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An incremental algorithm for constructing shortest watchman routes

Xue-Hou TAN, Tomio HIRATA and Yasuyoshi INAGAKI

Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

The problem of finding the shortest watchman route in a simple polygon P through a point s on
its bounday is considered. A route is a watchman route if every point inside P can be seen from at
least one point along the route. We present an incremental algorithm that constructs the shortest
watchman rqute in O(n®) time for a simple polygon with n edges. This improves the previous O(n?)

bound.
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(Extended Abstract)

1 Imntroduction

The watchman route problem, posed by Chin and Ntafos [2], deals with finding the shortest route
from a point = back to itself in the given polygon so that every point in the polygon can be seen from
at least one point along the route. In [2], Chin and Ntafos gave an O(n) algorithm for the watchman
route problem in a simple rectilinear polygon with n edges. They also presented an O(n*) algorithm
for constructing the shortest watchman route in a simple polygon through a starting point s specified
on its boundary [3]. In this paper, we present an O(n®) algorithm for this problem. Both algorithms
for simple polygons construct the optimum path by repeatedly adjusting the current one. While
Chin and Ntafos’ algorithm always adjusts the whole watchman path, our attention is put on the
partial watchman path, i.e., our algorithm starts from a “small” watchman path and then increases
its visibility incrementally until it becomes the whole watchman path. This incremental method gives
an efficient solution to the watchman route problem for simple polygons.

2 Preliminaries

Let P be an n-sided simple polygon with a point s on its boundary. We assume that P is given by
the sequence of its vertices in the clockwise order (from s). A vertex is reflezx if the internal angle is
greater than 180°. P can be partitioned into two pieces by a “cut” that starts at a reflex vertex v
and extends either edge incident to v until it first intersects the boundary. We say a cut is a visibility
cut if it produces a convez angle (< 180°) at v in the piece of P containing s. (Some reflex vertices
may not contribute to any visibility cut.) Such a visibility cut “resolves” the reflexivity at v; in order
to see the edge (or corner) incident to it, a watchman route needs to visit only one point on that cut.
Since the shortest path between s and a cut C need not go over C (as viewed from s), the piece of P
containing s is called the essential piece of C. A cut C is described by a pair of points (,7), where [
(left endpoint) is the endpoint of C that is first visited in a clockwise scan of P and r (right endpoint)
is the other endpoint. The orientation of a cut C is supposed to be from ! to 7. Thus, s always falls
to the right side of visibility cuts.

A watchman route must visit all visibility cuts so that each corner of P can be seen. But some
of them are not important in determining the shortest watchman route. We say cut C; dominates
cut C; if C; appears between two endpoints of C; in a clockwise scan of the boundary. Clearly, if
C; dominates C;, any route that visits C; will automatically visit C;, i.e., Ci can be disregarded in
determining the shortest watchman route. A cut is called an essential cut if it is not dominated by
any other cuts. It is important to observe that any watchman route must visit these essential cuts
and any route that visits them is a watchman route.

The essential cuts can be identified in O(n) time by applying the clockwise scanning scheme. Let
Ci, Ca, - ++, Cr, be the sequence of essential cuts indexed in the clockwise order of their left endpoints.
The set of essential cuts is then partitioned into cut corners. A cut corner is a subset of consecutive
essential cuts C;, Cit1, - -+, Cj such that each Cj intersects with Cx_; (¢ < k < j), and C; and C; do
not intersect with C;.1 and Cj41, respectively. This partition of essential cuts into cut corners takes
O(n) time.

Lemma 1 (Chin and Ntafos[3]) The shortest watchman route in a simple polygon P through a point
8 on its boundary is unique. O

In fact, Lemma 1 can be stated in a more general form: Given a source point s on P’s boundary
and a target point ¢ on cut C;, the shortest watchman path from s to ¢ such that (1) Cy, Cy, -+, Cim1
are visited and (2) it lies in the essential piece of C; is unique.
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Chin and Ntafos [3] also show that the shortest watchman route should visit cut corners in the
order in which they appear in the boundary of P and forms a convex chain within each cut corner.

3 Incremental construction of shortest watchman routes

In a cut corner, an essential cut is intersected with at most m — 1 essential cuts and thus divided into
at most m — 1 fragments. We say fragment f dominates fragment g if any route that visits f also
visits the cut to which g belongs. Each fragment thus has a unique set of essential cuts dominated
by it. (Note that two fragments may dominate each other.) A watchman route can then be defined
by a set of the fragments such that (i) (completeness) the union of dominances of the fragments is
the whole set of essential cuts and (ii) (independence) no one is dominated by any other fragments.
Visiting these fragments in any order will give a watchman route. Such a fragment set is called the
watchman fragment set. With respect to a watchman fragment set, we distinguish a fragment
(cut) as active or unactive according to whether it (some fragment of it) belongs to the fragment set
or not. Since the active fragments are not dominated each other, the optimum route for the fragment
set need not go over any active cuts. Removing those “non-essential” pieces of polygon P will not
affect the optimum route.

Once a watchman fragment set is given, the corresponding (optimum) watchman route can be
computed as that is described in [2]. The non-essential pieces of all active essential cuts are first
removed. The resulting polygon P’ is triangulated and then rolled-out by treating the active fragment
on each cut as a mirror and reflecting the sleeve from one active fragment to the next one with respect
to these mirrors. The optimum watchman route is then found by constructing the shortest path from
s to its image s’ in the rolled-out polygon. From these watchman routes, we can find the shortest
watchman route. A bit of thought will convince the reader that the number of possible watchman
fragment sets can be high to exponential in the number of essential cuts.

We shall present below an O(n®) algorithm for the watchman route problem. Our algorithm
proceeds in an incremental way. That is, the watchman, starting from s, visits the essential cuts one
by one in order. When cut C; is involved, we construct the shortest watchman path P; from s to a
chosen point s; of C; in the essential piece of C; so that all the essential cuts with index less than i are
visited along the path. Finally, the shortest watchman route is obtained when the watchman returns
to s. For each cut Cj, a list is maintained to hold the intersections with the cuts added by now. The
intersections are ordered from [; to ;. It takes O(n%log n) time and O(n?) space to maintain these
lists.

The chosen points s;’s on essential cuts are called “images”. For a point p and a segment g, p’s
image on g is the point of g which is closest to p. Images in a cut corner are defined as follows. Let C;
be the first (least indexed) cut in a cut corner. The left endpoint I; is defined as the current starting
image s;. We then denote 3;4; as the image of s; on cut Cit1, Siy2 as the image of s;4; on cut Ciyz
and so on. In the case that the segment (si_1, si) intersects with cut Cr+1, the image sp4; of s; on
Ck+1 is undefined (since Cryy has already be visited by any watchman path from s to s;). The next
image 8544 of 8; on Ci,., is then considered. Observe that the set of the images in a cut corner is the
vertex set of a convex polygon. For completeness, we set S;41 = s. The computation of images in
polygon P takes linear time.

For simplicity, we assume that all of the cuts have the images defined on them, i.e., image s; is on
cut C;. A watchman path P; from s to s; can also be defined by a set of the fragments with index
less than ¢ (the index of a fragment is that of the cut to which it belongs). But now, the union of
dominances of not only the fragment set but also the end point s; is the set {Cy, Ca, -+, Ci_1}. We
say image s; dominates cut Cj, if s and s; lie to the different sides of Cj,.

Consider how the shortest watchman paths can come in contact with the essential cuts. A shortest
watchman path makes a reflection contact with an essential cut if the path reflects on some point
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of the cut (there exists only one point in common between the path and the cut). The reflection is
perfect when the incoming angle of the path with the cut is equal to the outgoing angle. A shortest
watchman path makes a crossing contact with an essential cut if the path crosses the cut once or
twice. The degenerate case of a crossing contact where the path crosses the cut twice but does not
properly cross the cut is called a tangential contact. In this case, they share a line segment. For
a watchman fragment set, the corresponding optimum path makes reflection contacts with the active
cuts and crossing contacts with the unactive cuts. :

At the initial step of our algorithm, we look for the watchman path P; with the greatest index k
which is just the line segment (s, sx). This path can be found by connecting s to sy in order until the
segment (s, s;) does not intersect all the cuts with index less than k. This initial step takes O(k?)
time. The watchman fragment set for Py is initially set to be empty.

Assume inductively that P, is given. Now we shall describe how P4, is obtained when Cyyy is
added. The procedure consists of (1) finding an initial path P, which visits all of the cuts with index
less than ! + 1 and (2) adjusting the current path P}, until it becomes optimal. The path obtained
at the end is Pi.;. We shall describe these two steps in detail.

Finding an initial path P/,

When C; and Ciy; are in the different cut corners, PEH is simply found by adding the shortest
path ([4]) between s; and si4; to Py, where si4; is the starting image of the next cut corner. The
fragment of C; containing s is then inserted into the current watchman fragment set. When C; and
Ci41 belong to the same cut corner, we consider the configurations between the last segment of
and s;3;. With respect to cut Ci, s;41 might be to the left or right of it (see Fig. la-1b). If s is to
the right of C; (Fig. 1a), P, is simply formed by adding the segment (s, si41) to Fi. The fragment
of C) containing s; is inserted into the current watchman fragment set. If s; is to the left of C (Fig.
1-b1,b2), we first look for the unactive cuts (with index less than !) which have s and s;41 in the right
side of them and are crossed exactly once by the last segment of P;. Among these cuts, we select one
whose intersection with P is nearest to s;. If there exists such cut, P,?H is obtained by replacing the
segment of P; from the intersection to s; with the segment from the intersection to si4q (Fig. 1-b1).
The fragment of the selected cut containing that intersection is inserted into the watchman fragment
set. Otherwise, P,?H is obtained by replacing the last segment of P; with the segment which starts at
the contact point of P; with the last active cut and ends at s;41 (Fig. 1-b2). In this case, there is no
change in the watchman fragment set. In the special case where the last segment of P; overlaps with
Ci (see Fig. 1c), P}, is obtained by replacing the last segment of P with the segment which starts
at the last reflect contact point of P; and ends at s;41. The current watchman fragment set remains
unchanged.

In the above way, we obtain an initial path PEH that remains convex within each cut corner and
visits all of the cuts with index less than [ + 1. Suppose that the cut which has the point connected
to si41 in P}, has index I’ (I' coincides with ! in Fig. 1a). It is important to observe that the part of
P,O_H that is completely overlapped with P; (from s to the point of Cy which is connected to s;4) has
been already adjusted, and is optimal as it is. This step also takes linear time.

Adjusting the current path P},

We say a watchman path P is adjustable on a cut C if P makes a reflection contact with C and the
incoming angle of P with C is not equal to the outgoing angle. Thus, the path PP, is adjustable on
Cy, and it is not optimal with respect to the current fragment set. Using the current active fragments,
we optimize the path P%, into the path P}, by the rolled-out method (see [2] for detail). Since PY,
is very important in proving our main theorem (see Section 4), we treat it as a special path. The
shortest watchman path Py, is then found by adjusting the current path P}, where m > 1. Each
adjustment involves a change in the watchman fragment set and results in a shorter path. If there are
several possible candidates we can take any one of them.

An adjustment can only occur at the intersection of two essential cuts. As Chin and Ntafos showed
in [3], there are three types of adjustments on an active cut C; (Fig. 2). In Fig. 2, the incoming
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angle of P/}, with C; is assumed to be smaller than the outgoing angle. The bold and discontinuous
segments m Fig. 2 stand for the active fragments before and after an adjustment, respectively. A
possible next path {_’;‘1"1 is also shown. Except for Fig. 2b, the indexs of the participating cuts are
represented with respect to index i,i.e., h <i< j < k.

In Fig. 2a, P/}, makes reflection contacts with both C; and C), at their intersection. The adjust-
ment involves moving the contact point of C; to the left. The next path, ,':’1"1, will make a reflection
with C; but a crossing contact with C;. Thus, the current fragment of C; is replaced by the next
fragment and the fragment of C}, is deleted from the fragment set. We call this a (- 1) adjustment
since the number of active fragments is decreased by 1.

In Fig. 2b, P}, makes a reflection contact with C; and a normal crossmg contact with Cy. The
adjustment mvolves moving the contact point of C; to the left, i.e., replacing the current fragment of
Ci by the next fragment. The next path ,';'_'IH still makes a crossing contact with Cy. This is called
a 0-adjustment. Index i’ can be smaller or greater than index 1.

In Fig. 2c, P}, makes a reflection contact with C; but a special crossing contact with C], i.e., the
crossing contact with C; has degenerated into a reflection or a tangential contact. The adjustment
involves substituting the current fragment of C; with the next fragment and inserting the fragment
of C; next to p;; (the intersection of C; and C;) into the fragment set. For the tangential contact
case, the next active cut Cj should be also considered(Fig. 2-c2). In order to shorten the path, the
incoming angle of P/}, with Cy must be greater than the outgoing angle. Thus, the current fragment
of Cy. should be also substituted by the next fragment. We called it a (41)-adjustment since the
number of active fragments is increased by 1. Depending on whether the incoming angle of Py with
C; is greater (Fig. 2-c1,c2) or smaller (Fig. 2-c3) than the outgoing angle, the next path ,':'1” will be
shorter, or the same as P},. In the latter case, a (-1)-adjustment on C; follows. This (-1)-adjustment
must be done immediately after the (+1)-adjustment so that the pa.th can still be shortened.

4 Analysis of the algorithm

Lemma 2 The adjustments on an active cut are all in the same direction at the step of adjusting the
path PL,.

Proof: Omitted in this abstract. O
Lemma 3 The procedure of constructing Py, from P, requires O(l) adjustments.

Proof: Consider how the active and unactive cuts with respect to P; change when Py, is constructed.
First, an active cut can become unactive during the procedure of constructing Pry; from P, but it
can never be active again. Once a cut becomes unactive because of a (-1)-adjustment, the following
paths will remain the crossing contact with that cut by virtue of Lemma 2. Next, we show that once
a cut becomes active, it can never be unactive again. The proof is by contradiction. After cut C;
becomes active because of a (+1)-adjustment on cut C;, the adjustments on C; will be, say, all in the
right direction. Suppose that in the following process, there exists another active cut Cj+ on which
a (-1)-adjustment makes C; unactive. The following paths will move further right to the intersection
p;j'; along Cjr. On the other hand, if there exists such a cut Cj, index j/ must be smaller than index j
and the intersection p;; must be left to Cj (see Fig. 3). Then, the path just after C; becoming active
makes a crossing contact with Cj. Since Cj is supposed to be active (while C; remains active), the
path can be then adjusted to the situation where it makes a tangential contact with the unactive cut
Cj (like Fig. 2-¢2), which requires a (+1)-adjustment on C; to make C; active. This (41)-adjustment
makes the contact point on Cj move to the left of the intersection pj’j- The following paths will go
further left along Cj: according to Lemma 2. Therefore, the adjustments on Cj» can not make C;
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active. This contradicts with our assumption. In summary, there are O({) (+1)-adjustments and (-1)-
adjustments during the procedure of constructing P; from P;4;. Consider 0-adjustments now. Let us
charge the cost of an 0-adjustment to the participating unactive cut. From Lemma 2 and convexity
of the watchman paths in cut corners, an unactive cut can take part in at most two 0-adjustments.
During the procedure of constructing Py4; from Py, there is a total number of O(l) unactive cuts. This
completes the proof. O

Since each adjustment requires linear time to construct the new optimum path, we obtain:

Theorem 1 The time complezity of the incremental algorithm is O(n®).

Fig. 4 shows an example of incremental construction of the shortest watchman route. The bold
segments stand for the active fragments. In Fig. 4a, Ps, P4 and PJ are shown. Pj is the watchman
path with the greatest index which is just a line segment. In order to obtain P4, Cy becomes active.
PP is the initial path and is not optimal with respect to the current fragment set. Fig. 4b shows
PL. A (+1)-adjustment on C; produces the next path P? or, exactly, Ps. See Fig. 4c. The shortest
watchman route Pg is shown in Fig. 4d.
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Fig. 1. The three possible configurations between Py and s;4y.
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Fig. 2. Types of adjustments on an active cut C;.
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Fig. 3. Dlustration for the proof Lemma 3.

(a) Ps, Py and 1§ (b) P}
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Fig. 4. Main sleps of the incremental algorithm for an instance

of the watchman route problem.



