7 A 3) X A 21-1
(1991 5 29)

LDy —rOREHCEA Y v 23558 Lco
HEROEF Y —F 4 v 7 TFA =Y X4
EA AF B FH #55]

REUAFH IR R

TT7AYZ2 7+

nxn Oy Va2 HHABEC, FEARKRAERY — ' F322CEoTY—54 ¥ 7 %iTh 5 BMcEARAT A~
TYXARDNTCEL D, LOTATY X4k, fTEROY— % Ologlogn) HfiFA S C iKY Y — F R
b Lo TelTilt O(nloglogn) #FIREEITY — + 2174 5. O(n) WFHEHEICY — + 2fTA S TA =Y X
LRMICERRIR T2, Thbik, fTEAOEMAREERSLEE T35, —H. O(nloglogn) HHIEEciT45)
Dfic s 7 MRERHoTY — FETASTATY XABERINL TS, TALDTATY XAKL b, COB
XTHRSTATY X AR LY BMCERARCHE, 7. ROBAERIREBEO(nlogn) TY — VR ERI ¢ 3
shear ¥ — + ¢PFEI B deterministic F A=Y XA DHERWFITC b R >Tn 3,

Analysis of Randomized Sorting Algorithms on the Mesh Computer
Using Only Row and Column Sorting

Susumu Hasegawa, Hiroshi Imai and Koji Hakata

Department of Information Science, University of Tokyo
Hongo, Tokyo 113, Japan

Abstract

Simple and practical randomized sorting algorithms on the n x » mesh computer, which alternately
sort its rows and columns, are investigated. It is shown that these algorithms require O(loglogn)
iterations of row and column ‘sorting operations, and O(nloglogn) parallel time. Although there exist
several O(n) parallel time algorithms (e.g., [5,6]), such algorithms require non-uniform operations for
rows and columns and are complicated. There is an O(nloglogn) parallel time algorithm which uses row
and column sorting as well as shifting operations 6nly [5]. Compared with it, the randomized algorithms
given here are simpler and more practical. Furthermore, our results can be viewed as a probabilistic
analysis of an O(nlogn) deterministic time sorting algorithm, called shear sort [5], which is shown to
run faster on the average.

~1~

1. Introduction

Sorting is the most fundamental and useful problem in computer science, and there have been developed
many efficient sequential and parallel algorithms for sorting. In this paper, we are interested in parallel sorting
algorithms which are simple enough and useful in practice. Parallel algorithms depends highly upon parallel
computation models. PRAM is the most powerful model, and is widely used as a standard model to discuss
the inherent parallel complexity. In 1980’s, optimal parallel sorting algorithms for N numbers are given
which run in O(log N) time using O(N) processors on PRAM (e.g., [1]). However, these algorithms are
fairly complicated, and have large constant factors in the time complexity function. Also, PRAM is too
powerful to realize as it is.

This paper aims at developing simple sorting algorithms on a much simpler parallel computation model,
the two-dimensional mesh connected computer. This model is often slower than other machines such as the
hypercube, but is ideally suited to VLSI implementation. Considering VLSI implementation, the simplicity
of the algorithm is quite important.

For the two-dimensional mesh computer, there have been proposed many sorting algorithms. Thompson
and Kung [6] give the first O(n) parallel time algorithm on the » X n mesh machine. Later, several O(n) time
algorithms are proposed, among which Schnorr and Shamir [5] present an optimal algorithm with 3n + o(n)
parallel steps. However, the former algorithm is based on the divide-and-conquer principle, and is rather
complicated. The latter algorithm is non-recursive, but its low order term is relatively large for moderate
values of n.

Schnorr and Shamir [5] also present two simple algorithms which use only row and column operations.
Roughly, these algorithms alternately sort the rows and columns. Since sorting rows (columns) can be
performed in a completely synchronized manner and there are only sorting operation as well as its slight
variants for each row and column, the algorithms are very simple. Among the two algorithms, one is called
shear sort, and requires [logn] steps of alternately sorting rows and columns. The other is called revsort,
and requires [loglogn] steps plus 3 iterations of a step of the shear sort. The revsort additionally uses
shift operations for rows and columns. Iwama, Mxya.no and Kambayashi [2] describes a randomized sorting
algorithm, which may be viewed as a randomized version of the shear sort, without any analysis on it. They
give a complicated randomized algorithm by extending the algorithm, and analyze it by approximating the
probabilistic distribution, to be explained in section 2, by a simple binomial distribution.

This paper considers randomized sorting algorithms on the mesh machine, and analyzes them. A
randomized algorithm of alternately sorting (or randomlzmg) rows and sorting columns is first introduced.
This algorithm together with the randomized algorithm in [2] are then investigated in detail. It is shown
that these algorithms require O(loglogn) iterations of row and column sorting operations. Compared with
the revsort, the randomized algorithms given here do not need shift operations but use randomization. Our
results can be regarded as a probabilistic analysis of the shear sort. While the shear sort requires O(logn)
deterministic steps, these randomized- algorithms only need O(loglogn) steps. It is also observed by the
analysis as well as computational experiments that, if an initial configuration of n? numbers on the mesh
may be considered to be distributed randomly, the shear sort performs quite better in practice.

2. Algorithms and Preliminaries

We now describe the sorting algorithms on the mesh machine. Initially, n? numbers are glven one at
each processor of the n x n mesh computer. We consider sorting these numbers in the row-major snake-like
order as shown in Figure 2.1(e). Rows (columns) can be sorted simultaneously in O(n) parallel time. In the
sequel, we suppose that sorting rows (columns) can be performed in a unit time, and will be concerned with
the number of times row and column operations are executed.

The shear sort [5], to be called Algorithm S, can be described as follows:

Algorithm S: [5]
1. Shear the rows (sort odd-numbered rows to the right and sort even-numbered rows to the left);
Check if sorting is done; if yes, halt;
2. Sort each column from the top to the bottom;
Return to 1;

An example is given in Figure 2.1. Within [logn] iterations, Algorithm S completes sorting [5], where
throughout the paper log and In denote the logarithm of base 2 and e, respectively.

A new randomized sorting algorithm, Algorithm R, is given below. Here, by randomizing rows, it is
meant to rearrange numbers in each row at random. This may be done by producing a random number
at each element, and rearrange numbers in a sorted order of these random numbers in each row. This
randomized row operation may thus be regarded as a kind of sorting operation.

Algorithm R:
After repeating 1 and 2 [loglogn] times, switch to Algorithm S.

~ 2~

3 16 12 4 1 6 2 4

1 9 5 14 3 8 5 7
(randomize Tows) 11 8 2 7 (column sort) 10 9 12 14 gpear
= 10 6 13 15 = 16 13 15 —

(2) (b)

1 2 4 6 1 2 4 3 1 2 3 4
8 7 5 3 8 7 5 6 8 7 6 5
9 10 12 14 colymnsort O 10 12 11 ghepy 9 10 11 12
16 15 13 11 = 16 15 13 14 — 16 15 14 13

(c) (4) (e)
Figure 2.1. How Algorithms S and R proceed (the last three operations are for S and the first two
- for R which switches to S after 1 iteration)

1. Randomize each row;
2. Sort each column from the top to the bottom;

The following is the randomized algorithm given in [2].
Algorithm RS: [2]
1

. Randomize each row;
2. Sort each column from the top to the bottom;
3. Shear rows;
Check if sorting is done; if yes, halt;
4. Sort each column from the top to the bottom;
Return to 1;

We will analyze the complexity of these two randomized algorithms. Using the zero-one principle in
Knuth [3] as usual, we will reduce the analysis of sorting n? general numbers to that of sorting 7?2 binary
numbers as follows, where its weaker statement is made in [2].

Lemma 2.1. If 2 binary numbers (0 or 1) can be sorted on the mesh machine using row sorting in
the row-major snake-like order in #(n) time with probability 1 — p(n), the general sorting problem can be
solved in #(n) time with probability 1 — np(n).

Proof: Let a; be the maximum among numbers in row i after sorting is done. If each a; (i=1,...,n)
is in its sorted position, sorting each row finishes the whole sorting. Define a function fai(z) by
_ [0 z<La;
fai(e) = 1 z>a;
Then, a; is in the correct position if f,;(z) for all n2 numbers z are sorted correctly. For example,
1 2 3 4 0 0 0 0
8 7 6 5 fs(x)={‘1’ i’fg 000 0
9 10 11 12 = 1111
16 15 14 13 1111

We thus have the lemma, where about the probability we use Lemma 2.2 below. 0O

Below are summarized fundamentals on probability to be used in the paper. First, for an event A in' a
probabilistic space, Pr(A) denctes the probability of A. For a random variable X, E[X] and V[X] denote
the expectation and variance, respectively, of X. The following lemma will often be used implicitly.

Lemma 2.2. For events A;, Ag,..., A, in a probabilistic space (not necessarily disjoint),
n n :
Pr(U Aj) < ZPI’(AJ'). a
j=1 j=1

Lemma 2.3. (Chebyshev inequality)

Pr(|X — E[X]| > t\/V[X]) < tiz o

Lemma 2.4. (Chernoff bound; e.g., see [4]) Let X, Xs,..., X, be independent Bernoulli trials with
Pr(Xi=1)=p;, Pi(X;i =0) =1-p;, 0<pi <l Let X =3 * X, and p = Yoi=1Pi- Then '

exp(6p) {GXP(—#52/4) 0<6<4.1

Pr(X > p+6p) < —2BVE)
(X>wtbu) (1 +6)a+oim 9—(1+8)p §>%—1

~8~

62
Pr(X <p-6p)< exp(—-—-z—*)‘ o

3. Analysis on Algorithm R

Based on Lemma 2.1, we will investigate the problem of sorting n? binary numbers, 0 and 1, on the
n % n mesh machine. We call a row dirty if there are both 0 and 1 in the row. A row which is not dirty is
called clean. If the total number of dirty rows becomes at most one, sorting is done.

By the algorithms considered here, once a row becomes clean, the row will never become dirty again.
Also, regarding all the rows in the beginning as dirty, all dirty rows are consecutive at any time due to
column sorting. Lower and upper rows become clean first, and then middle rows become clean. Hence, at
each iteration, it suffices to evaluate how the number of dirty rows will be reduced. We extract a submesh
consisting of dirty rows at each stage, and consider the sorting problem for the submesh. Let m be the
number of dirty rows at some stage, i.e., the number of rows in the submesh. Initially, m is n.

Consider the m x n submesh computer. Rows are re-indexed from 1 to m. In the beginning of the
stage, let n; be the number of 1’s in Tow i, and let p; = n;/n. By randomizing rows, the binary numbers are
distributed at each row and events on different rows are independent.

The probabilistic behavior of these algorithms can be modeled as follows. Let X;; be a random variable,
taking O or 1 as its value, at the (4, j)-element of the mesh computer. Then, in tow i, for any subset S; of n;

elements of {1,2,...,n},
o f1 forjesiy 1
r(r={o Ge8) -y

It should be noted that X;; (= 1,...,n) for fixed ¢ are not independent to one another, while Xj;;
(i =1,...,m) for fixed j are independent. Defining Y; by

m
Y; = EX.',',
i=1

Y; is the sum of independent Bernoulli trials Xj,.. .y Xn with Pr(X; = 1) = p; = n;/n. Define p and p by

1 m . m
P=n—12m, u=mP=ZP-’-
et

i=1

Then,

E[Yj] = p = mp.
Without loss of generality, we can assume 0 < p < 1/2. Let Ymax, Ymed and Ymia be the maximum, median
and minimum, respectively, among Y; (§ = 1,... ,n). Then, after an iteration of Algorithm R, the number

of dirty rows is Yiax — Yiin + 1. We will estimate Yipax and Yiin by using the Chernoff bound.
Lemma 3.1. For any positive constant c,
Pr(Yj < p—c/ulnn) < n= 2,
Proof: Apply the Chernoff bound with § = ¢y/Innfp. O

Let = m — p = m(1 — p). Applying Lemma 3.1 for a random variable 7,- =1 —Y; with expectation
T, we have the following.

Lemma 3.2. For any positive constant c,
Pr(Y; > p+c\/Elnn) < a2, o

Lemma 3.3. An iteration of randomizing rows and sorting columns in Algorithm R reduces the number
m of dirty rows to /(8 + 4¢)m In n with probability at least 1 — n1e,

Proof: Setting ¢ = /4 + 2¢ in Lemmas 3.1 and 3.2, and applying Lemma 2.2 with considering that
here the union of 2n events are taken, we obtain the following for any positive constant e:

Pr((Yein < £ — V(4 + 26)pIn n) U (Yimax > p+ /(4 + 2¢)E1n n))
= Pr(U[(Y, <p—+/(@E¥2)plnn)u(Y; > p+/(4+2)EInn))) < 27175
j=1 ,
This implies that, by an iteration of Algorithm R, m is reduced to
V@ +29)mlan(yp++/1-p) < V(B +4e)mlnn

with probability at least 1 — 2n~17¢, where the last inequality follows from Lemma 3.4 below. O

~ 4~

Lemma 3.4. For0<ae<band 0<a <<,
\/aa + Vi(Il—0a) af(a+b)<a
max{Veazr +/b(l—=z)|a<z<B}=¢ Va a<af(a+bd)<f
\/_5+ VH(1=8) af(a+b)>8 O
Theorem 3.1. For 0 < ¢ < 0.8, after 2[loglogn] + 4 total iterations of alternately randomizing
or sorting rows and sorting columns (including iterations after switching to Algorithm S), Algorithm R
completes sorting n? binary numbers with probability at least 1 — 2[loglog njn=17c.

Proof: Let m; be the number of dirty rows after ¢ iterations in Algorithm R, where mg = n. Then, by
Lemma 3.3,

m; < /(8+4€)mi_11lnn (i>1)
<((®+ 4e)lnn)1/2+1/27+..-+1/2"n1/2‘ <(8+ 4c)n1/2€ Inn.
For i = [loglogn],
m; < 2(8+4¢€)Inn.
After switching Algorithm S, from Lemma 4.1 below, it takes log((16 +8¢)Inn) < 4 +loglogn iterations
fore<08. O

Applying Lemma 2.1 to this theorem, we have the following.

Corollary 3.1. To sort n? general numbers, Algorithm R requires at most 2[loglogn] + 4 iterations
of sorting (randomizing) rows and columns with probability at least n~¢ for 0 < € < 0.8. 0O
4. Analysis of Algorithm S

The following lemma for Algorithm § is mentioned in [5)].

Lemma 4.1. [5] By shearing rows and sorting columns, the number m of dirty rows is reduced to
[m/2]. O '
" The proof of this lemma may be obtained from the following by conceptually dividing the shearing step
into two: first, sort rows to the right, and then reverse even-numbered rows.

Lemma 4.2. For a nondecreasing real-valued function f on I = [—a,a), define g on I by
z)+ f(—=
ote) = LD HIm)

Then,
(max g(z)) - (min g(2)) < (f(a) - f(=a))/2. ©

In our problem, f(a) and f(—a) correspond to Ymax and Yin, respectively, and the left hand side
{max g(z)) — (min g(x)) corresponds to the number of dirty rows after shearing rows and sorting columns.
‘We can sharpen this lemma to the following.

Lemma 4.3.
(max g(z)) ~ (min g(<)) < max{f(a) - £(0), £(0) - f(~a)}/2.
Proof: Let o € I minimize g on I. As g(z) = g(~=) holds for all = € I, we can assume a > 0. Let
J1 =[-e,~0] U[e,d]

Jo = [~e,a).
izedh,
o) —o(o) = LEHICD)) J@ I
IfzeJq
o) —s(o) = LELHICD) o) J@IO
Therefore,

HATED) (o, KOy

S (G Bt (GO R O R (GO
2 >
< max{f(a);f(o)‘ £(0) -—2f(_a)}.]

max g(z) — min g(<) < max{

"\/5"v

That is, if £(0) = (f(a)+ f(—a))/2, (max g(z))— (rnmg(x)) < (f(a)—f(—a))/4. Here, f(0) corresponds
to the median Yiea among Yj. Therefore, if the median Yineq is shown to be near the middle between Ymax
and. Yi,in, the reduction factor may be estimated more nicely. This will be done in the next section.

5. Analysis on Algorithm RS
Before estimating the median Yy,eq among Yj, we first analyze Algorithm RS only using the results in
sections 3 and 4. ;From Lemmas 3.3 and 4.1, we have the following.

Lemma 5.1. An iteration of 1 ~ 4 in Algorithm RS reduces m to /(2 + ¢)mInn with probability at
least 1 — 22717, 0O

We will improve this lemma by giving a bound on the median Yieq. This elucidates the probabilistic
behavior of the shear sort, Algorithm S. Recall that Ynax, Ymed and Ynin are the maximum, median and
minimum, respectively, among Y; (5 = 1,...,n). We first analyze Yied-

For column j and a constant k with 0 < k < g, define a random variable Zj ; by

_f1 Y;<k
Z’w'-{o Y >k

Define a random variable Z; by

2y = Z VARD

j=1
If Pr(Z; > n/2) is small, Ypeq is grea.ter than k with high probability. Let ¢¢ = Pr(¥; < k) which is
independent of j.

Lemma 5.2. E[Z;] = ngi, and, for k= p—fpfor0 < 6 < 1,
E[Zi] < nexp(-pb?/2), V[Z:] < n exp(—pb?/2) + n? exp(—us?).
Proof: n u
E[Zy] = E[)_ Z¢] = Y _ ElZ,] = nas.
—

j=1
By the Chernoff bound, .
‘ at = Pr(Yj < p— 6p) < exp(—pb®/2)
and we obtain the bound for E[Z,]. For V[Z}], we have

VI = B 28 - Bl

j=1
= nEfzz,j] + n(n = 1)E[Zs j Zs,;1] — E[Zx]®> for distinct j and j'
= ngp + n(n — 1)E[Zk,j 2 ;1] — (nax)*.
By the definition of Z; j,
E[Z4,;2x,1] = Pr((Y; < k)0 (Y < k)) = Pr(Yy < k| Y < K)aw,

where Pr(. | -) is the conditional probability. Let u' = E[Yj: | ¥; < k], where E[. | -] is the conditional
expectation. Since k < u, we have p' > pand p' —6p' > p— 6 =k for 0 < § < 1. Under the condition
Y; £ k, Y;: is again the sum of independent Bernoulli trials whose expectation is u', so that we have

Pr(Yji < k| Y; < k) < Pr(Yj < p' — 64’ | Yj < k) < exp(—p'6%/2) < exp(—p6%/2).
Using the bound for gx, E[Zs ;j Zx ;] < exp(—p6?), and we finally have the following.
V[Zi] < nexp(—u6?/2) + n?exp(-pé?). O
Thus, bounds for the expectation and variance of Zy are derived, and the Chebyshev inequality may be
used to estimate Pr(Z; > n/2).

Lemma 5.3. For 0 < € < 1 and n > 16, the median Yyeq among Y; (4 = 1,...,n) is greater than

— /(T ¥ €)ulnn with probability at least 1 — 32n~17¢.
Proof: Fork=p— /(1 +€)plnn, ¢ < n~(+/2 and, from Lemma 5.2,

V[Zk] < nl—(l-{-c)/z + n2—(1+() < in—(,
where the last inequality follows since 0 < ¢ < 1. Using the Chebyshev bound (Lemma 2.3), we have

Pr(Z; > n'=(+9/2 4 1/3,01=9/2) ¢ tl?

~ B~

Since 0 < e < 1 and n > 16, setting t = n(l+‘)/2/(4\/§),
p1=(H+/2 4 4 f3,(1-9/2 ¢ %+

n m
4 2
Hence,) .
Pr(Z, > n/2) < 7= K
If Zy > n/2, the median Yineq among Y; is less than or equal to k. We thus obtain the lemma. 0O

We have thus given a bound from below to Yjpea. To obtain a better bound for Y. — Yined, we need
to re-examine Pr(Y; > p+ 8u) in more detail, which will be done in the following two lemmas.

Lemma 5.4. If 4 < (logn)/(e ~ 1/2), for any positive constant €, Yinax is at most (5/2 + €)logn with
probability at least 1 — n~17¢,
Proof: Applying the Chernoff bound with

g= Bt logn

we have ;
Pr(Y; > p+ (2+€)logn) < n™27¢,
Since g+ (24 €)logn < (5/2 + €)log n, we obtain the lemma. O

Lemma 5.5. If 4 > (logn)/(e — 1/2), for 0 < ¢ < 0.7,

Y <{ﬂ+\/(4+2e)(1—p)mlnn j<p<i
=+ /BF de)pminn 0<p<}

with probability at least 1 — n—1-¢,
Proof: Applying the Chernoff bound with

§=(8+4e)lnn/u < /(8 +4e)(e—1/2)Inn/logn < 4.1,

for 0 < € < 0.7, we have
Pr(Y; > p+ /(8 + 4e)ulnn) < n=27F,
This with Lemma 3.2 implies

Ymax Smin{p + /(4 +26)EInn, p++/(8+4e)ulnn}

with probability at least 1 —n~!~¢, Considering the minimum in the right hand side yields the lemma. 0O

We now give a bound on Ypax — Yined-

Lemma 5.6. Suppose u > (logn)/(e — 1/2) and 0 < € < 0.7. Then, Ymax ~ Yined < (5+3¢)mlnn
with probability at least 1 — 33 1-¢,
Proof: Combining Lemmas 5.3 and 5.5, with probability at least 1 — 33n~1=¢, when 1/3<p<1/2,

Yimax = Ymed < (V(4 +26)(1 = p) + /(1 +)p)VmInn
S (V(8+4e)/3+ /(1 +¢€)/3)Vmlnn < /(5 + 3e)mInn,

and, when 0 < p < 1/3,

Ymax = Ymea < (\/(8 +4e)p+ \/(1 + £)p)\/m Inn
<(V(8+4¢)/3+ /(1 +€)/3)VmInn < /(56 +3e)mInn. O

We can evaluate Yimed — Ymin in a similar way (in fact, this case is easier), and have the following.

Lemma 5.7. Suppose p > (logn)/(e —1/2) and 0 < € < 0.7. Then, Vipeq — Yain < /(54 3€¢)mlnn
with probability at least 1 — 33n~1-¢, ’

Proof: Due to the space limitation, we omit the proof in this extended abstract. 0O

Theorem 5.1. Algorithm RS sorts »? binary numbers within 2[loglog n] +1 iterations of 1 ~ 4 in the
algorithm with probability at least 1 — 33[loglogn]n™ = for 0 < € < 1/4.
Proof: We first show that, after [loglogn] — 1 iterations, the number of dirty rows becomes at most
(5 +3€¢)Inn. From Lemmas 4.3, 5.6 and 5.7, in an iteration, the number m of dirty rows is reduced to
/(5 +3e)mInn/2 with probability at least 1 — 33n=17¢ for 0 < ¢ < 1/4 < 0.7 if p at that stage is greater
than or equal to (log n)/(e—1/2). Hence, if 1 > (logn)/(e —1/2) in each of the first [loglog n] — 1 iterations,
by similar arguments in the proof of Theorem 3.1, the number of dirty rows is reduced to
5—_33 -2%Inn = (5+3¢)lnn

~T ~

with the probability mentioned in the theorem. If u < (logn)/(e — 1/2) for some stage in the iterations,
by Lemma 5.4, the number of dirty rows becomes at most (5/2 + €)logn < (5 + 3¢)Inn at this stage with
probability at least 1 — n~!~¢. Thus the number of dirty rows becomes sufficiently small at the stage.

Then, by the effect of shearing in the algorithm, the number of dirty rows is reduced by a factor of 1/2
(Lemma 4.1), so that additional [loglogn] 4 2 iterations finish sorting. 0O

Corollary 5.1. Algorithm RS sorts n? general numbers within 2{loglogn] + 1 iterations of 1 ~ 4 in
the algorithm with probability at least 1 — 33[loglogn|n™*for 0 < e < 1/4. O

6. Concluding Remarks

Computational testing has been done for the algorithms described in the paper. For sorting n? general
numbers with » = 2° (i = 6,...,11), Algorithm RS requires at most 4 iterations for 50 trials for each
n. Corollary 5.1 states that the number of iterations is at most 8 for this range of n with high probability.
Therefore, the bound in Corollary 5.1 is fair, and moreover it is interesting to observe that Algorithm RS only
requires 4 iterations even for sorting four million numbers. We also show a table to see why the algorithms
run fast in the experiments. Table 6.1 shows the number of dirty rows after executing an iteration of
Algorithm RS. As is seen from the table, even for n = 2048, the number of dirty rows is reduced to at most
12 by one iteration. Although the bounds given in sections 3 through 5 are not so tight for it, these still
explain why these algorithms are fast in practice. Since the reduction in the number of dirty rows at the
first iteration is drastic, it can be said that, if an initial configuration of n? numbers on the mesh is random,
the shear sort does perform quite well in practice.

Table 6.1. The maximum Mmax, average m,y and minimum muy;, numbers of dirty rows after one
iteration of Algorithm RS for sorting 50 different test sets of n? binary numbers with
half 0's and half 1's

n |] 64 128 256 512 1024 2048
Mumax 5 5 6 9 12 12
Mav 2.46 2.62 3.26 4.30 5.16 6.40
TMamin 2 2 2 2 9 3

Summarizing the algorithms and their analyses, we have presented the randomized sorting algorithms
on the mesh computer. These algorithms use only row and column sorting operations, and therefore are
quite simple and useful in practice. Also, our analysis can be viewed as a probabilistic analysis of the shear
sort algorithm. In the analysis, we have evaluated the median value of random variables ¥; (7 = 1,...,n),
and utilized this to improve the analysis on the effect of shearing, which would be of interest in itself.

Acknowledgment
This work was partially supported by the Grant-in-Aid of the Ministry of Education, Science and Culture
of Japan.

References

[1] R. Cole: Parallel Merge Sort. SIAM Journal on Computing, Vol.17, No.4 (1988), pp.770-785.

[2] K. Iwama, E. Miyano and Y. Kambayashi: A Parallel Sorting Algorithm on the Mesh-Bus Machine.
Technical Report SIGAL 18-2, IPSJ, November 1990.

[3] D. Knuth: The Art of Computer Programming: Vol.3: Sorting and Searching. Addison-Wesley, 1973.

[4] P. Raghavan: Lecture Notes on Randomized Algorithms. IBM Research Report RC 15340, IBM Research
Division, 1990. :

{5] C. P. Schnorr and A. Shamir: An Optimal Sorting Algorithm for Mesh Connected Computers. Proceed-
ings of the 18th Annual ACM Symposium on Theory of Computing, 1986, pp.255-263.

[6] C. Thompson and H. Kung: Sorting on a Mesh-Connected Parallel Computer. Communications of the
ACM, Vol.20 (1977), pp.263-271.

