Ty XRa 20—1
(1991 3 15)

X oS L cogEEE

EHEX
EFEREEHIER

XHoRE L TERSNWIHBETHNHAEEZACAERCILOTES LI
MEEE L, BNTEEEHBOCETT2FEELR~3. BALLT, 7570
BERFINECHR S 5 70BKEH 7Y — 7% O(mlog n) DFHTRDB &
BTEDBLSR3. £, RE/7S570RNEHXEAES S O(nlogn) TR
5T 5.

Dynamic Programming on Intervals

Takao Asano

Department of Mechanical Engiﬁeering, Sophia University,
Chiyoda-ku, Tokyo 102, Japan

We consider problems on intervals which can be solved by dynamic programming.
Specifically, we give an efficient implementation of dynamic programming on intervals.
As applications, an optimal sequential partition of a graph G = (V, F) and a maximum-
weight clique of a weighted circular-arc graph G = (V, E) can be obtained in O(m log n)
time, where n = |V| and m = |E|. We also present an O(n log n) time algorithm for
finding a minimum weight dominating set of an interval graph G = (V, £), provided G is
given by its intersection model of n intervals.

I
—
Il

1 Introduction

Dynamic programming is one of the most popular techniques for designing efficient al-
gorithms and has been applied to many problems. For example, an optimal sequential
partition of a graph and a maximum weight clique of a circular-arc 'graph can be obtained
by dynamic programming on intervals [4, 6]. In this paper we propose an efficient imple-
mentation of dynamic programming on intervals.

For an interval z, we denote by z(z) and y(z) the left and right endpoints of z, respectively.
We assume z(z) and y(z) are integers from 1 to p. Then the problem we consider is: for a
set Z of intervals, a set SZ = {z1,22,..., 2p} with y(2;) = 1 and a real-valued cost function
c(z) for z € Z, compute

Bli] = min{ D[j] + C(j, i)},)

for each 1 < ¢ < p. llere we assume that the minimum is taken over all the integers j < ¢
contained in z; € SZ. We also assume that D[i] can be computed from E[i] in constant
time and that C(j,4) is a constant multiple of the total cost of intervals z € Z that contain

both 7 and j, i.e.,
C(j,i) =« Z c(2).
11€2€2Z
Furthermore, we assume E[1] = 0. This problem can easily be solved by the following
Algorithm DP based on dynamic programming:

For i := 1 to p, compute E[:] by (1) and D[i].

It is clear that Algorithm DP correctly computes all E[i] (and D[:]) since all D[j] (j < ©)
are already computed when computing E[i], and if we let ¢ = |Z], it requires O(q + p?)
time. In this paper we shall present an efficient implementation of Algorithm DP and thus
obtair an O(q log p) time algorithm for computing all EJd].

As applications, we can obtain an optimal sequential partition of a graph G = (V, F)
and a maximum weight clique of a weighted circular-arc graph G = (V, E) in O(m log
n) time, where n = |V| and m = |E|. Similarly, we can obtain other eflicient algorithms
on interval graphs and circular-arc graphs. For example, a minimum-weight dominating
set of a weighted interval graph can be obtained in O(n log n) time and a minimum-
weight dominating set of a weighted circular-arc graph can be obtained in O(n? log n)
time, provided that their intersection models are given. These algorithms improve the
complexity of existing algorithms {3, 5, 6].

2 Efficient Implementation

In this section, we present an efficient implementation of Algorithm DP. By this implemen-
tation, all E[i] in (1) can be computed in O(g log p) time and O(g) space.

For the efficient implementation, we consider the following problem. We are given a set
of numbers X = {1,2,...,p} (p > 2) and a set DZ of intervals each of which has its both
endpoindsin X. Also each interval z € DZ has a cost cost(z). For a number z, csum(z, DZ)
is defined as csum(z, DZ) = ¥ ¢,epz cost(2) i DZ # 0 and csum(z,DZ) = coif DZ = 0.
We consider the following three operations.

findmin(z,DZ): return Igleigx{csum(:c,DZ)},

Il
)
Il

insert(z,DZ): replace DZ with DZ U {z},
delete(z, DZ) : teplace DZ with DZ — {z}.

A crucial observation is:

Observation 1. Each of the operations findmin, insert and delete can be done in O'(log
p) time with a data structure of O(p) space constructed by an O(p) time preprocessing.

Although this observation can be easily shown by using the segment tree in computational
geometry [2],[7], we will prove briefly later in Section 2.2 for completeness. Now we assume
Observation 1 and show that each E[i] and D[i] can be computed in O(log p) time.

2.1 Implemetation of Algorithm DP

In this subsection we give an implementation of Algorithm DP. It is based on a kind of
(line) sweep. In the procedure, M is supposed to be a sufliciently large positive constant.

Procedure IMPLDP;
begin {comment computing E[i] and D[i];}
1 X:={1,2,...,p}; DZ = 0;
2 zg:=11,p]; cost(z) := M; insert(zo, DZ);
3 fori:=1 to p do begin
if 1 = 1 then E[i] := 0 else E[i] := findmin(z;, DZ);
compute D[i] from E[i];
yi := [i,1); cost(yi) := D[i] — M; insert(y;, DZ);
if ¢ is the right endpoint of an interval in Z then
for each z € Z with y(2) = i do delete(z, DZ);
- if ¢ is the left endpoint of an interval in Z then
0 for each z € Z with z(z) =i do
1 begin cost(z) := ac(z); insert(z, DZ) end

— b O 00 =Y O OUT

end
end;

The following observations are useful to show the correctness of Procedure IMPLDP.

(A) If we choose M such that M'> 23 . |oc(z)], then just before the i-th iteration of
Line 3, csum(z, DZ) > M /2 for all points £ € [1, p] except integer points z < i.

(B) Just before the i-th iteration, csum(z, DZ) = D[z] + C(z,4) for an integer point
T < 1.

We will prove Observations (A) and (B) by induction on 3.

Initially (just after Line 2), csum(z,DZ) = M > M/2 for all z € [1,p] and thus, just
before the first iteration (: = 1), (A) and (B) hold.

We assume that (A) and (B) hold just before the i-th iteration and comsider the i-th
iteration. Note that csum(z, DZ) < M /2 holds only if virtual interval y, has been inserted
into DZ in Line 6. Thus, during the ¢-th iteration, only csum(i, DZ) can newly become
less than or equal to M /2 (this will happen when DJi] is less than or equal to M/2). Thus,
(A) holds immediately after i-th iteration (i.e., just before the i 4 1-th iteration). Next we

I
w
Il

consider (B). Define Zr(z) to be the set of intervals in Z having z as the right endpoint,
i.e.,
Zp(z) ={z2 € Z | y(2) = z}.

Similarly, define Zr(z) and Z(z,y) for z < y as follows.
Zy(z) ={z € Z|2(2) = z},

Z(,y)={z€ Z|zy €1}

Note that C(z,y) = @ T, cz(sy) ¢(2)- During the i-th iteration, all intervals in Zgp(i) are
deleted from DZ and all intervals in Z(i) are inserted to DZ. Furthermore, D[z] is not
changed for an integer z < i. Thus, Z(z,i+1) = Z(z,i)— Zgr(¢) and just before the i + 1-th
iteration, we have '

csum(z,DZ) = D[z] + C(z,1+ 1),

for an integer ¢ < 1. Similarly, for a sufficiently small € > 0,
Z(1,i +1) = (Z(i —¢&,1) — Zr(i)) U Z1(3).

Thus,
csum(i,DZ) = D[i] + C(,1 + 1)

after i-th iteration, since y; is inserted. This implies that (B) holds just before the i + 1-th
iteration. Thus, we complete our proof of (A) and (B).

These observations imply that each E[i] (and D[i]) is correctly computed by E[i] :=
findmin(z;, DZ) (or E[{] := 0) in Line 4 during the i-th iteration when i = y(z;) and
findmin(z;, DZ) < M/2, since csum(z,DZ) = D[z] + C(z,i) for an integer point z < ¢
and

findmin(z;, DZ) = %izn'{csum(z, DZ)}

= min {D[z] + C(z,1)},

r<i,z€z;,x:1nteger
by Observations (A) and (B) (note that csum(i, DZ) > M/2 just before the i-th iteration).
If findmin(z;, DZ) > M/2, then the correct value of E[i] is co and in the procedure E[i]
(and D[i]) is set a value > M/2. Thus we can obtain the following theorem by Observation
1 since the number of operations findmin, insert and delete is O(q).

Theorem 1. All E[i] can be correctly computed in O(g log p) time.

2.2 Data Structure Supporting findmin, insert and delete

In this subsection, we shall describe a data structure supporting the operations findmin,
insert and delete defined before. Since delete(z, DZ) can be replaced by insert(z', DZ)
using z = 2’ and cost(z') = —cost(z), we consider only findmin and insert.

We consider a balanced binary search tree T'(X) for a set X = {1,2,...,p}. That is,
T(X) satisfies the following (i)-(iii).

(i) Each node of T(X) has either no children or two children, its left child £(v) and its
right child 7(v) (a node with no children is a leaf and a node with children is an inner node).

I
=
Il

(ii) Each node v of T'(X) contains a key key(v) € X and keys are arranged in symmetric
order: each i € X is stored in exactly one leaf of T(X) as a key, and each inner node v has
key(v) satisfying : '

k =k in {k
Jé‘z"f(’i){ ey(w)} = key(v) < min {key(u)},

where L(v) denotes the set of descendants of the left child £(v) of v and R(v) denotes the
set of descendants of the right child r(v) of v.
(iii) depth(v) = O(log p) for each node v of T(X).

Note that this balanced binary search tree T'(X) can be constructed in O(p) time and
O(p) space. For simplicity, we write z; to denote the leaf containing i as a key. We consider
two values cmin(v) and cin(v) for each node v of T(X). We maintain cmin(v) and cin(v)
so that they satisfy '

cmin(v) = min{cmin(4(v)) + ci‘n(é(v)), emin(r(v)) + cin{(r(v))} ()

for each inner node v of T'(X). Let P(u,v) be the simple path of T(X) from node u to
node v. We also use P(u,v) to denote the set of nodes on the path P(u,v). Initially (when
DZ = 0), cmin(v) = 0 and cin(v) = 0 for each node v of T(X). Equation (2) together
with cmin(z;) = 0 for each leaf z; will imply cmin(v) = min{},ep(y,z;)—{v} cin(u)} for
each inner node v of T(X), where the minimum is taken over all the leaves z; that are
descendants of v.

We first consider insert(z, DZ). Let z = [i, j] (i < j). Then insert(z, DZ) can be done as
follows. Let r; be the nearest common ancestor of z; and z;. Consider the paths P(r;, z:)
and P(ryj,z;) from r;; to z; and z;. Let v; be the deepest node on P(r;;,z;) such that v; is
the right child of a node on P(r;;, z;) if such v; exists, otherwise we set v; := r;;. Similarly,
let v; be the deepest node on P(ri;, z;) such that v; is the left child of a node on P(ri;, z;)
if such v; exists, otherwise we set v; := ry;. Define R(r;;,v;) and L(rij,v;) as follows. If
v; = v; = ry; then R(rij,vi) = L(rij,v5) = {ri;}. I vi = rij # v; then R(rij,vi) = {€(ri;)}.
H v # rij = vj then L(rij,v;) = {r(ri;)}. If vi # ri; then

R(rij,vi) = {v = r(p(v)) | p(v) € P(£(r:;),p(v:)), v is not in P(e(ri5), p(vi))}

that is, v € R(rij, ;) if and only if v is the right child of a node on the path P(£(ri;), p(vi))
but v itself is not on the path P(4(r;;),p(v:)). Thus, v; € R(rj, ;) if vi # riy. U v # 15
then

L(rij,v;) = {v = £(p(v)) | p(v) € P(r(ri;), p(v;)), v is mot in P(r(ri;), p(v;))}

that is, v € L(ry;, v;) if and only if v is the left child of a node on the path P(r(ry;), p(v;))
but v itself is not on the path P(r(ri;), p(v;)). Thus, v; € L(ri;, v;) if v; # ry;. Note that,
for each k € X, k € z = [i,j] if and only if there is exactly one node v € R(r;;,v;) U
L(ri;,v;) such that g is a descendant of v. We first set cin(v) := cin(v) + cost(z) for
each v € R(ri;,v) U L(rij,v;). Next, we have to modify cmin(u) for all u € P(ri;, p(v:))U
P(rj,p(vj)) U P(r,ri;), since cin(v) for all v € R(rij,vi) U L(rij,v;) are now changed
(P(r, ri;) is the path from the root r to ;). This can be done by traversing nodes along the
paths P(rij, p(v;)), P(rij, p(v;)) and P(r,r;;) in decreasing order of their depth and looking
their children. Thus, insert(z, DZ) can be done in O(log p) time, since the depth(v) of
each node v of 7'(X) is O(log p). '

Il
o
I

Next we consider findmin(z,DZ). Let z = [i,j] (i < j). Let ri;, P(rij,z;), P(rij, z;),
vi, Y5, R(rij,vi), L(ri;,v;) and P(r,r;;) be the same as above. If we let

cs(v) 1= emin(v) + Z cin(u)

u€P(r,v)

for each v € R(rij,vi) U L(rij, v;), then minyep(r;; v)uL(ri;v){cs(v)} is the desired value
findmin(z, DZ). This value can be computed in O(log p) time by traversing nodes along
the paths P(r;;,p(v)), P(rij,p(v;)) and P(r,r;;) in decreasing order of their depth and
looking their children. Thus, findmin(z, DZ) can also be done in O(log p) time. Note that
T(X) with cmin(v) and cin(v) for each node v of T(X) can be represented in O(p) space
and is almost the same as the segment tree in computational geometry [2], [7].

3 Applications and Related Problems

In this section, we present some applications of an efficient implementation of Algorithm DP.
The first application is to optimal sequential partitions of graphs proposed by Kernighan

(6].

3.1 Optimal Sequential Partitions of Graphs

We are given a graph G = (V, E), a cost function ¢ : E — R*, a weight function w: V — R*
and a positive number K. Here we assume the vertices of the graph are labeled from 1 to
n. For a subset B = {b1,by,...,b,} of V such that by =1 and b; < b; for i < j, we obtain
a family of graphs G(B) = {G1,G>,...,G,}, where each G; is the subgraph of G induced
by the set {b;,b; +1,...,b;y1 — 1} (for convenience, we assume b,y; — 1 = n). We will call
P = G(B) a sequential partition (or partition, for short) of the graph G = (V, F) defined
by B. The cost of partition P = G(B), denoted by cost(P), is defined to be the total cost
of the edges of G joining different graphs in G(B). A partition G(B) is called addmisible
if all the graphs in G(B) have the weights < K (the weight of G; € G(B) is equal to
w(b;) +w(b; + 1)+ --- + w(bi41 — 1)). An addmissible partition P of G is called optimal if
cost(P) < cost(P') for all addmisible partitions P’ of G.

We would like to find an optimal partition of G. Kernighan [6] first proposed an algorithm
for finding an optimal partition and later Kaji and Ohuchi [5] corrected the complexity
“analysis of his algorithm. They showed that the complexity of the Kernighan’s algorithm
is O(n?).

Here we will show that the Kernighan’s algorithm can be implemented to run in O(m
log n) time, where m = |E|. We first review the Kernighan’s algorithm. For a subset B;
of {1,2,...,1} containing 1 and i, the corresponding partition G(B;) of G will be called
a partial addmissible partition if all graphs G; in G(B;) except the graph containing the
vertex i have the weights < K. Let T(i) be the minimum cost of a partial addmissible
partition G(B;) of G for a subset B; C {1,2,...,i} containing 1 and i. Then Kernighan
observed the following.

(i) = min{T(5) — AG - 1) + AG - 1,3}, 3)

where minimum is taken over all j’s such that w(j) + w(j+ 1)+ ---+ w(t — 1) < K and
A(z,y) (z < y) is the total cost of the edges which contain both z and y (we consider an
edge ¢ = (1,) to be an interval [z, j] on the real line).

=06 =

Thus, if we let E[i] := T(:) — A(i — 1,1), D[j] :=T(j) and C(j — 1,1) := —A(j — 1,i) by

setting o := —1, then we can rewrite (3) as follows.
Eli] = min{D[j] + C(j - 1,%)}.

This is almost the same as (1) and can be solved by a similar method described before.
Here we reduce (3) to the same form as in (1). We consider the following intervals and their
costs. ‘

Z(E)={x(e)=[2z+1,29] e =[s,5] € B},
Z(V) = {2() = [20(3), 2i] | i € V,2(5) = min{j | w(5) + (i + 1) +--- +w(i — 1) < K},

and
c(z(e)) = c(e) for z(e) € Z(E).

Let Z = Z(F) and SZ = Z(V)U {z = [2i = 1,2i - 1] | i = 1,2,...,n}. We use the
same notation as in Section 3 (¢ = m and p = 2n). Note that if we set o := —1 then
C(2j,2i) = —A(j — 1,4). Thus if we let E[2i] := T(i) — A(s — 1,1) and D[2j] := T[], then
we have the problem of computing E[2i] and D[2{] defined by (1) (E[2i — 1] and D[2i — 1]
will become 00). Note that all A(i — 1,i{) = —C(21,2i) can be computed in O(m) time in
advance and we store them in a table. Thus we can compute D[2i] from F[21] in costant
time. Since there are m +n intervals and 2n endpoints, all E[2i] and D{21] can be computed
in O(m log n) time by the method in Section 2.

3.2 Maximum Weight Clique of a Circular-Arc Graph

There are several variations of the problem described in Section 1. Here we consider one
variation which appears in an algorithm for finding a maximum weight clique of a circular-
arc graph [1, 4] and dominates the complexity of the algorithm. We are given a sequence
Z = (21,22, -.,%¢) of intervals and a subsequence SZ = (2,(1), 2o(2),- - -1 %o(r)) ©f Z and a
real-valued cost function ¢(z) for z € Z — SZ, and compute

B[] = max{D[j] + C(j,1)}, (4)

for each 1 < ¢ < r. Here we assume that the maximum is taken over all the integers
j < i such that £(z,(;)) is contained in z,;) € SZ. We also assume that D[i] can be
computed from E[i] in constant time and that C(j,1) is a constant multiple of the total
cost of intervals z, € Z —SZ such that z appears after z,(;) and before z,(;y in the sequence
Z (i-e., 0(j) < k < 0(i)) and contains both £(z,(;)) and £(z,(;)). Furthermore, we assume
E[1]l=o0.

This problem can also be solved by an similar method as one described before. Thus, a
maximum weight clique of a circular-arc graph G = (V, E) can be obtained in O(m log n)
time and O(n) space provided that G is given by its intersection model of arcs of a circle,
where m = |E| and n = |V|. See [1] for details.

3.3 Minimum Weight Dominating Set

A dominating set of a graph G = (V, E) is a subset U of V such that, for every vertex
v € V, v € U or there is an edge ¢ = (u,v) € E connecting a vertex u € U and v. A
minimum weight dominating set is a dominating set of minimum weight, where each vertex
has a positive weight. To find a minimum domirating set of an interval graph, we first

{
ﬂ
Il

consider a shortest path problem on the interval graph. Here the length of a path is the
sum of the weights of vertices on the path. We assume an interval graph G = (V, E) is
given by its intersection model of intervals Z = {z1, 22,...,2,} on the line. We also assume
2(z) < 3(2;) for i < j. We now want to compute the distances of shortest paths from
z; to other vertices z;. Let D[i] be the distance of a shortest path from z; to z;. Then
D[1] = w(#z) and, for ¢ = 2,3, ...,n,

Dli] = ,j%f&o{D[j] + w(z)}
Thus, if we let E[i] := D[i] — w(z;) then we have
Blil= min_{D[j]}.

2jNz;#0
This can be solved by a similar method described before. In fact, a simpler method can be
applied and all E[] can be computed in O(n log n) time.

To find a minimum weight dominating set of an interval graph G = (V, E), we consider
new intervals obtained from Z. Specifically, we consider an interval z{ with w(z!) = w(z)
corresponding to z; as follows: z(z}) = z(z) and y(2!) is the leftmost right endpoint y(z)
of the intervals z € Z such that y(z;) < z(z). Let z be a virtual interval with weight 0
such that z(z0) = z(z1) and yo = min{y(2) | z € Z}. Then the distance of a shortest path
from zq to 2/, is the weight of a minimum dominating set of the graph G = (V, E). Thus, a
minimum weight dominating set of an interval graph can be obtained in O(n log n) time.
Since a minimum weight dominating set of a circular-arc graph G = (V, E) can be obtained
by solving n times the minimum weight dominating set problems of interval graphs, it can
be obtained in O(n? log n) time. This improves the previous complexity [3].

Acknowledgments

This work was supported in part by Grant in Aid for Scientific Research of the Ministry
of Education, Science and Culture of Japan under Grant-in-Aid for Co-operative Research
(A) 02302047 (1990).

References

[1] T. Asano, An faster algorithm for finding a mazimum weight cligue of a circular-arc graph,
Technical Report of Institut fiir Operations Research, Universitit Bonn, 90624-OR, 1990.

[2] J.L. Bentley, Decomposable searching problems, Information Processing Letters, 8 (1979),
pp.244-251.

[3] A.A. Bertossi and S. Moretti, Parallel algorithms on circular-arc graphs Information Processing
Letters, 33 (1989/1990), pp.-275-281.

[4] W.-L. Hsu, Mazimum weight clique algorithms for circular-arc graphs and circle graphs, SIAM
Journal on Computing, 14 (1985), pp. 224-231.

[5] T.Kaji and A. Ohuchi, Optimal sequential partitions of graphs by branch and bound, Technical
Report 90-AL-10, Information Processing Society of Japan, 1990.

[6] B.W. Kernighan, Optimal sequential partitions of graphs, Journal of ACM, 18 (1971), pp.34-40.

[7] F.P. Preparata and M.L. Shamos, Computational Geometry: An Intorduction, Springer—Verlag,
New York, 1985.

I
(o]
I

