T T Y R A 22—-T
(1991 7. 22)

BEWRB L EN/NE
BEES LWE— RA#S

HRARIERFE BREFLEH

75 7 DRFEBRE T, BHT RTOBEBERINTVWSEL, BRIELDIRTORK%:IHE
RBI2CE2ENET S, HRAEORVICK VBIFER, AERSREEA TS, /hXTR
B, REROBRARL LTI RAEREERTS. £LT, HOUEER T 20 LERE
IMNEREY, BOBEMEE, RERBEOMBERYT. Wi, BEERCBVWT—ElRR&
N DBHEBREINTVRAERBOEREZE > LFIESLTEET 5 E2RT. BRI,
BEFHENEEOABLOMBIROVTRN, BEERKERD B EB—AICIIN P HE
THEH, RieoWTRBERBTROZ LB TESZ I EERT.

Mixed-Searching and Proper-Path-Width

Atsushi TAKAHASHI, Shuichi UENO, and Yoji KAJITANI

Department of Electrical and Electronic Engineering
Tokyo Institute of Technology, Tokyo, 152 Japan

This paper introduces the mixed-searching game, which is a natural common
generalization of the edge-searching and node-searching games extensively studied
so far. We establish a relationship between the mixed-search number of a graph
G and the proper-path-width of G introduced by the authots in a previous paper.
Complexity results are also shown.

(1

1 Introduction

This paper introduces a new version of searching
game, called mixed-searching, which is a natural
common generalization of the edge-searching and
node-searching extensively studied so far. We es-
tablish a relationship between the mixed-search
number of a graph G and the proper-path-width
of G introduced by the authors in [16]. Complex-
ity results are also shown.

The searching game was introduced by Parsons
[9]. In the searching game, an undirected graph G
is considered as a system of tunnels. Initially, all
edges of G are contaminated by a gas. An edge is
cleared by some operations on G. A cleared edge is
recontaminated if there is a path from an uncleared
edge to the cleared edge without any searchers on
its vertices or edges.

In the edge-searching, the original version of
searching game, an edge is cleared by sliding a
searcher along the edge. A search is a sequence of
operations of placing a searcher on a vertex, delet-
ing a searcher from a vertex, or sliding a searcher
along an edge. The object of edge-searching is to
clear all edges by a search. We call such a search
an edge-search. An edge-search is optimal if the
maximum number of searchers on G at any point
is as small as possible. This number is called the
edge-search number of G, and denoted by es(G).
LaPaugh proved that there exists an optimal edge-
search without recontamination of cleared edges
[6). Megiddo, Hakimi, Garey, Johnson, and Pa-
padimitriou showed that the problem of comput-
ing es(G) is NP-hard for general graphs but can
be solved in linear time for trees [7]. '

The node-searching, a slightly different version
of searching game, was introduced by Kirousis and
Papadimitziou [5]. In the node-searching, an edge
is cleared by placing searchers at both its ends si-
multaneously. A node-search is a sequence of op-
erations of placing a searcher on a vertex or delet-
ing a searcher from a vertex so that all edges of
G are simultaneously clear after the last stage. A
node-search is optimal if the maximum number of
searchers on G at any point is as small as possi-
ble. This number is called the node-search number
of G, and denoted by ns(G). Kirousis and Pa-
padimitriou proved the following results: (1) There
exists an optimal node-search without recontami-
nation of cleared edges; (2) The problem of com-
puting ns(G) is NP-hard for general graphs; (3)
ns(G) — 1< es(G) < ns(G) +1 [5].

The path-width of a graph was introduced by
Robertson and Seymour [11}. Given a graph G,
a sequence X3, X2,..., X, of subsets of the vertex
set of G is a path-decomposition of G if the {ollow-
ing conditions are satisfied: (i) For every edge e
of G, some X; (1 < i < r) contains both ends of
e (i) For1 <l <m<n<r XinX, C Xn.
The path-width of G, denoted by pw(G), is the
minimum value of ¥ > 0 such that G has a path-
decomposition X3, X2,..., X, with |X;| < k+1 for
i=1,2,...,7. The unexpected equality ns(G) =
pw(G) + 1 was mentioned by Méhring [8], and im-
plicitly by Kirousis and Papadimitriou [4]. This
provides a linear time algorithm to compute ns(G)
for trees [8, 14].

In this paper, we introduce another version of
searching game, called the mizred-searching, which
is a natural common generalization of the edge-
searching and node-searching. In the mixed-
searching, an edge is cleared by placing searchers
at both its ends simultaneously or by sliding a
searcher along the edge. A mized-search is a se-
quence of operations of placing a searcher on a
vertex, deleting a searcher from a vertex, or slid-
ing a searcher along an edge so that all edges of
G are simultaneously clear after the last stage. A
mixed-search is optimal if the maximum number
of searchers on G at any point is as small as possi-
ble. This number is called the mized-search num-
ber of G, and denoted by ms(G). We first show
the inequalities es(G) — 1 < ms(G) < es(G) and
ns(G) ~ 1 < ms(G) < ns(G). We next prove that
there exists an optimal mixed-search without re-
contamination of cleared edges. This implies that
the problem of deciding, given a graph G and an
integer k, whether ms(G) < k is in NP.

The proper-path-width of a graph was intro-
duced by the authors in {16]. The path-
decomposition Xi, X2,...,X, of G with |X;| <
k41 (k > 1) for any i is called a proper-path-
decomposition of G if | X; N X;n N Xy| < & holds for
any Xj, Xm, and X, none of which is a subset of
the others (1 <1 < m < n < r). The proper-path-
width of G, denoted by ppw(G), is the minimum
value of k > 1 such that G has a proper-path-
decomposition X, X2,...,X, with |Xi| < k +1
for any i. We prove that the problem of comput-
ing ppw(G) is NP-hard for general graphs but can
be solved in linear time for trees. We establish
the equality ms(G) = ppw(G) and show that the
problem of computing ms(G) is NP-hard for gen-
eral graphs but can be solved in linear time for

(2)

trees.

The 1est of the paper is organized as follows:
We study the mixed-searching in Section 2. Sec-
tion 3 concerns the proper-path-width of a graph.
We prove a connection between the mixed-searching
and proper-path-width in Section 4. Some remarks
will be given in Section 5.

2 Mixed-Searching

Graphs we consider are nontrivial and connected,
but may have loops and multiple edges unless oth-
erwise specified. Let G be a graph, and V(G) and
E(G) denote the vertex set and edge set of G, re-
spectively. '

In the mized-seerching game, a graph G is con-
sidered as a system of tunnels. Initially, all edges
are contaminated by a gas. An edge is cleared by
placing searchers at both its ends simultaneously
or by sliding a searcher along the edge. A cleared
edge is recontaminated if there is a path from an
uncleared edge to the cleared edge without any
searchers on its vertices or edges.

Definition 1 A search is ¢ sequence of the follow-

tng operations:

(a) placing a new searcher on a vertes,

(b) deleting a searcher from a vertez,

(¢) sliding a searcher on a vertes along an incident
edge and placing the searcher on the other end,

(d) sliding a searcher on a verter along an incident
edge,

(e) sliding @ new searcher along an edge and plac-
ing the searcher on its end,

(f) sliding a new searcher along an edge.

The object of mixed-searching game is to clear all
edges by a search. We call such a search a mized-
search. A mixed-search is optimal if the maximum
number of searchers on G at any point is as small
as possible. This number is called the mized-search
number of G, and denoted by ms(G).

We first show a relation to the edge-searching
and node-searching.

Theorem 1 For any graph G, es(G) — 1 <
ms(G) < es(G) and ns(G) — 1 < ms(G) < ns(G).

Sketch of proof: The edge-search and node-search
are special cases of the mixed-search by definition.
Thus we have ms(G) < es(G) and ms(G) < ns(G).

Using at most one more searcher to traverse an
edge that is cleared by placing searchers at both

its ends, we can converi any mixed-search to an
edge-search. Thus es(G) < ms(G) + 1.

Similarly, using at most one more searcher to
clear an edge that is cleared by sliding a searcher.
along the edge, we can convert any mixed-search .
to a node-search. Thus ns(G) < ms(G)+ 1. O

We can easily construct éxamples showing that all
four cases are possible (See Fig. 1).

. G2

Gl o———0
ms(G;) = 2 ms(G;) = 1
(a) es(Gy) = 2 (b) es(G)) = 1
ns(Gy) = 2 ns(Gy) = 2

Gs Gy

ms(G;) = 4 ms(Gy) = 2
(c) es(G’a)' = 5 (d) es(G4) = 3
ns(Gs) = 4 ns(G4) = 3

Figure 1: Search numbers of graphs

Kirousis and Papadimitriou proved that recon-
tamination does not help in node-searching.

Theorem A ([5]) For any graph G, there ezists
an optimal node-search without recontamination of
cleared edges.

Corollary A ([5]) For any graph G, there exists

an optimal node-search without recontamination of

cleared edges satisfying the following two conditions:

(i) every vertez is visited ezactly once by a searcher,

(i) every searcher is deleted immediately after all
the edges incident to it have been cleared (ties
are broken arbitrarily).

We shall prove now that recontamination does
not help even in mixed-searching.

Theorem 2 For any graph G, there exists an opti-
mal mized-search without recontamination of
cleared edges.

(3)

Sketch of proof: Let G be a graph, and G,, be
the graph obtained from G by subdividing every
edge of G. We call the vertices of V(G) C V(Gwm)
original vertices of Gy, and the vertices of V(Gm)—
V(G) middle vertices of G,,. We shall prove that
ms(G) = ns(G,,) — 1 and an optimal mixed-search
of G without recontamination of cleared edges can
be obtained from an optimal node-search of Gy, of
the form described in Corollary A.

It is almost obvious that ns(G.) < ms(G) +1
since by one extra searcher we can carry out node-
search of G,,, simulating a mixed-search of G.

Conversely, we can carry out a mixed-search
of G, simulating an optimal node-search of G, of
the form described in Corollary A as follows. We
can assume that a searcher is placed on a middle
vertex of G,, after a searcher is placed on one of
its neighbors. The rules for the simulation are the
following;:

e When a searcher is placed on an original vertex
v of G,,,, a searcher is placed on v of G if v has
no searcher.

e When a searcher is deleted from an original
vertex v of G,,, delete the searcher from v of
G if v has a searcher.

e When asearcher is placed on a middle vertex of
G, clear the corresponding edge (u,v) of G, if
it is contaminated, as follows: We can assume
that » has a searcher and v does not have a
searcher in G. If no recontamination is caused,
clear (u,v) € E(G) by sliding a searcher on u
along (u,v), and place it on v. Otherwise, clear
(u,v) € E(G) by placing a new searcher on v.

e Do nothing in any other case.

It is not difficult to see that the simulation
based on the rules above defines a mixed-search
of G without recontamination of cleared edges, and
the number of searchers used on G is at most
n3(Gm). We will show that ns(Gm) — 1 searchers
are enough. Suppose that the number of searchers
on G,, raises to ns(G,,) when a searcher is placed
on v of G,,. The next operation on G,, must
be deleting a searcher from a vertex. A searcher
on v or a vertex adjacent to v must be deleted
in the next operation by the assumption that the
node-search is of the form described in Corollary A.
There are the following four cases to be considered:

(1) v is an original vertex of Gy, and the searcher
on v is deleted in the next operation.

(2) v is an original vertex of Gy, and a searcher
on a vertex adjacent to v is deleted in the next

(4)

operation.

(3) v is a middle vertex of G,, and the searcher
on v is deleted in the next operation.

(4) v is a middle vertex of Gy, and a searcher on
a vertex adjacent to v is deleted in the next
operation.

In the case of (1), all edges of G incident to v have

been cleared before placing a searcher on v of G,

since all middle vertices of G,, adjacent to v have

accepted searchers. Thus placing a new searcher .

on v of G is redundant. Similatly, we can show

that no new searcher on v or a vertex adjacent to

v is necessary for the other three cases. Thus we

have ms(G) < ns(Gp,) — 1. O

It should be noted that Theorem 2 implies that
the problem of deciding, given a graphk G and an
integer k, whether ms(G) < k is in NP.

We obtain the following corollary from Theo-
rem 2.

Corollary 1 For any graph G, there exists an op-

timal mized-search without recontamination of
cleared edges such that it is a sequence of opera-

tions (a), (b), or (c) of Definition 1, and satisfying
the following two conditions:

(i) every vertez is visited exactly once by a searcher,
(ii) every edge is visited at most once by a searcher.

3 Proper-Path-Width

Definition 2 ([16]) A sequence X1, X2,..., X of
subsets of V(G) is a path-decomposition of G if the
following two conditions are satisfied:
(i) For every edge e € E(G), some X; (1 <i<r)
contains both ends of e.
(ii) For1<i<m<n<r, XiNn X, C Xm.
A path-decomposition X1,Xa,..., Xy of G with
|Xi] € k+1 (k> 1) for any i is called a proper-
path-decomposition of G if |[Xi N Xpm N X,| < k
holds for any Xi, Xm, and X, none of whick is
a subset of the others (1 <1< m < n <r) The
proper-path-width of G, denoted by ppw(G), is the
minimum value of k > 1 such that G has a proper-
path-decomposition X1, Xa,..., Xy with | Xi| < k+
1 for any i.

Notice that a path-decomposition such that
X; € X; for any distinct i and j is a proper-path-
decomposition if | Xi N X,| < k for any X; and Xn
(1 +2 < n). Notice also that pw(G) < ppw(G) <
pw(G) + 1 for any graph G.

A graph obtained from connected graphs Hj,
H,, and Hj by the following construction is called
a ster-composition of Hy, Ha, and Hs: (i) Choose
a vertex v; € V(IH;) for i = 1,2, and 3; (ii) Let v
be a new vertex not in Hy, Ha, or Hg; (iii) Connect
v to v; by an edge (v,v;) for i = 1,2, and 3. We
define the family Q of trees recursively as follows:
(i) Q1 = {K13}; (ii) If 24 is defined, a tree T is in
k41 if and only if T is a star-composition of (not
necessarily distinct) three treesin Q. A graph H is
a minorof G if H is isomorphic to a graph obtained
from a subgraph of G by contracting edges.

The following theorems were proved in {16].

Theorem B ([16]) For any tree T and an integer
k (k2 1), ppw(T) < k if and only if T contains
no tree in §d; as a minor.

Corollary B ([16]) (1) The number of vertices of
a tree in) is % k>1)
(2) 19| 2 k2 (k2 1).

Theorem C ([16]) For any tree T and an inte-
ger k (k > 1), ppw(T) > k+ 1 if and only if
T has a vertex v such that T'[v has at least three
connected components with proper-path-width k or
more, where T[v is the graph obtained from T by
deleting v.

Theorem C was used to prove Theorem B.

A k-clique of a graph G is a complete sub-
graph of G with k vertices. For a positive inte-
ger k, k-trees are defined recursively as follows: (i)
The complete graph with &k vertices is a k-tree; (ii)
Given a k-tree Q with n vertices (n > k), a graph
obtained from Q by adding a new vertex adjacent
to the vertices of a k-clique of Q is a k-tree with
n + 1 vertices. A k-tree Q is called a k-path [10]
or k-chordal path [1) if [V(Q)| < k+ 1 or @ has
exactly two vertices of degree k. A partial k-path
is a subgraph of a k-path.

Before proving Theorem 3 below, we need the
following lemma.

Lemma 1 For any graph G with ppw(G) = k,
there exists a proper-path-decomposition Xj,
X2,..., X; of G satisfying the following two condi-
tions:

(i) | Xi|=k+1 for any i,

(i) | XinXipal=k for1<i<r-1.

Sketch of proof: We will show that a proper-
path-decomposition of G of the form described in

this lemma can be obtained from any proper-path-
decomposition X = (Xj,Xs,...,X,) with | X;] <
k+1for any ¢ by the operations of deleting X, {rom
the sequence, adding a vertex to Xj, or inserting a
subset of V(G) between X; and X;4;. O

Theorem 3 For any simple graph G and an inte-
ger k (k > 1), ppw(G) < k if and only if G is a
partial k-path.

.Sketch of proof: Suppose that ppw(G) = h < k

and X1, X2,..., X, is a proper-path-decomposition

of G of the form described in Lemma 1. We con-

struct a h-path H as follows:

(i) Let vy be a vertex in X; N X,. Define that Q,
is the complete graph on X; — {v1}.

(ii) Given @Q; and the vertex vy, define that Q2
is the h-path obtain from @Q; by adding v;
and the edges connecting v; and the vertices
in Xl s {Ul}'

(iii) Given Q; and the vertex v; € X; — X;_; (2 <
i < r), define that Q;4; is the h-path obtained
from @; by adding v; and the edges connecting
v; and the vertices in X; N X;_;.

(iv) Define H = Q,4;.

From Lemma 1 and the definition of proper-path-

decomposition, v; is uniquely determined and

vi-1 € XN X;—y for 2 < i < r. Furthermore,

we have V(H) = V(G) and E(H) DO E(G). Thus

G is a partial h-path, and so a partial k-path.
Conversely, suppose, without loss of generality,

that G is a partial k-path with n vertices and H

is a k-path such that V(H) = V(G) and E(H) D

E(G). 1t is well known that H can be obtained as

follows:

(i) Define that @; = R; is the complete graph
with k vertices.

(ii) Given Q;, R;, and a new vertex v;, define that
Qi+1 is the k-path obtained from Q; by adding
v; and the edges connecting v; and the vertices
of R;, and Ry is a k-clique of Q,4; that con-
tains v;.

(iii) Define H = Qp—g+1-

We define X; = V(R))U {v} for 1 <i<n—k.

It is not difficult to see that the sequence X,,

X2,..., Xpn-k is a path-decomposition of H with

|Xil = k+ 1 for any i. Since Xiy; — Xi—1 =

{vi,vin}y I XicanXip|=k—-1for 1 <i<n—k.

It follows that | X, N X, N X.| < k for any a, b, and

c(l1 £a<b<c<n-k). Thus the sequence

X1,X2,...,X,—k is a proper-path-decomposition

(5)

of H with |X;| = k + 1 for any i and we have
ppw(H) is at most k, and so ppw(G) is at most k.
=]

Amborg, Corneil, and Proskurowski proved
that the problem of deciding, given a graph G and
an integer k, whether G is a partial k-path is NP-
complete [1]. Thus we immediately have the fol-
lowing by Theorem 3.

Theorem 4 The problem of computing ppw(G) s
NP-hard.

It should be noted that Theorem B together
with Robertson and Seymour’s results on graph
minors [12, 13] provides O(n?) algorithm to decide,
given a tree T’ on n vertices, whether ppw(T) < k
for any fixed integer k, although it is not practical
even if we could solve MINOR CONTAINMENT
(see [3], for example) efficiently, because || > k!?
as is shown in Corollary B(2).

We show a practical algorithm to compute
ppw(T) for trees T based on Theorem C, and prove
the following.

Theorem 5 For any tree T', the problem of com-
puting ppw(T) is solvable in linear time.

Sketch of proof: Our algorithm to compute
ppw(T) is shown in Fig. 2. The outline of the al-
gorithm is as follows.

For any tree T with a vertex v € V(T') as the

root, we define the path-vector po(v, T) = (py, cv, Sv).

py describes the proper-path-width of T. ¢, and
S, describe the condition of T° as {ollows: If there
exists u € V(T) — {v} such that T/u has two
connected components with proper-path-width p,
and without v, then ¢, = 3 and S, is the path-
vector of the connected component of T'/u con-
taining v; Otherwise, ¢, is the number of the con-
nected components of T'/v with proper-path-width
py and S, = nul. Suppose that a tree T rooted
at s is obtained from tree T rooted at s and tree
T, rooted at t by joining an edge (s,t). Based
on Theorem C, the Procedure MERGE recursively
calculating the path-vector 57(s,T) of T from the
path-vector p9(s,T1) = (p,,¢.,S,) of T1 and the
path-vector (¢, T3) = (p¢, ¢, St) of Ta.

The algorithm computes the path-vector of T
rooted at r from the path-vectors of isolated ver-
tices obtained {rom T by deleting all edges in T'.
The Procedure DFS computes the path-vector of a
maximal subtree of T" rooted at s from the path-
vectors of maximal subirees rooted at children of

sin T by using the Procedure MERGE. The Pro-
cedure MAIN obtains the proper-path-width of T
from the path-vector of a maximal subtree rooted
at r by the Procedure DFS.)

The Procedure MERGE calculates the path-
vector of the join of two subtrees T3 and T3 in O(p)
where p = maz{ppw(T1), ppw(T2)). From Corol-
lary B(1), we have p = O(log n) where n = [V (T)|.
Since the Procedure MERGE is called at most once
for any vertex, the time complexity of the algo-
rithm is essentially O(rnlogn). By a careful use
of pointers, the Procedure MERGE calculates the

path-vector in O(q) where ¢ = min(ppw(T1), ppw(12)).

Thus the time complexity of the algorithm is O(n).
a

We will also mention that for any tree T with n
vertices we can construct a proper-path-
decomposition Xy, X3,..., X, with | X;] < ppw(T)+
1 for any ¢ in O(nlogn) time.

4 Mixed-Searching and Proper-
Path-Width

We. establish the following equality for simple
graphs in this section.

Theorem 6 For any simple graph G, ms(G) =
ppw(G).

Sketch of proof: Suppose that ppw(G) = k and
X1, X2,...,X, is a proper-path-decomposition of
G of the form described in Lemma 1. We can ob-
tain a mixed-search with k searchers as follows:
Step 1: Let vy be a vertex in X1 N X,. Place the
k searchers on the vertices of X; — {v}.
Step 2: Slide a searcher on u; € X; — X, toward
v, and place it on v; if (uy,v1) € E(G).
Otherwise, delete a searcher from u; and
place a searcher on v;.
Step 3: Let i = 2.
Step 4: Slide a searcher on u; € X; — Xi41 to-
ward v; € X; — X;—; and place it on v;
if (ui,v;) € E(G). Otherwise, delete a
searcher from u, and place a searcher on
v
Step 5: Let i = 7 + 1 and repeat Step 4 while
t<r—1.
Step 6: Let u, be a vertex in X,_; N X,. Slide
a searcher on u, toward v, € X; — X,
and place it on v, if (ur,v;) € E(G).

(6)

Procedure MERGE(p¥(s,T)),pu(1,T3))
{ iﬂl"l‘:W(-’.Tl)vW(‘,Tz)]

{ output:pu(s,T) }

{ W(‘"‘P) = (P!mn Cemp, ’lmp) }

1. i2 p, > p¢ then
if ¢, <2 then
PU(s,T) = pu(s, T1);
else
' W(tmp) = MERGE(S, 79(1,T2));
if p, = pimp then
P9(s,T) = (p, +1,0,nul);
else
W(" T) = (p,,a,W(tmp));
endif
endif

2. if p, = p; then
if ¢, 22 or ¢; > 2 then
P9(s,T) = (p. + 1,0, nul);
else if ¢, =0 then
W(’vT) = (pu 1, "ul);
else if ¢, =1 then
PU(s,T) = (ps, 2, nul);
endif

3. if p, < p then

if ¢ <1 then
79(s,T) = (p, 1, nul);

else if ¢; = 2 then
W(‘pT) = (ph 3-7517(3-7'1))?

else if c; =3 then -
PU(tmp) = MERGE(pu(s,T1),S:);
if pt = pimp then

P9(s,T) = (p¢ + 1,0,nui);

PU(s, T) = (pe, 3, F0(tmp));

else

endif
eridif

4. return(pu(s,T));
end

Procedure DFS(s)
{input: a vertex s }
{ output: the path-vector of the maximal subtree rooted at s }

1. p9(s) = (1,0,nul);

2. for all children t{ of s in T do
PU(t) = DFS(t);
PU(s) = MERGE(PU(s), pu(1));

endfor

3. return(pv(s));
end

Procedure MAIN(T, r)
{input: a tree T with a vertex r as the root }
{ output: proper-path-width ppw(T) }

1. (prycr,Sy) = DFS(r);

2. return(p,);
end

Figure 2: The algorithm to compute ppw(T)

(7

Otherwise, delete a searcher from u, and

place a searcher on v,.
From Lemma 1, both u; (1 <i<r—-1)and v; (2 <
i < r) are uniquely determined. From Lemma 1
and the definition of proper-path-decomposition,
€ X1 (2<i<r)and v € Xj4) 1 <i<r—
1). Notice that before sliding or deleting a searcher
from u; in Steps 4 or 6, the searchers are on the
vertices X; N X;_; and after placing a searcher on
v; in Steps 2 or 4, the searchers are on the vertices

- XiN Xi41. It is easy to see that all edges incident

to u; except for (ui,v;) have been cleared when

the searcher on u; is deleted in Steps 2, 4, or 6.

Since G is a simple graph, there is at most one edge

connecting u,; and v;. Thus the edge (u;,v;) for 1 <

i < r, if exists, is cleared by sliding a searcher along

it and the other edges of G are cleared by placing

searchers at both its ends simultaneously. Thus the
search above is indeed a mixed-search with at most
ppw(G) searchers, and we have ms(G) < ppw(G).

Conversely, suppose that we have a mixed-
search with k searchers of the form described in

Corollary 1. For the i-th operation of the mixed-

search, we define X; as follows:

(1) When a searcher is placed on (deleted from)
a vertex, we define X; as the set of vertices
having searchers.

(2) When a searcher is slid from u to v, we define
X as the set of u, v, and the vertices having
the other searchers.

It is not difficult to see that the sequence Xj,

X32,..., X, thus obtained is a path-decomposition

of G with |X;] € k+ 1 for any i. I{ X is defined

by (1) then |X;| < k. H X; is defined by (2) then

u & X; for any j > i and v ¢ X, for any j < i.

Thus {X; 0 Xm N X,| < k holds for any X;, X,

and X, none of which is a subset of the others

(1 £1 < m < n <r) Therefore, the sequence

X1,X2,...,X; is a proper-path-decomposition of

G with |X;| € k + 1 for any i. Thus we have

ppw(G) < ms(G). O

It should be noted that Theorems B and 6 pro-
vide a structural characterization of trees 7' with
ms(T) < k. _

From Theorems 4, 5, and 6, we have the follow-
ing complexity results on ms(G).

Theorem 7 The problem of computing ms(G) is
NP-hard for general graphs but can be solved in
linear time for trees.

5 Concluding Remarks

Notice that Theorem 6 does not hold for multiple
graphs. If G is the graph consisting of three parallel
edges, ppw(G) = 1, and ms(G) = 2. However we
can prove that ppw(G) < ms(G) < ppw(G) + 1 for
any multiple graph G.

We should mention the relation of mixed-
searching with the virus-searching introduced by
Shinoda [15]. In virus-searching, initially, all ver-
tices are contaminated by a virus. A vertex is
cleared by placing a searcher on it. A cleared ver-
tex is recontaminated if there is a path from an
uncleared vertex to the cleared vertex without any
searchers on its vertices or edges. A search is a
sequence of operations of placing a searcher on a
vertex, deleting a searcher from a vertex, or slid-
ing a searcher along an edge. The object of virus-
searching is to clear all vertices by a search. We
call such a search a virus-search. A virus-search is
optimal if the maximum number of searchers on G
‘at any point is as small as possible. This number is
called the virus-search number of G, and denoted
by vs(G). Any virus-search S can be considered
as a mixed-search, and vice versa. It is easy to see
that an edge (u, v) is cleared by S as a mixed-search
if and only if both its ends u and v are cleared by
S as a virus-search. Thus vs(G) = ms(G) for any
graph G.

We learned recently that Bienstock and Sey-
mour introduced independently the mixed-
searching game [2]. They prove directly that there
exists an optimal mixed-search without recontami-
nation of cleared edges. They also mentioned that
monotonicity result for mixed-searching implies
monotonicity for both edge- and node-searching.

References

[1] S. Arnborg, D. G. Corneil, and A.
Proskurowski, Complexity of finding embed-
dings in a k-tree, SIAM J. Alg. Disc. Meth.,
8(2), pp. 277-284, April 1987.

[2] D. Bienstock and P. Seymour, Monotonicity in
graph searching, Journal of Algorithms, 12(2),
pp. 239-245, 1991.

[3] D.S. Johnson, The NP-completeness column:
an ongoing guide, Journal of Algorithms, 8,
pp. 285-303, 1987.

[4] L. M. Kirousis and C. H. Papadimitriou, In-
terval graphs and searching, Discrete Mathe-
matics, 55, pp. 181184, 1985.

[5] L. M. Kirousis and C. H. Papadimitriou,
Searching and pebbling, Theoretical Com-
puter Science, 47, pp. 205-218, 1986.

[6] A. LaPaugh, Recontamination does not help

to search a graph, Technical Report, Elec-

trical Engineering and Computer Science De-

partment, Princeton University, 1983.

M. Megiddo, S. L. Hakimi, M. R. Garey, D. S.

Johnson, and C. H. Papadimitriou, The com-

plexity of searching a graph, Journal of the

Association for Computing Machinery, 35(1),

pp. 18-44, January 1988.)

{8] R. H. Mohring, Graph problems related to
gate matrix layout and PLA folding, in G.
Tinhofer, E. Mayr, H. Noltemeier, and M.
Syslo, editors, Computational Graph Theory,
pp. 17-51, Springer-Verlag, Wien New York,
1990.

[9] T. D. Parsons, Pursuit-evasion in a graph, in
Y. Alavi and D. Lich, editors, Theory and Ap-
plications of Graphs, pp. 426-441, Springer-
Verlag, Berlin, 1976.

[10] A. Proskurowski, Separating subgraphs in k-
trees: cables and caterpillars, Discrete Math-
ematics, 49, pp. 275-285, 1984,

{11] N. Robertson and P. D. Seymour, Graph mi-
nors. 1. Excluding a forest, Journal of Combi-
natorial Theory, Series B(35), pp. 39-61, 1983.

[12] N. Robertson and P. D. Seymour, Graph mi-
nors. XIII. The disjoint paths problem, 1986,
preprint.

[13] N. Robertson and P. D. Seymour,
minors. XVI. Wagner’s conjecture,
preprint.

[14] P. Schefiler, A linear .algorithm for the path-
width of trees, in R. Bodendiek and R. Henn,
editors, Topics in Combinatorics and Graph
Theory, pp. 613-620, Physica-Verlag, Heidel-
berg, 1990.

[15] S. Shinoda, On some problems of graphs —
including Kajitani’s conjecture and its solu-
tion —, in Proc. of 2nd Karuizawa Workshop
on Circuits and Systems, pp. 414-418, 1989,
in Japanese.

[16] A. Takahashi, S. Ueno, and Y. Kajitani, Min-
imal acyclic forbidden minors for the family of
graphs with bounded path-width, to appear
in Annals of discrete mathematics (Proceed-
ings of 2nd Japan conference on graph theorey
and combinatorics, 1990). Also: SIGAL 91-19-
3, IPSJ, 1991.

[7

—

Graph
19817,

(8)

