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Abstract

In this paper, we give asymptotic bounds for the complexity of the projective
image Pr(S) of 2 convex subdivision S of d-dimensional space to a subspace of
codimension k. If S has n regions, the complexity of Pri(S) is O(nlk+1(d=k)) jf
d—kis even, and O(n(*+1@=k)=1yif g _ L i5 0dd. This bound is better than naive
O(nl5+2(4=%)) bound by the factor of nd=* if d — k is even, and n?—**! if d — k
is odd. Further, we give a lower bound for Pr;(S), which is Q(nl(34=3)/21). This
bound is tight if 4 < 4.

Applications to the point location problem and related problems are discussed.
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3 Introduction

Projection and the projected images often play
important roles in algorithms of computational
geometry. Foi example, a Voronoi diagram is real-
ized as the projected image of a convex polytope.
Also, if we consider the data structures for point
location in a subdivision of a space [Co, DL, PT,
THI], its efficiency usually depends on the com-
plexity of its projected images to lower dimen-
sional spaces.

In three dimensional case, two point location
structures in a convex subdivision S are known.
One can query with O(logn) time, and need the
space complexily as same as the complexity of the
projected image Pry(S) of S on a plane [THI].
The other needs O(log,2 n) query time, buti re-
ducés the space complexity to O(Klog®n) [PT].
In order to compare these two method, we must

estimate the complexity of Pr((S). If we estimate

the complexity of Pr1(S) with respect to K, it
can be O(K?). Since K is ©(n?), it seems that
Pr(S) has ©(n*) faces. On the other hand, if we
estimate Pr(S) with respect to =, it is not triv-
ial to construct a subdivision S such that Pr(S)
contains more than O(n?) faces. In fact, the com-
plexity of Pr(S) is ©(n%). .

It is important to express the complexity by
using n. Suppose we construct the convex hull
P of n points in the (d + 1)-dimensional space.
P contains at most n vertices and O(nl(4+1)/2])
faces. We would like to construct a data structure,
such that given a hyperplane H, query the nearest
point of P to H efficiently. In the dual space,
this problem is the point location problem in a
convex subdivision of the d-dimensional space into
n convex regions. Here, it is desirable to estimate
the complexity of the point location structure by
using n.

In this paper, we consider the complexity of
the projected image of a convex subdivision of d-
dimensional space onto a lower dimensional affine
space. Let S be a convex subdivision of the d-
dimensional space R?. The number of regions in
S is n. We project the (d — k — 1)-skeleton of
S onto a (d — k)-dimensional subspace L. The
projection image is denoted by Pri(S5).

The trivial upper bound for Pri(S) is
O(n(*+2)(d=k)). Our upper bound is the follow-

ing:

Theorem 4.4 If we project the (d — k — 1)
skeleton to a (d — k) dimensional subspace, the
complexity is O(n{*+14-k)) if k < |(d—1)/2] and
d — k is even, O(nk+1E=F)-1) if b < |(d - 1)/2]
and d — k is odd, O(n**+1d=k)=2) if £ = |(d -
1)/2], O(nlld-V/21E=R) i1 k> |(d - 1)/2]-

In particular, the upper bound of Pry(S) is
O(n?4-3) (for d even) and O(n??~2) (for d odd)
if d > 5. The trivial lower bound for Pry(S) is
2(n4"1). Our lower bound, which is tight if d < 4,
is the following:

Theorem 4.3 The complexity of the projected
image Pr((S) of § onto a space of codimension 1
is N(nl(3d-3)/2]y,

The paper is arranged as follows: In Section
2, the tight bound for three dimensional case is
given. In Section 3, the number of topological
changes in the projected image is shown to be
O(n*) if we rotate S around an axis parallel to
the projection plane. In Section 4, the higher di-
mensional case is treated, and main results are
stated. In Section 5, algorithms for computing
the projected images are given. Finally, some ap-
plications are given in Section 6.

4 3-Dimensional Case

Let S be a convex subdivision of 3-dimensional
space into n polytopes. The number of edges in
S is denoted by K. Pr(S) is the projected image
of (the l-skeleton of) S onto a plane H.

Theorem 4.1 The number of vertices in Pr(S)
is O(nK).

Proof The regions are numbered as Q; for
i =1,2,..,n. For each region Q; in S, the bound-
ary of the convex hull of the projected image
Pr(Q;) is denoted by C(Q;), and number of edges
of C(Q;) is denoted by k;. Every edge of C(Q;) is
a projection of and edge of Q;, and each edge con-
tributes to at most two C(Q;), so Yl ki < 2K.
For each edge e in S, let H(e) be the plane con-
taining e and perpendicular to H. Because of
the convexity, there exists a region Q containing
e which does not intersect H(e). Then, Pr(e) is
an edge of C(Q). Therefore, every projected im-
age of edge is contained in the convex boundary
of a projected image of a suitable region. Since

C(Q:) and C(Q;) intersect at most 2 min(k;, k;)



points, there are at most 37, , 2min(k;, k;) <
Ti=t(ki +k;) =20 3% ki < 4nK intersections
in Pr(S). a

Next, we give the lower bound of the complexity
of the projection of the skeleton of a three dimen-
sional convex subdivision satisfying that K, the
number of edges of the convex subdivision S, is
at least n. We fix a plane H in the space.

Theoremn 4.2 There ezists a convezr subdivision
S of the space inte n convez polytopes such that
projection of it on H has O(nK) vertices.

Proof It suffices to show the lower bound. Be-
cause of the Dehn-Sommerville equation, K < n2.
For given arbitrary number 18n < k < n?, we set
m = k/6n, and s = (n — 2m)/2. It is easy to see
that s > n/3. We consider a circle C on a plane
Hy parallel to H. Let [ be a line through the cen-
ter Oy of C perpendicular to H. Let A; denote
the set of vertices of a regular m-gon inscribed
into the circle C. Further, we consider a point set
Bj. consisting of s points on I. We consider the
Voronoi diagram Vj of A; U By. Then the pro-
jection of the cap boundary of each region of a
point of By in V] is a regular m-gon with center

O, which is the projection of Oy. Further, each of

these polygon can be transformed into another by
‘a scaling transformation. If the whole set of B;
is close enough to Oj, the scaling factor is larger
than cos ;%= (and smaller than 1) for each pair.

Next, we consider another plane H parallel to
H, and project A; onto H; to get a point set on
the circle C; with center O;. We rotate these
points on Cz by an angle I to obtain a point
set A2. We let a point set B, be a translate of
Bj by the vector 010;. The Voronoi diagram V;
of A; U By is congruent to Vj. However, since
the point set is rotated, the projection of the cap
boundary of the region of a point of B; is rotated
by Z with respect to the corresponding one in V;.

Now, we place H; sufficiently far from H;, and
we consider the Voronoi diagram V of Ay U AU
B; U B;. Then, the projection of the cap bound-
ary of the region of a point of B; intersects at 2m
points with that of any point of B;. Since there
are s2 pairs of such cap boundaries, the total num-
ber of intersections is at least 2ms? > zl,,nlc.

On the other hand, the Voronoi diagram V has
n regions and K = §+ O(n) edges. Thus, we
obtain the theorem. o

Corollary 4.3 The number of vertices in Pr(S)
is O(n?).

5 Rotation and topological

change

It is also interesting to investigate the topological
change of Pr(S)if S is rotated with respect to the
angle around a line. If we can cheaply rotate the
subdivision, we can find the angle such that the
complexity of the projective image is minimized.
We say that a rotation is parallel if the rotation
axis is parallel to the projection plane. Otherwise,
it is called a skew rotation.

During the rotation, a topological change oc-
curs when three projected edges meets. Since
there are O(n?) edges, a naive bound of the num-
ber of topological changes is O(n%). We can im-
prove this naive bound for parallel rotations.

Theorem 5.1 The number of topological changes
is O(nt) for a parallel rotation.

Proof First, we prove the upper bound. We as-
sume that the projection plane H is parallel to the
z — y plane. The plane Hy is the plane obtained
by rotating H by an angle € around z-axis. The
projection Pry is the orthogonal projection to Hp.
Suppose the projected images of three edges ey,
e2, and e3 meet at a point po = (zo, Yo, z0) of Hy.
Then, we consider the plane H(zg) intersecting
with the z-axis orthogonally at zg. Then, the in-
tersecting points of eg, €2, e3 are located on a line
on H(zg).

Let X(S) = {z1,%z2,..,2x} be the sorted list
of the z-coordinate values of vertices of 5. We
define zg = —o0 and zy4; = oo. Let us count
the topological changes by using a space sweep
with respect to the z-axis. We consider a sweep
plane H(t), which intersects with the z-axis at
(,0,0) orthogonally. Let S(t) be the intersection
of S with H(t). Obviously, 5(¢) is a planar convex
subdivision with O(n) regions; thus it has O(n)
vertices. We move the sweep plane H(t) from
t = z9 to { = zn4q, and count the number of
colirear triples of the vertices of 5(t). Let z; and
zi+1 be two consecutive elements of X(S5). For
any two values t and t' in (z;,z:4;), the graph
structure of 5(t') is same as that of 5(t). For each
triple ey, 3, €3 of edges there is at most one ¢’ such

e 3.



that the intersecting points with H(t') are located
on a line. Thus, at most n® topological changes
are found during the sweep from zy = —oo to
z3. When the sweep plane passes through z =
z;, k; edges (incident to the corresponding vertex
to z;) are newly cut by the sweep plane. Thus,
k;n? triples are newly created. Since Z,}\Sl k: =
O(n?), the total number of topological changes is
Oo(n?).

Next, we consider the lower bound. We use
the Voronoi diagram V defined in Section 2. We
adopt the notations in Section 2. We assume that
the distance D between H and H is sufficiently
large, and the distance between H; and H is very
small. Let us assume the rotation axis o on H
meets the line [ at the origin O. Let { be a line on
H orthogonal to a, such that | meets [ and a at
O. We define a set X of n points on I, such that
the maximal distance between them is bounded
by a small constant §. Let V be the Voronoi dia-
gram of the point set 4, UA; UBUB;UX. We
consider the subdivision S which arises by adding
the plane H to V. Evidently, S is a convex sub-
division consisting of O(n) regions. Since H; is
far enough from H, almost all regions of V sur-
vive in S (actually, only the lower envelope of V'
is changed). We call this part V . There exist a
maximal angle ¢ such that the topological struc-
“ture of Pr(V')is not changed if we rotate it by any
angle between —¢ and ¢. This angle ¢ is indepen-
dent of the distance between H and H;. On the
other hand, S contains the set £ of n—1 segments
parallel to a, which are intersections between the
plane H and the Voronoi boundary of.the points
of X. Each of these segments is long enough, and
it intersects I. Further, the maximal distance be-
tween them is bounded by §. We can assume that
Dtan ¢ > d. Then, during rotating S from —¢ to
#, each of @(n3) vertices of Pr(V) meets each of
n—1 segments of £ at an angle. Thus, there exist
Q(n*) topological changes. ]

Any rotation is written as a product of the three
rotations around z-axis, y-axis, and z axis. Obvi-
ously, the rotation around z-axis makes no topo-
logical change to Pr(S). However, if we deal with
a skew rotation, we should consider the intersec-
tion of the subdivision with a circular cone in-
stead of the intersection with a hyperplane. Un-
fortunately, the complexity of an intersection of

S with a circular cone is @(n?). Therefore, it is
open to obtain a nontrivial bound for the number
of topological changes for a skew rotation.

6 , Higher
sion

dimensional exten-

We have shown that the complexity of the pro-
jection image of a convex subdivision in 3-
dimensional space to a plane is @(n?). In this
section, we generalize the result for the convex
subdivisions in R?, and show an upper bound and
a lower bound for the complexity of its projected
image. ‘

Let S be a convex subdivision of R? into n poly-
topes. It is well-known [E] that the worst-case
complexity of S is O(nl(4+1)/2]), The projection
of the (d — k + 1)-skeleton of 5 onto a (d — k)-
dimensional subspace L is denoted by Pr(S).

" A face of S is called facet if it has codimension
1. A face of S is called ridge if it has codimension
2. A face of dimension j is called a j-face.

Any face of Pri(S) is an intersection of pro-
jected images of at most d — k faces of S. The
projection is called nondegenerate if there is no
degeneration in Pri(S) except those originally in
S. It is easy to observe the following lemma:

Lemma 6.1 The complezity of Pry(S) is asymp-
totically bounded by the number of vertices in
Pri(S) and the number of original faces if the
projection is nondegenerate.

To obtain an upper bound of the complexity
of Pri(S), we can assume that the projection is
nondegenerate without loss of generality.

Let us begin with the upper bound for Pry(S).
There are O(n®) ridges in S, and a vertex of
Pry(S) is an intersection of d — 1 projected
ridges. Hence, the complexity of Pry(S) is naively
O(n*(4-1)), which is far from optimal. Our upper
bound is the following: .

Theorem 6.2 The complezity of Pry(S) is
O(n?¥3) for d even, and O(n?¥~2) for d odd.
Moreover, the complezity is O(n?) if d < 4.

Proof The theorem is a corollary of Theorem
4.4 shown below. a

Next, we generalize the lower bound of Theo-
rem 2.2 for the higher dimensional cases.
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Theorem 6.3 The complezity of Pri(S) is
Q(nl(u—s)lzl),

Proof Let us consider the moment curve T :
z(t) = (, 1%, 1%,..,19"1) of R%~1. We consider a set
M = {z(r;):i=1,2,..n} of (d — 1)n points on T.
We assume 7; < 77 if i < j. The convex hull of M
is denoted by C(M). It is well known that C(M)
has ﬂ(ﬁl(d"l)/zj) facets. The subset M; of M is
defined by the set {z(7;) :j =i (modd - 1)}.
We cluster M into d — 1 subsets My, Ma,.., My_;.

Let us investigate the facets in detail. An in-
dex set I = {i1,43,...,44-1} of size d — 1 is called
special if I C {1,2,..,n} and 4; = ;1 +1if j is
even. Furthermore, we set ig_; = nifd—1 is odd.
We define the function fi(z) = [1;c;(2(75) — ).
It is easy to see that this function is nonnegative
on M, and zero on z(r;) if j € I. Since the de-
gree of f;(z)is d — 1, similar to the argument of
p-101 of [E], fi(z) = (%,z) — vo on T for suitable
vectors % and wg. Hence, the hyperplane spanned
by {=z(7;) : j € I} appears as a facet of C(M).
Then, the following claim is easily observed
Claim. There are Q(nl4=1/2] facets of c(M),
each of which is spanned by a point set containing
ezactly one point of each subset M; (i = 1,2,..,d—
1).

Let D(M) be the set of dual hyperplanes of
M, and let D(C(M)) be the dual of C(M). We
choose a point z in the interior of D(C(M)). For
each hyperplane k in D(M), the opposite point of
z with respect to h is denoted by z(h). The point
set {z(h): b € D(M;)} is denoted by M;.

Let g be the d-th axis of R%. We choose the
points z; 1 = 1,2,..,d — 1 such that the distance
between each pair of these points is sufficiently
large. We consider the hyperplane L; orthogonal
to g containing z;. Now, we translate the point
set M; such that z is translated to z;. We gen-
erate n points on g which are infinitesimally near
to z;. Let us denote V; for the Voronoi diagram
generated by these 2n points. V is the merged
Voronoi diagram of V; for ¢ = 1,2,..,d — 1. The
Voronoi region of a point on g is called a central
region. Then, if we pick up a central region from
each cluster, the intersection of these d — 1 re-
gions contributes Q(nl{4=1)/2) vertices because of
the claim. Thus, we obtain the theorem. m}

Therefore, our upper bound is tight if d < 4.
The lower bound differs from the upper bound by

a factor of O(nl(4=V/21) if d > 5. We conjecture
that the upper bound is not tight, since the poly-
tope B(P) has a special property, that is, it has
only O(nl%/?)) faces though it has O(n?) facets.

Next, we give an upper bound for the com-
plexity of Pr(S). Since there are n¥*? faces of
codimension (k + 1) in S, a naive upper bound
is n(k+2)(d=k} The upper bound is generalized as
follows:

Theorem 6.4 The complezity of the projection
image Pri(S) of the d — k — 1 skeleton of
S on an affine subspace of codimension k is
O(n+1=k)y if k < |(d — 1)/2] and d — k is
even, O(n(x+d=K)=1) it 1 < |(d—1)/2] andd—k
is odd, O(nk+1(d=F)=2) jt k = {(d — 1)/2], and
O(nld=1121=K)y jf k > |(d — 1)/2].

" Proof The number of j faces of S is denoted by

fj. Let P be a (d-k+1)-face of S. The boundary
B(P) of Pri(P) is a convex polytope in Rk,
Let f be an arbitrary (d-k-1)-face of S. There
exists a hyperplane H, which is perpendicular to
the projection subspace L and contains f. It is
easy to see that there exists at least a (d-k+1)-face
P of S which is located in one of the half-spaces
defined by H. Obviously, Pr(f) is contained in
B(P). In fact, Pr(f) is a facet of B(P).

There are O(n?) (d-k+1)-faces bounding P.
Hence, B(P) is a convex polytope with O(n?)
facets in R4~*. Thus, Pry(5) is an arrangement
(in R*"*) of n convex polytopes, each of which
has O(n?) facets.

For a vertex v of Pri(S), let v be a vertex of
the intersection of B(Pj(1)), B(Pj(2))s--» B(Pj(n))-
Because of non-degeneracy, h < d — k. We denote
the index set J = {j{1),7(2),..,7(k)}. The vertex
v is located on the polytope P(J) = B(Pjyy) N
B(P;(2)) N ... N B(Pj(s)). For a fixed J, there are
at most O(n?l4=*)/2)) vertices on P(J).

The number of (d — k + 1)-faces in S
is faer4r = O(nk). Thus, the number
of possible combinations for the index set J
is O(nk(d—*)), Thus, the number of ver-
tices of Pr(S) is O(n2l(d=*N2lpk{d=k)) " which
equals to O(n(*+1{d=k)) if 4 _ L is even, and
O(n{k+1d=k)=1y if ¢ _ k is odd. Hence, we have
shown the theorem if k < |(d — 1)/2].

Itk > |(d—1)/2], fla—r—1) = nld"1/2] Thus,
the complexity is simply nl(d-1)/2J(d—k),



Lk = |(d-1)/2), flar1-x) = n*, fa—n) =
n**l and fy_g—1) = n*¥*1. Thus, although each
B(P) may contain O(n?) facets, the average of
the number of facets on the polytopes in the ar-
rangement is O(n). Thus, we can save a factor of
n if d — k is odd, and a square factor of n if d — k
is even. We omit the details. ) m)

7 Algorithmic aspect

The proof of Theorem 4.3 gives an algo-
rithm to compute Pry(S), which runs in
O(n?l(d=1)/21+d=1) time. With more precise anal-
ysis, this algorithm runs in O(n®) and O(n?logn)
time if dimension is three and four respectively.
If we use randomized convex hull algorithm of
Seidel [S1], the computing time is reduced to
O(n2W(E-1)/2]+d-1),

The output size is usually much smaller than
the worst case size; thus, an output sensitive ef-
ficient algorithm is desirable. The plane sweep
method solves the problem in O(Mlogn) time
if d = 3 (where M is the output complexity),
which is practically efficient. Further, if we use
the optimal segment intersection reporting algo-
rithm [CE], an O(M + K logn) time algorithm
can be designed, where K is the number of edges
in S.

In four dimensional case, the projection image
is an arrangement of n convex polyhedra in the
three dimensional space The total number of faces
of the polyhedra in the.arrangement is O(n?). Be-
low, we give an O(M logn) method.

Let us consider the space sweep method to com-
pute Pry(S) We consider sweep planes z = ¢ or-
thogonal to z-axis, and translate it from ¢ = —co
to t = co. The intersection X(t) of Pry(S) with
the plane z = ¢ is an arrangement of convex poly-
gons. The complexity of £(t) is O(Min(n®, M)).
For each edge e of (), we compute t at which the

edge vanishes. For all such edges, we keep these

values in a priority queue. We update this priority
queue during the sweep. If the sweep comes to the
abscissa of a vertex of S, more than one element
of the priority queue may be updated. However,
the total number of priority queue operations is
O(M) during the sweep. Therefore, the sweep
method gives an O(M logn) time algorithm for
computing Pr(S).

In higher dimensional case, an output sensitive
algorithm to compute a convex hull in O(n? +
hlogn) time is developed by Seidel [S2], where &
is the number of faces on the convex hull. Let k;
be the number of vertices of Pr(S), which lie on
the projected images of a (d — 2 — ¢)-dimensional
faces of 5. If we apply Seidel’s output sensitive
convex hull algorithm, we obtain a slightly output
sensitive algorithm. The time complexity is at
most O(nd*!) + 2:-{;: n'k;log n. It is easy to see
that k; = O(n2l(d=1)/2]+d=1-0) and practically
much smaller.

8 Applications

Point location problems

Let us consider the point location structure for
a convex subdivision S consisting of n regions.
Although good data structures are known for the
point location in an arrangement, data structure
of poly-logarithmic query point location in other
convex subdivision usually have huge space com-
plexity.

A naive senario is, given a convex subdivision
S, we project it to the space of codimension 1,
and make a point location structure for Pry(S).
Then, given a point p, first locate it in Pry(S5),
and next locate it in the fiber. By using simi-
laz list search [Co] or fractional cascading [CG],
the space complexity is as same as that for the
point location structure of Pry(S). Thus, it is
important to analyze the complexity of Pri(S),
although this method is space-expensive if d is
large. Note that this method need not the con-
vexity of S in principle.

Also, another possibility is we first make a point
location structure of Prp(S) and its fibers for
k > 2. The topological structure of the fiber is
stable provided that it is a fiber of a point in a
given cell of Pri(S). If k = 2, we equip the point
location structure of Edelsbrunner-Lee-Preparata
[LP, EGS] for the fibers, and we have a point loca-
tion structure of S (note that the monotoneness
of the fiber is also stable in a region of Pry(S)).
If we can permit O(log?) time query, by apply-
ing the Preparata and Tamassia’s technique [PT],
the space complexity is O(s(Prz(S))log?n), where
s(Pr2(S)) is the space complexity for the point
location in Prz(S).

It is necessary to analyze the complexity of



the projected image for such point location struc-
tures. Moreover, i{ is often important to describe
the relation of the complexity and #.

For instance, suppose we construct the convex
hull P of n points in the (d+1)-dimensional space.
P contains at most n vertices and O(nl(d4+1)/2})
faces. We would like to construct a data struc-
ture, such that given a hyperplane H which does
not intersect P, query the nearest point of P to
H efficiently. In the dual space, this problem is
the point location problem in a convex subdivi-
sion S of the d-dimensional space into n convex
regions. For each vertex v = wy,..,v44; of P,
we dualize it to a hyperf)lane H(v) defined by
Tg41 = V121 +..+ V1 24— V44 in d+ 1-dimensional
space. We construct the upper (resp.lower) en-
velope of the arrangement associated with these
hyperplanes, and project it to the hyperplane
z4 = 0 to obtain a convex subdivision S (resp.S')
of the d-dimensional space. Given a hyperplane
H:cizy +caz2+ .. + cay1Td41 = Cayp2, we locate
the point (cy,...,cq) in S and S’. The reported hy-
perplanes are the dual plane of the nearest point
to H and that of the farthest point to H. In
above application, it is desirable to estimate the
complexity of the point location structure by us-
ing n.

Further, in above case, S is a projected image
of a lower envelope of an arrangement of » hy-
perplanes in (d + 1)-dimensional space. In such
a case, the following sampling method can re-
duce the space complexity: First, we choose 7,
hyperplanes randomly, and consider the projec-
tion S of the lower envelope of the arrangement
constructed from the sampled hyperplanes. We
prepare the point location structure of 5;. Next,
we choose r; > 7, hyperplanes, and consider the
projection Sy of the lower envelope of the associ-
ated arrangement. We prepare the point location
structure of the clipped portion of S; to each re-
gion of 5;. If we continue the process until 7, = =,
we obtain a hierarchical point location structure

of S.

Theoretically, if we set r; = ¢’ for a (large) con-
stant ¢, the space complexity can be reduced to
O(nl(d+1)/21+€) if we sacrifice the query time by
a factor of O(log n). There is a space-time trade-
off caused by the size of the samples. In order
to tune up the numbers of samples, we must ana-
lyze Pry(S) (or Pry(S)) by using n, if we use the

projection method for the local structures.

Below, we study the efficiency of the projection
method for the dimension 3,4, and 5.

In three dimensional case, the projection
method to a codimension 1 space is given by
[THI]. From Theorem 2.1 and Theorem 2.2, the
space complexity is 6 Kn for a convex subdivi-
sion § of n regions and k edges. The projec-
tion method to codimensien 2 space, which is in
fact a space-sweep method, is given by Preparata
and Tamassia [PT]. The space complexity is re-
duced to O(X log?n), although the query time
is increased to O(log?n). Therefore, the former
method is space-expensive by a factor of I—oz",—"
compared to the latter method if we choose the
worst projection direction, although it may be
practically comparable if we can find a good pro-
jection direction.

Further, let us consider the following vertical
penetrating query problem in the arrangement
A(H) of n hyperplanes in the four-dimensional
space. For a given point p in the space, we query
the facet which is shot by the ray-shooting from
p with respect to the direction vector (0,0,0,1).
This problem is the dual problem of a multi(four)-
dimensional list query problem; that is, we pre-
process a point set M such that we can efficiently
query the point which is nearest to a given hyper-
plane.

It is known that the cell containing ¢ can be
queried in O(logn) time with O(n*) space [CF].
In each cell, the ray shooting problem is essen-
tially the point location problem in the projec-
tior of the cap of the cell. Let f3(C) and f2(C)
be the number of 3-dimensional faces and that
of 2-dimensional faces of a cell C of the arrange-
ment. Then, from Theorem 2.1, the ray shoot-
ing query can be answered in O(logn) time if we
use 3 ceacrry f2(C) f3(C) space. From the famous

zone theorem [E}, Ycecan) f2(C)f3(C) = O(n?).

Theorem 8.1 The ray shooting query in the ar-
rangement of four dimensional space is done in
O(log ) time using O(n*) space.

We remark that the best known bound for
Zeeaun{f2(C)}? is O(n*logn) [AMS]; thus we
save a factor of logn by using Theorem 2.1..

For a four dimensional subdivision S, the com-
plexity of Pry(S) is ©(n*). Applying Preparata-
Tamassia’s approach for the point location in
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Pri(S), and make a similar list search struc-
ture for the fibers, we have a O(n'log? n) space
O(log? n) query time structure for the point loca-
tion in S.

The projection method to a codimension 2
space also needs O(logZn) time. O(n*log?n)
space, since the complexity of Pry(S) is O(nt).
However, in more presice analysis,’ the complex-
ity of Pry(S) is O(K?), while Pri(S) is O(Kn?),
where K is the number of edges in S. Thus, the
projection method to a codimension 2 space is
better.

In five dimensional case, we only deal with the
projection method to a codimension 2 space, since
the other method is too expensive. By Theorem
4.5, the complexity of Prz(S) is O(n"). Thus, we
obtain an O(log?n) query time and O(n”log? n)
space structure. The space complexity is often
less than cube of the input size, since K3 = Q(n®).

Transparent Graphics

Projection complexity is related to the ray trac-
ing structure of a transparent object. Let I
be a ray vertical to the projection plane in 3-
dimensional space, and ! path trough the convex
subdivision S. Suppose a particle (e.g. a pho-
ton) is shot along I, and affected (e.g. change the
wave length ) in each region of S. Then the prop-
erty (e.g. color) of the image on S depends on
the region containing it in Pr(S). Although we
have dealt with the projection on a plane so far,
we can easily obtain similar results for the central
projection on a sphere. The result on the num-
ber of topological change caused by the rotation
has potential application to the visibility problem
from a moving viewpoint.
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