FALY RN 20— 2
(1991. 3 15)

w/Phransgedy MEEORENRE

M EEE S Akt
FMERRIASY BERMSH tHAIBM EECERTE

G=V,E):2nBOBAE mAORE» SR BMER/A I 57, L, BHe LB w(e) BEAShTVLE DL
T3, AW GOHy POBSLTEDD » FRBTIHOESDOPTZORKMEB/MIOE (FhErange
EHEE) ERNCT BN 9 P ERD BEEERYV, O(MST(m,n) +nlogn) OHEERET 50 T MST(m,n)
BRGOBNARRUBAARERDZEMER T £ LD —F o FEIFFRZEBELORTOVTH » PR
THEHOEIZDOPHTEORKMEEBR/MIOHICY —F » b 28U Hy rONRPTrangedB/NcTdhy FEXK
HEBBEOERY., ALHEFHEB EHEERET 2,

Efficient Algorithms for the Minimum Range Cut Problems

Naoki Katoh*, Kazuo Iwanot

* Department of Management Science, Kobe University of Commerce
Gakuen-Nishimachi 8-2-1, Nishi-ku, Kobe 651-21, Japan

{Tokyo Research Laboratory, IBM Japan
5-11 Sanbancho, Chiyoda-ku, Tokyo 102, Japan

Let G = (V,E) be a connected undirected graph with n vertices and m edges, in which a real-valued weight,
denoted by w(e), is associated with every edge e. This paper studies the problem that asks to find a cut in G such
that the range of all edge weights in the cut is minimum. Here the range of a cut C is defined to be the maximum
difference among weights of edges in the cut, i.e., max.ec w(e) — min.ec w(e). We call this problem the minimum
range cut problem. This paper presents an O(M ST(m,n) + nlogn) algorithm for this problem, where M ST(m, n)
denotes the time required to compute minimum and maximum spanning trees of G. We then consider the minimum
range target cut problem which asks to find a minimum range cut such that the interval of edge weights therein (i.e.,
[mineec w(e), maxeeec w(e)]) contains a prespecified value (called target). We call this problem the . We show that
this problem can also be solved in a manner similar to the above problem with the same time complexity.

13

1 Introduction

Let G = (V, E) be a connected undirected graph with n vertices and m edges, in which a real-valued weight, denoted
by w(e), is associated with every edge e. This paper studies the problem that asks to find a cut in G such that
the range of all edge weights in the cut is minimum. Here a cut in G is a subset of F whose removal from G
disconnects G, and the range of a cut is defined to be the maximum difference among weights of edges in the cut,
i.e., max.ec w(e) — min.ec w(e). We call this problem the minimum range cut problem. Recently several researchers
studied a number of minimum range problems, e.g., minimum range spanning tree problems by [1], minimum range
assignment problems by [6], and so on. To the authors’ knowledge, no one has ever considered the minimum range
cut problem. '

We shall propose in this paper an O(MST(m,n) + nlogn) algorithm for the minimum range cut problem, where
M ST (m,n) denotes the time required to compute minimum and maximum spanning trees of G. The best known
bound for MST(m, n) is O(mlog f(m, n)) by Gabow at al. [4], where f(m, n) is defined to be min{s | log®® n < m/n},
and log® z denotes the log function iterated i times.

The first important observation is that only the edges of minimum and maximum spanning trees are sufficient
to find a minimum range cut. Thus, after preprocessing the original graph by computing minimum and maximum
spanning trees, the edge set E can be reduced to the set of at most 2(n — 1) edges. This result is rather surprising
because a closely related problem, the minimum range spanning tree problem, does not have such a property.

For a closed interval [«, 8] with & < 3, suppose that there is a cut C such that all edge weights of C lie in the
interval. If there is no closed interval [o, §'] properly included in [a, 8] that satisfies the above property, [, 8] is
called critical. Such a cut C is called a critical cut. It is clear that the minimum range cut problem can be reduced to
the problem of finding a critical interval [a, §] such that § — « is minimum. Thus, a naive approach is to enumerate
all critical intervals, and then identify a minimum range cut as a critical cut in the critical interval with the minimum
range. Enumerating all critical intervals is done in our paper by following the systematic approach proposed by
Martello et al. [6]. Though simply applying their algorithm to our problem requires O(n?) time, the algorithm in
this paper accelerates their algorithm by making use of the special structure of our problem. A critical interval can
be characterized in our problem by a maximum spanning tree of a graph G in which edge weights are appropriately
modified. With this characterization, given a critical interval, a next critical interval can be efficiently computed
by updating the current maximum spanning tree by using dynamic trees proposed by Sleator and Tarjan [9]. This
approach leads to an O(M ST(m,n) + nlogn) time algorithm.

If G is planar, a minimum range cut can be obtained in O(nlogn) time because M ST(m,n) = O(n) for planar
graphs [2]. If G is Euclidean, i.e., V is the set of points in the plane and the weight of an edge is equal to the distance
between the corresponding vertices, both minimum and maximum spanning trees can be obtained in O(nlogn) time
[7), [8]. A minimum range cut is thus obtained in O(nlogn) time. Notice that, in case G is Euclidean, the output of
the algorithm is not the set of edges in the cut, but a partition of vertices induced by the cut, because reporting the
set of edges in the cut may require O(n?) time.

This paper then studies the problem of finding a minimum range cut with a target, which asks to find a minimum
range cut such that the interval of edge weights therein (i.e., [min.cc w(e), max.ec w(e)]) contains a prespecified value
(called target). We call this problem the minimum range target cut problem. The algorithm for the previous problem
cannot be applied to this problem because no critical interval computed by the algorithm for the previous problem
may contain a target value. However, we can show that this problem can also be solved in a manner similar to the
above problem with the same time complexity.)

This paper is organized as follows. Section 2 reviews previous work on minimum range problems. Section 3 presents
an O(MST(m,n) + nlogn) algorithm for the minimum range cut problem. Section 4 studies the minimum range
target cut problem and develops an O(M ST(m, n) + nlogn) algorithm.

2]

2 Previous work

We begin this section with presenting a formal description of a general class of minimum range problems given by
Martello et al. [6]. Suppose that we are given a finite set E, a family F of “feasible subsets” of E and a real-valued
weight w(e) associated with every edge e € E. The minimum range problem (also called the balanced optimization
problem by [6]) is then described as follows:

minimizeger max{w(e) — w(e') | e,e’ € S} (1)

In other words, this problem tries to make the difference in value between the largest and smallest weights used
as small as possible. Martello et al. [6] showed that, if an efficient feasibility subroutine is available, then we can
efficiently solve this problem.

A feasibility subroutine accepts as input a subset E' C F and either produces some S € F with S C E' or else
states that no such S exists. For the minimum range cut problem, F stands for the set of all cuts in G, and a
feasibility subroutine simply determines whether G =(V, E — E) is disconnected.

Let v; < vy < -+ < v, be the sorted list of all the distinct values in {w(e) | e € E}. Since there are O(p?) distinct
intervals [v;, v;], a naive approach that simply applies a feasibility subroutine to {e | v; < w(e) < v;} for all possible
i and j requires O(p?f(|E|)) time, where f(|E]) denotes the time required for the feasibility subroutine.

Martello et al. [6] improved this time bound to O(pf(|E|)) for the general minimum range problem, and gave an
O(n*) algorithm when F is the set of all assignments in bipartite graphs. Camerini at al. [1] studied the case that
F is the set of all spanning trees in undirected and directed graphs (they call uniform spanning tree problems), and
gave O(mn) and O(m?) algorithms respectively. Camerini at al. [1] also studied variants of these problems. Galil
and Schieber [5] improved O(mn) algorithm in [1] for the undirected case to O(mlogn) by making use of dynamic
trees of Sleator and Tarjan [9]. ‘

3 Minimum Range Cut Problem

Since it takes O(m) time to test the connectivity of a given graph, our problem can be solved in O(m?) time
by simply applying the algorithm in [6] with p = O(m). In this section, we improve this trivial time bound to
O(MST{m,n) + nlogn).

Let (a,b) denote the interval {z | a < = < b}. When we include a boundary of the interval, we use “[” (resp.
“”) instead of “(” (resp. “)”, for example, [a,b) = {z | a < z < b}. Given an interval [a,b), we define Efa,b) as
{e € E|a< w(e) < b}. E(a,b)is similarly defined. For the simplicity we use E(a) instead of Efa, a.

A cut C is [a, b]-critical when the minimum (resp. maximum) weight of edges in C is a (resp. b), and there is no
cut in E(a,b] or E[a,b). A value a is said to be lower-critical if there exists a [a, b]-critical cut C for some b with
a < b. Analogously, we define an upper-critical value. A closed interval [a,b] is critical if there exists a [a, b]-critical
cut. For a cut C, let max(C) = max.¢c w(e), min(C) = min.ec w(e), and max-edge(C) (resp. min-edge(C)) denotes
the edge e € C with w(e) = maz(C) (resp. w(e) = min(C)). We use the following facts in our algorithm.

Fact 1. If there exists a'[a, b]-critical cut, then there exists a spanning tree in E — E[a,b) and E — E(a,b], but not
in E — Ela, b]. m]
Fact 2. A minimum range cut is critical to some interval.) a

Since a critical interval cannot be contained in any other critical interval, we can order critical intervals by their
lower boundaries. We say that a critical interval [a;,b;] is lower (resp. higher) than a critical interval [a, b3] when
a1 < az (resp. ay > az).

Let Traz (resp. Tomin) denote a maximum (resp. minimum) spanning tree of G. We use the convention throughout
the paper that Ty, (resp. Tinin) represents the set of edges in Thnaz (resp. Timin). The following Lemma shows that
we only have to process the edges of Tinez U Thnirn in order to compute all critical intervals. That is, after obtalmng
maximum and minimum spanning trees of G, we can reduce the edge set E to oz UThmin.

Lemma 1. For any cut C, there exists an edge € € Tiner N C (resp. e € Tpin N C) with w(e) = max(C) (resp.
w(e) = min(C)).

€3]

Proof. Let w(e') = max{w(e) | ¢ € Thnaz N C}, and let max-edge(C) = (u,v). Suppose w(e') < max(C). Since
max-edge(C) ¢ Tpax, there exist a path p(u,v) from u to v on Th,, and an edge é € p(u,v) N C. Since Tp,, is
a maximum spanning tree, w(¢) > max(C) follows. ‘This contradicts w(e') < max(C). Thus, there exists an edge
€ € TinezNC with w(e) = max(C). Similarly, we can show that there exists an edge e € T}, NC with w(e) = min(C).
a

i TFrom the above lemma, our algorithm first compute a minimum and maximum spanning tree T,,,;,, and T,,,, and
then reduces the edge set F to Tynin UTimas. For the simplicity, we assume throughout the succeeding discussion that
E is already reduced to Thin U Thnaz-

Our algorithm enumerates critical intervals {aj, b], [az,b2],... in the increasing order of their lower boundaries.
The general scheme of our algorithm follows the algorithm by Martello et al. [6]. However, we elaborate on that
algorithm in order to speed up the computation of the next higher critical interval [a;41, b;41] when the current critical
interval [a;, 4] is given. The following Lemma shows how to compute b;.

Lemma 2. The minimum edge-weight 8 of a2 maximum spanning tree is the lowest upper-critical value.
Proof. For any z < f3, there exists a spanning tree in Ez, v,]. O

Since E[vy,by] has a cut but E(ay,by] does not have a cut from the definition of a;, the lower boundary a, is
characterized as the minimum value z such that G' = (V, E[vy,z] U E(b1,v,]) is connected. It is computed by
starting with graph G’ = (V, E(b1,v,]), and then adding the edges of E(v;), E(vz), ... to G’ in this order until
the augmented graph first becomes connected. During this process, we maintain connected components, which are
represented as a spanning forest, of the corresponding graph. When a; is obtained, we have a spanning tree in
G= (V, E[vl,al] U E(b], UP])‘

After obtaining the lowest critical interval [ay, b;], the next higher critical interval [az, b3] is computed. This is done
in general as follows. The algorithm maintains the current critical interval [a, B, the graph G, = (V, E[v, 0] U
E(B;vp]), and a spanning tree T in G,. The computation of the next higher critical interval [, 8] consists of the
following two phases; that is, (1) the first phase computes the next higher upper-critical value £, and (2) the second
phase computes the next higher lower-critical value &’ when given an associated upper-critical value 8.

We use the following properties to compute o or £’ in each phase. Since §' is an upper-critical value next higher
than 3, there is a cut in E(w, #’] but there does not exist a cut in E(a,] for y < . Therefore, 8’ is the minimum
value y such that E{v;, o U E(y, v,] is disconnected. Since o is the lower-critical value next higher than a, there
exists a cut in Efo, 8] but not in E[y, #1] for ¥ > o, Thus, o' is the minimum value z such that Efv;, z] U E(#,)
is connected.

Let M be a constant such that M > v,.

In the first phase, we build a spanning tree 7" of maximum weight in G,z in which weights of edges in Elvy,a]
are modified as w'(e) = M and those in E(8,v,] are not changed. (We call a spanning tree 7" defined above the
modified maximum spanning tree in Gag.) Then ' is the minimum of modified edge weights in 7" i.e., the minimum
of original edge weights in T' N E(B, v,]. This is justified by the following Lemma.

Lemma 3. Let [o, 8] be the current critical interval and T” be a modified maximum spanning tree in Gy 4. If [, Al
is not the highest critical interval, then the minimum of modified edge-weights in 7" is the upper-critical value next
higher than 8.

Proof. Let y be the minimum of modified edge weights in 7”. Let 8 be the upper-critical value next higher than
B with the assaciated critical interval [o/, #']. Since ' is upper critical, there exists an edge e = (u,v) of weight 5.
Suppose ' < y. Since E[v;, o] U E(8, v,) is connected and B is an upper-critical value, 8 is the minimum value such
that §' > 8 and E[vi, o] U E(f', v,) is disconnected. ;From the definition of 7", there exists a path from u to v on
T' using edges of modified weights larger than £'. Therefore, u and v are connected by a path in Efvy, 0] U Ely, v,).
This contradicts to that there exists a critical cut in (e, 8]. (]

The description of the entire algorithm is given in Figure 1. The procedure Ref ine(z,y,T) in Figure 2 executes
the second phase that finds a next higher lower-critical value when a modified maximum spanning tree T' in G,,, is
given. In this phase, we first obtain a spanning forest F’ of maximum modified weight in Efvy, a]U E(B', v,], (which
is simply obtained from 7" by deleting edge(s) of weight £). Let v; = . We then add edges of E(viy1), E(vig2), ...
with modified weight M until F' with augmented edges contains a spanning tree. Note that since angmented edges

4]

are of the maximum weight M, a spanning forest in F’ with augmented edges is of maximum modified weight, and
moreover, a spanning tree finally obtained is also of maximum modified weight in E[v, /] U E(8',v,]. The role of
modified weights is to ensure that edges to be added in the algorithm have a higher priority than those in E(8', v,]
to be included in a spanning forest maintained by the algorithm.

Procedure Minimum-Range-Cut

begin

(1) Compute minimum and maximum spanning trees Tpin and Tpnaz, and
let E = Tm,',, UT,"“,.
a=0; z=1v, — vy

(2) - Letvy,vy,- -, v, be the increasing sequence of distinct weights of edges
in E.
a=0; z= v, — vy;

(3) T « Tonas; .

(4) do until (all edges in T have weights M)

(4.1) B = w(e) such that e € T and w'(e) is minimum among modified edge

weights in T';
(4.2) (&, B,T) « Refine(e, B, T);
(4.3) if2z>f—athen {z=08—0; " =0a; f* =B}
end
(5) Compute the connected components of E[a*, 8*] and report a set of

edges which connect a connected component and the others.
end

Figure 1. Algorithm Minimum-Range-Cut.

Theorem 1. We can compute a minimum range cut in O(MST(m, n) + nlogn).
Proof. It is clear from Lemmas 1, 2 and 3 and from the explanation given above that the algorithm correctly computes
an minimum range cut. We now analyze the time complexity. Finding T and Tpee Tequires O(M ST(m,n)) time.
Sorting weights of at most 2(n — 1) edges in This and Thnes requires O(nlogn) time. Finding the next higher upper-
critical value B’ can done in O(nlogn) time in total by using a heap [10]. The other time-consuming paft is to
update a modified maximum spanning tree to find the next higher lower-critical value. This can be implemented
by using dynamic trees [9]. We associate each modified edge-weight with an edge of dynamic trees. Initially, we
build a dynamic tree associated with a maximum spanning tree. When we add an edge e = (u,v) to T", we first
check if the addition of this edge creates a cycle or not. If so, we delete a minimum weight edge on the cycle by
evert(u) and cut(findmin(v)) operations. Then we link two trees by link(evert(u),v) operation (see [9] for the
details of operations link, evert, and findmin). Since performing a sequence of n operations to the dynamic trees
takes O(nlogn) amortized time, it takes O(nlogn) in total. o
In particular, the time complexity shown in the above theorem becomes O(nlogn) for planar or Euclidean graphs,
since M ST(m, n) = O(n) for planar graphs [2] and M.ST{m,n) = O(nlogn) for Euclidean graphs (7], [8].

procedure Refine(z,y,T)

begin

(1) T' — T — E(y);

(2) Suppose = = v;.

(3) do k=1i+1 to p until (7" becomes a spanning tree)

(3.1) add E(vi) to T' and maintain 7" as a modified maximum spanning tree;
end

1) o = v

(5) return(a,y,T');

end

Figure 2. Procedure Refine.

5]

4 Minimum Range Target Cut Problem

In this section, we consider the following variant of the minimum range cut problem. We shall show that this problem
can be solved in the same time complexity as the algorithm in Section 3.

The minimum range target cut problem: Given a connected undirected graph G = (V, E) with a real valued
edge-weight function w and a target value v, we find a cut with the minimum range containing ~. O

We may consider that we can solve this problem by picking up an appropriate critical interval from intervals
obtained by the algorithm in the previous section. However, this approach may not work. This is because that there
may be no feasible solution among critical intervals generated by the algorithm in the previous section, since y may
not be contained in any critical interval even if v satisfies v; < 4 < v,. To overcome this difficulty, we define new
concepts upper-critical interval (or cut) with respect to e for each e € Ty, in the next paragraph.

First notice that as in the minimum range cut problem, the edge set E can be reduced to Tinip, U Tinaz by Lemma
1. To avoid an complicated argument, we assume that no two edges in E have the same weight (the other case
can be similarly treated). ;From Lemma 1, we can assume without loss of generality that max-edge(C) € T,,,; and
min-edge(C) € Tpnin. The interval [w(e), B] is called upper-critical with respect to e if there exists a cut C such that
min-edge(C) = e (i.e., min(C) = w(e)) and max(C) = B, but there does not exist a cut ¢’ such that min-edge(C’) = e
and maz(C') < B. Such C is called a upper-critical cut with respect to e and is denoted by C(e). Let upper(e)
denote max-edge(C). Since all edge weights are assumed to be distinct, such C' is uniquely determined. For each
f € Trag, lower-critical interval (or cut) with respect to f is similarly defined.

The algorithm first computes upper-critical intervals with respect to e and upper(e) for each ¢ € Tp,;,. We will
then show that, if e # ¢ for e, €’ € Tinin, upper(e) # upper(e’) holds. This fact is a key to finding a minimum range
target cut.

Let C denote the set of cuts C(e) for all e € T},;,. We now define the following three subsets of C:

€ = {Cle) €€ min(Cle)) < 7 < max(C(e))}, @)

G = {C(e) €] min(C(e)) > 2}, ®

Cs = {C(e) € €| max(C(e)) < 7} (9
Let also

r1 = min{max(C(e)) — min(C{(e)) | C(e) € (1}, (5)

r; = min{max(C(e)) | C(e) € C,}, (6)

rs = max{min(C(e)) | C(e) € Cs}. (7)

e

- Let e* (resp. e**,) be an edge which realizes the above value r, (resp. rs, r3). Then a cut C(e*) is a candidate
for a minimum range target cut, but cannot be concluded to be a minimum range target cut. The reason is that, for
any C(e') € C; and C(e") € C3, a cut C(e') U C(e") clearly contains a target v, and such a cut may have a shorter
range. Among those cuts, the best candidate for a minimum range target cut is C(e**) U C(e***). Between these two
cuts C(e*) and C(e**) U C(e**"), the one with smaller range is output as the desired minimum range target cut (the
rigorous proof will be given later in Lemma 7).

We first give the outline of the algorithm for finding all upper-critical intervals with respect to all e € Tiin. The
algorithm is similar to Algorithm Minimum-Range-Cut given in the previous section. Let ey, es,...,e,_; be the list
of edges in T with w(ei) < w(ez) < --- < w(eq—y) (recall that we assume all edge weights are distinct). Define
T; for ¢ with 1 < ¢ < n—1 to be a spanning tree that has the minimum weight among all spanning trees that
contain {ey, ea,...,e;}. We use the convention that Ty stands for T,,. Starting with T, the algorithm computes
T4, Ts,...,Tay in this order by performing an edge-exchange one at a time. When 7: is obtained from Ti—y by
performing an edge-exchange (e;, fi) (i.e., Ti = (Tizy — fi) U &), upper(e;) is output as f;. Since outputting the edge
set of all T; requires O(n?) time, we simply report (e;, f;) for each i. The algorithm is described as follows.

Step 1: Let T'=1T,,;, and 1 = 1.

Step 2: For e; = (u;,v;), let f; be the edge such that w(f;) is minimum among edges on the unique path between u;

(63

and v; in T'. Let T'= (T — f;) Ue; and w(e;) = M. Output f; as upper(e;). Let i =1+ 1.
Step 3: If 1 < n — 1 return to Step 2. Else stop.

Since we assume that all edge weights are distinct, for each f; € Ty,z, there exists the unique e; such that upper(e;) =
fi- Here M used in Step 2 is a big constant defined in the previous section. A tree T' newly obtained in Step 2 is
equal to T; as will be proved in Lemma 4. We shall show in Lemma 5 that f; = upper(e;) holds for all 1.
Lemma 4. The algorithm explained above correctly computes T; for all i with 1 <i:<n—1.
Proof. Note that f; computed by the algorithm belongs to T},., since w(f;) is of minimum weight among all edges
on the path of T;_; between u; and v; and all édges €1,€a-..,€—1 have the weight M which is larger than w(f;)
from the definition of M. Then the proof is done in a straightforward manner by induction on i. Thus the details
are omitted. m]
Let f; = (z;,¥) and let T'(z;) and T(y;) be the two subtrees obtained by deleting f; from T;_; such that z; € T(z;)
and y; € T'(y;). Let V(z;) (resp. V(v:)) be the set of vertices of T'(z;) (resp. T'(y;)). Assume without loss of generality
that u; € T(z;) and v; € T'(y;).
Lemma 5. For each ¢; with 1 <7 < n— 1, let the cut C be the set of edges connecting V(z;) and V(y;). Then (1)
C is the upper-critical cut with respect to e;, and (2) C is the lower-critical cut with respect to f;.
Proof. We first prove (1). Note that e;, f; € C holds. Suppose that maz(C(e;)) < w(f;) holds for the upper-critical
cut C(e;) with respect to e;. Thus C(e;) does not contain f;. Since C(e;) must contain at least one edge on the path
of T}-; between u; and v; and all edges on the path have larger weights than w(f;) or smaller weights than w(e;), this
is a contradiction. Therefore, maz(C(e;)) = w(f;) holds. If maz(C) > w(f;), the edge max-edge(C) € Tinqa, connects
V(z;) and V(y;). Exchanging f; and max-edge(C) creates a spanning tree that has a weight larger than 7;_, and
contains {ey, ea,...,€;—1}, which contradicts Lemma 4. This proves (1). We can also prove (2) in a similar way as
: m]
Note that this lemma shows that Step 2 in the algorithm correctly computes a critical interval with respect to the
current edge e;. ;(From this lemma we assume in the succeeding discussion that C(e;) is the one defined in the lemma
statement.

above.

Lemma 6. The above algorithm runs in O(nlogn) time by using dynamic trees of [9}-
Proof. Similarly done as in the proof of Theorem 1. m]
After obtaining all pairs of (e, upper(e)) for each ¢ € Tinin, the desired cut is computed as explained at the beginning
of this section. This is justified by the following lemma.
Lemma 7. If ry < r; — r3, then C(e*) is a minimum range cut. Otherwise, C(e**) U C(e™*) is a minimum range
target cut. .
Proof. Suppose ry < r, —r3 holds and C(e*) is not a minimum range target cut. Let C’ be a desired minimum range
target, f. = min-edge(C’), and f* = max-edge(C’). Note that w(f.) < v < w(f*). Suppose that v = f, or v = f*.
Thus, €’ € C;, and then w(f*)—w(f.) > r1, which is a contradiction. Therefore, we assume that w(f,) < v < w(f*).
Suppose now that w{upper(f.)) > v, which means that C(f,) € ;. From the upper criticality of upper(f.) and
fuo, f* € C', we have w(upper(f.)) < w(f*). Therefore, we have w(f*) — w(f.) > w(upper(f.)) — w(f.) > r1, which
is a contradiction. Thus, w(upper(f.)) < 7. In a similar way, we can prove that w(lower(f*)) > 5. Therefore,
C(f.) € €y and C(f*) € C;. From the assumption, w(f*) — w(f.) > r1, which is a contradiction. We can prove the
other case in a similar way as above. 0
The entire algorithm is constructed as follows.

Step 1: Compute T,,,;, and T, and let E = Topip U Tings.
Step 2: Compute an upper-critical interval with respect to e for each e € T,,;, and three sets Cy, Cs, and Cs.
Compute ry, r; and r3 as well as the corresponding three cuts C(e*), C(e**) and C(e***).
Step 3: If ry < r3 ~r3, output C(e”) as a minimum range target cut. Else output C(e**) U C(e***).
I

J

Theorem 2. The above algorithm correctly computes a minimum range target cut in O(MST(m, n) +nlogn) time.
=}

As in the minimum range cut problem, the time complexity shown in the above theorem becomes O(nlog n) for

73

planar or Euclidean graphs.

5 Conclusion

In this paper, we devised O(MST(m,n) + nlogn) time algorithms for the minimum range cut problem and its
variant. Our algorithms improved the previous O(m?) time bound, which can be obtained by Martello et al.’s general
approach [6]. The following two ingredients lead to this improvement: they are, (1) we only have to process edges in
a minimum or maximum spanning tree to solve range cut problems; (2) for any cut, its minimum (resp. maximum)
weight edge belongs to a minimum (resp. maximum) spanning tree. We hope that these are of self interest, and are
now investigating on the further applications of these observations. 4

Acknowledgements

This work was partially supported by Grant in Aid for Scientific Research of the Ministry of Education, Science and
Culture of Japan under Grant-in-Aid for Co-operative Research (A) 02302047 (1990).

References

[1] P.M. Camerini, F. Mafioli, S. Martello, and P. Toth, Most and Least Uniform Spanning Trees. Discrete Applied
Mathematics, Vol. 15, 181-197. 1986.

[2] D. Cheriton and R.E. Tarjan, Finding Minimum Spanning Trees. SIAM Journal on Computing, Vol. 5, 724-742.
1976.

[3) M.L. Fredman and D.E. Willard, Trans-Dichotomous 'Algorithnis for Minimum Spanning Trees and Shortest
Paths. Proceedings of the IEEE 31st Annual Symposium on Foundations of Computer Science, 719-725. 1990.

[4] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan, Efficient Algorithms for Finding Minimum Spanning Trees
in Undirected and Directed Graphs. Combinatorica, Vol. 6, No. 2, 109-122. 1986.

[6] Z. Galil and B. Schieber, On Finding Most Uniform Spanning Trees. Discrete Applied Mathematics, Vol. 20,
173-175. 1987.

[6] S. Martello, W.R. Pulleyblank, P. Toth, and D. de Werra, Balanced Optimization Problems. Operations Research
Letters, Vol. 3, No. 5, 275-278. 1984.

[7] C. Monma, M. Paterson, S. Suri, and F. Yao, Computing Euclidean Maximum Spanning Trees. Proceedings of
the Fourth Annual ACM Symposium on Computational Geometry, 241-251. 1988.

[8] F.P. Preparata and M.I. Shamos, Computational Geometry, Springer Verlag, New York, NY. 1985.

[9] D.D. Sleator and R.E. Tarjan, A Data Structure for dynamic Trees. Journal of Computer and System Sciences,
Vol. 26, 362-391. 1983.

[10] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics, Philadel-
phia, PA. 1983.

€8]

