 T has a vertex v such that T/{v} has
a connected component with path-width > k -+ 1, then T has a vertex w such that T/{w} has at
least three connected components with path-mdtll > k.

Proof: Let 7' be a minimal subgraph of T with pw(T') > k + 1. For any v € V(T'), T’/{v}c
has no connected component with path-width > k 4 1 by definition. Thus there exists a vertex
w € V(T') such that T'/{w} has at least three connected components with path-width k, for
otherwise pw(T') < k by Lemma 3. Thus T/{w} has at least three connected components: w1th
path-width > k. O . :

Lemma 5: For any tree T and integer k' > 1, pw(T) > k + 1if and only if T has a vertex v such
that T'/{v} has at least three connected components with path-width k or more.

. Proof: Suppose that pw(T) > k + 1. If there exists a vertex v € V(T') such that T/{v} has-a
connected component with path-width > k + 1, then there exists a vertex w'€ V(T') such that
T/{w} has at least three connected components with path-width > k'by Lemma 4. If there exists
no such vertex v, then there exists a vertex w such that T/{w} has at least three connected
components with path-width k by Lemma 3. ’

Conversely, suppose that T has a vertex v such that 7/{v} has at least three connected compo-
nents with path-width > k. We may assume that the path- widths of these connected components
are exactly k, for otherwise tnv1ally pw(T) > k+ 1. Let Ty, Ts, and T3 be connected components
of T/{v} with path-width k, and v; € V(T), v, € V(T3), and v3 € V(T3) be vertices adjacent to
vin T , -

- Suppose cont[a.ry tlmt pw(T) <kand T has a. palh decompomlon )(I,Xg, ,X with | X;] £
k + 1 for any i. There exists some i; such that X;, C V(I3) for j = 1,2, and 3, for otherwise
X1NnV(T;), XanV(T5),- -+, X, N V(T}) is a path- decompomtlon of Tj with | X; nV(T)| < k+1
(1 € i-<'r), and pw(T;) < k. Without loss of generality we assume that iy < i3'< 13. It
is trivial that 7/V(T,) is a connected subgraph of T'. However X; N V(T /V(T2)) # ¢ and
X,-2 n V(T/‘V(Tg)) =¢, and X.-J NV(TIV(Tz2)) # o, contra.dicting Lemma 2. Thus pw(T) > k+1.

Lemma 6: I{ k> 1 a.nd T4, T2, and T3 are (not necessanly dlstlnct) trees in Qa(}'k_l) tllen any
star-composition of Ty, T3, and T3 is in Q,(F).

Proof: Let T be a star-composition of 71, T2, and T3, and v be the center of the star-composition.
Since T; € Qa(Fi-1) (1 = 1,2, and 3), T/{v} has three connected components with path- width
k. Thus pw(T) > k + 1 by Lemma 5. On the other hand, pw(T/{v}) < k by Lemma A, ‘and so
pw(T) < k + 1 by Lemma B. Hence we have pw(T) =k+1.

Because T: € Qa(]-'k..]) (i = 1,2, and 3), any proper minor of T; is in Fi—1. Thus for any vertex
w in any proper minor 7" of T, T ! / {w} has at most two connected components with path- w1dth
>k, and so pw(T”) < k by Lemma 5. Thus T is minimal. O

Lemma 7: If kK > 1 and T is any tree in ,(F%) then T is a star-composition of some (not
necessarily distinct) trees T4, T3, and T3 in Qg (Fr—1).

Proof: There is no vertex w such that pw(T/{w}) = k + 1 because T is minimal. Thus there is a
vertex v such that T'/{v} has three or more connected components with path-width k by Lemma 5.
Because T is minimal, T/{v} has exactly three connected components with path-width k£ and no
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connected component with path-width < k. Let Ty, T3, and T} be connected components of T/{v}
with path-width k. Suppose T ¢ ,(Fk—1). Let T{ be a proper minor of T with path-width k and
T' be a star-composition of T, T3, and T3. Then pw(T”) = k + 1, contmdlctmg that T € Q,(F%).
Thus T1 € Qa(]-'k..l) Slmllarly T2 and T3 are in ﬂa(}"k_l) E|

By Lemma 6 and Lemma 7, we obtain the theorem. O

It is easy to see that (¥o) = {K,}. The graphs in Q(F;) and Q,(F,) are shown in Flg 1 and
2, respectively. The following corollary can easily be proved by induction on k. ' :

Corollary 1: (1) The number of vertices of a tree in Q,(Fy) is 23-=1 53 =L (k > 0).

(2) 19(Fi)l > B2 (k 2 0). ,

We counted [Q,(F)| for k = 0,1,2,3, and 4 as follows Iﬂa(.’f-'o)l = |ﬂa(.’Fl)| =1, |Q,,(.7-'2)| = 10,
I9a(F3)| = 117, 480, |9 (F4)| = 14,403,197, 619, 396, 707, 660.

Since ‘we did not use the condmon that T: is a tree in the proof of Lemma 6, Lemma 6 can
be generalized as follows: If k¥ > 1 and H;, H,, and II5 are (not necessarily dnstmct) gra,phs in

Q(Fr_1) then any stu-composmon of Hy, IIZ, a.nd Hj is in Q(]-'k) ;

Fig.1 The graphs in Q(F;) o  TFig.2 The tIEés in Qa(}' 2)

& A §

3 - Minimal Acyclic Forbidden Minors for Graphs with Bo’undéd
Proper-Path-Width

We introduce in this section the proper-path-width of graphs.

Definition 3: The path-decomposition X1, X3, -+, X, of G with |X| <k+1 (k > 1) for any i
is called a proper-path-decomposztzon of G if the [ollowmg condition holds: For : any X;, Xp, and
Xn such that each one is not a subset of the others (1'< I < m < n < r), [X;N X;n N Xu| < k.
The proper-path-width of G, denoted by ppw(G), is the minimum value of k > 1 such that G has
a proper-path-decomposition X1,X2, e ,,\, with [X;] < <k+1foranyi O ’

Let Py be the family of graphs with proper-path-width at most k. It is easy to see that Py is
minor-closed. Let 2(Py) be the set of all minimal forbidden minors for Pk, and Q,(Py) be the set
of all minimal acyclic forbidden minors for Py.

For a positive integer k, k-trees are defined recursively as follows: (i) The complete graph with
k vertices is a'k-tree; (ii) leen a k-tree Q with n vertices (n > k), a graph obtained from Q by
adding a'new vertex adjacent to the vertices of a complete subgraph of Q@ with k vertices is a k-tree
with n + 1 vertices. A k-tree Q'is called a k-path [12] or k-chordal path [2]if |V(Q)| < k +1 or Q
has exactly two vertices of degree k. For a positive integer k, interior k- caterpzllara [12] are defined
recursively as follows: (i) A %-path is an interior k- caterplllat, (ii) Given an interior k-caterpillar
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Q with n vertices (n > k + 2), a graph obtained from @ by adding a new vertex adjacent to a
k-separator of Q is an interior k-caterpillar with n + 1 vertices.

It is not difficult to see that pw(G) < k (k > 1) if and only if G is a partial interior k-caterpillar,
and ppw(G) < k (k 2'1) if and only if G is a partial k-path.

We have the following theorem for Pj corresponding to Tlxeorem 1. The proof of the theorem
is almost same as that of Theorem 1, and is omitted.

Theorem 2 Let k > 2. A tree T is in 9,(Px) if and only if T is a star-composition of (not
necessarily distinct) three trees in Q4(P-1). ~

It is easy to see that 2(P;) = { K3, K1,3}. The trees in 2,(P2) are shown in Fig.3.

Corollary 2: (1) The number of vertices of a tree in Q,(P) is +5=1 + = (k 2 1).
(@) 19.(P)| > k2 (k > 1). : :

We counted |2,(Px)| for k = 1,2,3,and 4 as Iollows IQ (P)l = 1, 1(P2)| = 4, IQ,,(’P3)| = 1,330,
[24(P4)| = 2,875,919,312,080.

It should be noted that ”if” part of Theorem 2 can be generahzed as follows Ifk>2and Hy,
H;, and Hj are (not necessarily distinct) graphs in ©(Px—1) then any star-composition of Hy, Ho,

and M3 is in Q(Pk) This follows from the fact that Lemma 6 can be generalized to the case of
 QU(Fy).

Fig.3 The trees in ,(P2)
Another kind of composition is possible for Q(Py).

Definition 4: A delta-composition of connected graphs Iy, J, and 3 is a graph obtained from
Hy, Hj, and Hj by the following constmchon
(i) Choose a vertex v; € H; for i = 1,2, and 3.
(i) Connect v; to va, vz to vs, and v3 to vy by edges (v1,v2), (v2,73), and (v3,v1), respectively.
o ; : .

Theorem 3: I{ k > 2 and Hy, Hy, and H; are (not necessarily distinct) graphs in €(Px-1) then
any delta-composition of H, Hg, and Hj is in Q(Py). ’

Proof: Let H be a delta-composition of Hy, Hz, and I13. Let v; € V(H; ) be the chosen vertex for
i =1,2, and 3. Because H; € N(Ps_s), ppw(H:/{n}) = k= 1. Let X©) = x®,x9,., x9)
be the proper-path-decomposition of If;/{v;} with |X( |<k(i=1,2and3,1<j<r). Inthe

following, the sequence X; U {v},--+, X, U {v} is denoted by X U {v} for simplicity.
First, we show that ppw(H) = Ic + 1. Consider the following sequence. -

X(l) U {‘111},)((2) U {“U],,'Uz}, {U], v, U3},4Y(3)‘U {‘Ua}-

It is easy to see that this sequence is a proper-path-decomposition of I, and ppw(ll) < k + 1.
Suppose that ppw(H) < k and I[ has a proper-path-decomposition Xi, Xz,---, X, with |X;| <
k + 1 for any i. There exists some i; such that X;; C V(H;) for j = 1,2, and 3, for otherwise
XinV(H;),X2nV(H;j), -+, X, NV (I;) is a path-decomposition of H; with [X;nV(H;)| < k+1
(1 < i < r), and pw(l;) < k. Without loss of generality we assume that i3 < i; < i3. It
is trivial that H/V(H,) is a connected subgraph of II. However X;, N V(H/V(H2)) # ¢ and
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Xi, NV(H|V(H)) = ¢, and X;, N V(H[V(H2)) # ¢, contradicting Lemma 2. (Notice that a
proper-path-decomposition is also a path-decomposition.) llence we have ppw(Hf) =k + 1.

Next we show that H is minimal. Let H' be a proper minor of . Suppose first that H' is a
minor of If obtained by contracting edge (v1,v;). Then the following sequence

xWy {U]},X(2) U {'Ul},{v],va},x(s) U {v3}

is a proper-path-decomposition of H' and ppw(H') < k. Suppose next that H' is a minor of H
obtained by deleting edge (v1,v3). Then the following sequence

XMy {1}, {v1,v3}, XB U {u3}, {v3,v2}, XD U {03}

is a proper-path-decomposition of H' and ppw(H") < k. lence if I’ is a minor of H obtained by
contracting or deleting edge (v, vz), then ppw(H’) < k. This is also true for edges (02,03) and
(vs,v1).

Now we assume that H' be a delta-composition of Iy, H3, and Hj such that HJ, be a proper
minor of Hz and vy, vz, and v3 be the chosen vertices in Hy, H}, and Hj, respectlvely Let X' =
(X1, X2, -+, X},) be a proper-path-decomposition of /3 with |X{| <k (1<i<r').

We show that we can assume that vz € X! and |X!| < k —1 for some a. Suppose that |X/| =
for-any X{ that contains v;. Without loss of generality we assume that X! ¢ X ; for any dlstmct
i,j. If v € X| (respectively v, € X)) then insert {v;} before X} (respectively after X/,) in X'.
H v; € X, N X}, for some p then insert X, N} 141 between X] and X}, in X'. (Notice that
X, nX '+1| < k — 1 by the assumption. a,bove ) In either case, the new sequence thus obtained is
a propex—path decomposmon of H' and v3 € X! and |X}| < k -1 for some a. Then assume that
veX,and v € X, UX) (1 <p<Tr). Because |Xp—1 0 X[ X} 14| < k — 2 by Definition 3,
we llave X! 4 nX'l <k-2o0r|X; nXp+1| <k-2.1f |X'_1 n X,’,| < k — 2 (respectively
1Xp N Xyl < k- 2) then insert X'_1 N X, U {v3} (respectively X; N' X}, U {v}) between X _
a.nd X, (respectxvely X,.and Xp,) in X'. T his new sequence is a p!opet-patlt-decomposmon of
H' and v2 € X/ and IXFI < k—fl for some a. Thus we may assume that v; € X} and |X}| < k-1
for some a. c

Huv € X[ and |X N<k=1 {or some a, the [ollowmg sequence

X(l)u{"l} Xlu{vl}’ T a—lu{vl} Xa U{Ulyv3}7Xa+lU{v3}’ 7X:"U {V3};X(3)U~{”3}

is a proper-path-decomposition of H' and ppw(]l )< < k. Thus ptoper—path-wxdths of proper minors
of H are at most k, and H is minimal.
- Hence Il € Q('Pk). o

" Notice that the above theorem does not hold for Q(F,). A graph shown in Fig.4 that is a
delta-composition of graphs in Q(F;) is not in Q(F3), because its minor shown in Fig.5 is in
Q(F,). Notice also that the star- and delta-compositions are not sufficient to characterize minimal
forbidden minors for Pg. A graph in (P;) shown in Fig.6 is nelther a star-composition nor a
delta-composition of graphs in 2(P;).

Fig.4 A graph not in Q(F3) . '
that is a delta-composition of ~ Fig.5 A graph in Q(F3) Fig.6 A graph in (P,)
minors in Q(F;) :



We conclude with the following remarks: Similar results can be found in the literature. Parsons
[11] gave a recursive forbidden subgraph characterization of trees with the edge-search number more
than k, for each k > 1, by proving a similar result as Lemma 5. Méhring [10] mentioned without
proof that simila,r'results can be obtained for the node-search number. We learned recently that
Scheffler [16] obtained independently the same result as Lemma 5 in this paper. Schefller also gave
a linear-time algorithm to determine the path-width of a given tree. We can also give a linear-time
algorithm to determine the proper-path-width of a given tree. A special case of Theorem 2 when
k = 2 was proved by Takeuchi [17] and independently by Fukuhara [8].
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