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Abstract

An oriented matroid can be viewed as a combinatorial abstraction of the facial incidence
relations of the polyhedral cones induced by a finite arrangement of oriented hyperplanes in R?
through the origin. “Topes” of an oriented matroid correspond to maximal polyhedral cones.
This note discusses three structures related to topes of oriented matroids, namely, acycloids,
L' -systems and median systems. It is shown that L1 -systems are closely related to convex
geometries. Median systems are introduced as an equivalent notion of median graphs, and they
are, in particular, applied to characterize median graphs. Perturbations of acycloids and L!
-systems are studied.



1 Introduction

Let E be a finite set and let A be an m X |E| real matrix having A® as the column vector of
A indexed by e € E. For each vector x € RF , 0(x) denotes the signed vector of x, that is,
o(x) € {~,0,+}¥ and o(x), is the sign of component x.. Let V be the row space of A, i.e.,
V = {xA : x € R™}. Then the set (V) = {a(v) : v € V} represents the partition of R™ by
polyhedral cones induced by the subspaces {x € R™ : xA® = 0} (e € E), and also represents
the facial incidence relations of the polyhedral cones. An oriented matroid is defined by a set
of signed vectors satisfying certain axioms (face azioms) that are trivially satisfied by o(V).
Besides this,. an oriented matroid can be viewed as abstractions of many different concepts in
linear space, see [3, 4] for the basic theory and applications.

“Topes” [9, 16] of an oriented matroid correspond to maximal polyhedral cones in the above
setting. Topes can be also considered an abstraction of some properties of acyclic reorientations
of loopless directed graphs, and furthermore an abstraction of combinatorial properties of par-
titions {S, £ — S} of a finite subset E C R such that there is a hyperplane in R¢ separating
§ strictly from E — .S. In this note, we investigate oriented matroids through their topes, and
introduce and study three structures related to topes of oriented matroids, namely, acycloids
[20], L' -systems [10] and median systems.

L' -systems are defined by the reorientation property of topes of oriented matroids, and
acycloids by the negativity closedness property in addition to the reorientation property. These
two structures are useful to characterize topes and tope graphs of oriented matroids. On the
other hand, they are also interesting when they are viewed from the corresponding graphs.
Indeed, L!-systems are essentially equivalent to graphs isometrically embeddable in a hypercube,
and acycloids such graphs with antipodality, see [10]. '

Median systems are essentially equivalent to median graphs [1, 19], and they constitute a
broad class of L-systems. Median graphs have been studied under various names or viewpoints,
e.g., median algebras, median semilattices, median interval structures and maximal Helly copair
hypergraphs, etc, cf. [19]. Median systems, which we introduce in this note, axiomatize median
graphs by signed vectors. Since signed vectors are easy to deal with, one can give very simple
proofs for propositions on median graphs.

This note consists of 4 sections. In Section 2, we review the basic notions of oriented matroids,
acycloids and L' -systems. A convez geometry [8] is a structure which combinatorially abstracts
the notion of the convex hull of a finite set of points in Euclidean space. In Section 3, it is shown
that a convex geometry is essentially equivalent to the set of positive “closed acyclons” of an
acyclic L'-system. In Section 4, several propositions on median graphs are proved or reproved by
using properties of median systems. In particular, a simple characterization of median graphs,
similar to Djokovi¢’s theorem [5], is obtained. In general, their proofs are shorter and easier
to understand than direct proofs by the graph language or properties. Every median system is
shown to be an L!-system, and hence we should note that the results on L! -systems hold in
median systems, too.

Through this note, we assume graphs have neither loops nor multiple edges. We denote
the vertex-set, the edge-set and the distance function of a graph G by V(G), E(G) and dg,
respectively.

The details of this note can be found in [11], which includes the results on perturbations of
acycloids and L!-systems, and on non-matroidal acycloids.



2 Oriented matroids, acycloids and L! -systems

Through this note, let E be a finite set. A signed vector X on F is an element of {-,0,+}%,
that is, X is a vector (X, : e € E) with X, € {—,0,4}. The zero vector is denoted by 0.
The negative —X of a signed vector X is defined in the trivial way. For X € {—,0,4+}% and
S C E, we denote the restriction of X to E — § by X\ §. For X,Y € {—,0,+}E, we define
DX, Y)y={e€e E: X, =-Y, #0}and XoY = (X if X, # 0, and Y, otherwise :e € E).
Here X oY is called the composition of X and V. Several concepts are used to define oriented
matroids. The following is the definition by faces [9, 16].

An oriented matroid (on E) is a pair M = (E,F) where F is a set of signed vectors on E,
called the faces of M, satisfying :
(F1) 0€ F,and X € F implies —X ¢ F;
(F2) if X,Y € Fthen X oY € F; and ’
(F3) if X, Y€ Fand fe D(X,Y), there exists Z € F such that Z; =0and
Z\D(X,Y)=(X oY)\ D(X,Y). '

We denote by () the zero vector on the empty set i, and define for convenience that M = (8, {()})
is an oriented matroid. A typical example is obtained from the row space V of a real matrix A
as we mentioned in Section 1.

For XY € {-,0,+}, X conforms to Y, X 2Y,if Yo = X, for all e with X, # 0. For
& C{-,0,+}¥, we denote by MinX the set of minimal elements of ' with respect to the partial
order <. Maz/X is similarly defined. For a signed vector X on FE, theset X = {e € E : X, # 0}
is called the support of X. We denote by zX, § C E, the signed vector on E obtained from X
by reversing signs on . ' :

Let M = (E, F) be an oriented matroid. A tope of M is a maximal vector of F. We denote
by 7 the set of topes of M, ie., 7 = MazF. An oriented matroid is uniquely determined by its
topes because the equation F = {X : X oY € T forall Y € T } holds, cf. [3]. It is well-known
that the set 7 satisfies the following properties:

(T1) X,Y €7 implies X =Y. (here an element which is not contained in the support
of any tope is called a loop; the set of loops is denoted by Ey);
(T2) X €7 implies —X € 7 and
(T3) (reorientation property) if XY € T and X # Y, there exists e DX,Y)
such that [_f]'X € T, where [f] denotes the parallel class containing f,
ie. {e€ E: either X, = Xyforal X € Tor X, = —Xyforall X € 7).
Here the parallel class [e] is defined only for e € E — Ey.

An acycloid [20] is a pair A = (E,T) where E is afinite set and 7 is a nonempty set of signed
vectors on E, called the topes of A, satisfying (T1) ~ (T3). An acycloid is simple if it has no
loops and every parallel class is a singleton set. The tope graph G4 of an acycloid A= (E,T) is
a graph such that V(G4) = 7 and such that X,Y ¢ V(G4) are adjacent if and only if D(X,Y)
is a parallel class.

L -systems [10] are defined by the reorientation property of topes for simple oriented ma-
troids: an L'-system is a pair 4 = (E,T), where E is a finite set and 7 is a nonempty set of
elements of {—, +}¥, called the topes of A, satisfying :

(L1) if X,Y € T and X # Y, there exists f € D(X,Y) such that 7X € 7; and
(L2) for every e € E, there exist X,Y € 7 such that X #Y.. ’



The condition (L2) is not essential but we include it for simplicity. The tope graph G of an
L' -system A is similarly defined to that of an acycloid: V(Ga) = T and E(Ga) = {[X,Y]:
X,Y € T and |D(X,Y)| = 1}. Fig.1 shows such an example.

The hypercube Q(E) on E is the graph that has {—,+}F as vertex-set and {[X,Y] :
|D(X,Y)| = 1} as edge-set, cf. [14]. For two connected graphs G and G', G is isometrically
embeddable in G’ if there exists an injection f : V(G) — V(G'), called an isometric embedding
of G into G', such that dg(u,v) = de(f(u), f(v)) for all u,v € V(G).

Proposition 2.1. ([10]) A graph G is isomorphic to the tope graph of an L -system if and only
if G is isometrically embeddable in a hypercube.

Note that the tope graph of an L!-system determines the L' -system uniquely up to reorien-
tation, see [10, Note]. For graphs isometrically embeddable in a hypercube, Djokovié’s theorem
is well-known. Let G be a connected graph. A subset X C V(@) is convezin G if for all u,v € X
all shortest (u,v)-paths are contained in the subgraph induced by X. For each [a,b] € E(G),
define C(a,b) = {z € V(G) : dg(a,z) < da(b,z)}.

Theorem 2.2. (Djokovié [5]). A graph G is isometrically embeddable in a hypercube if and only
if G is connected bipartite, and C(a,b) is convez for all [a,b] € E(G).

As some applications of acycloids and L! -systems to oriented matroid theory, we character-
ized oriented matroids in terms of topes in [12, 13) (cf. [2]) and tope graphs of oriented matroids
of rank at most three in [10]. The latter characterization enables us to test in a polynomial time
whether a given graph is isomorphic to a graph representing adjacent relations of regions of an
arrangement of pseudolines in the real projective plane P2,

Finally, for L!-systems and acycloids, we will define some similar concepts to those of oriented
matroids. Let A = (E,7) be an L*-system or an acycloid. The sets of faces, acyclons and circuits
oanredeﬁnedby}'={X:XoYeTforallYET},.A:{X:XijorsomeYGT},
and C = Min{X : X AY forall Y € T}, respectively. By these definitions, we immediately
obtain 7 = MazA = MazF, A={X: X ¢ Y forallY €C},and C = Min({-,0,+}F — A).

3 L!-systems and convex geometries
A function ¢ : P(E) — P(E), where E is a finite set, is called a closure (operator) if it satisfies

(1) S C¢(S)=(¢(5)); and
(2) RC S implies ¢(R) C (5),

for all R, S C E. A subset S of E is said to be closed if ¢(5) = 5. For the purpose of simplicity,
the empty set is assumed to be closed. A closure ¢ is said to be anti-exchange [6] if ¢ satisfies

(3) given a closed set S and two distinct elements e, f of E - S,
then e € ¢(S U f) implies f € (S Ue).



The anti-exchange closure is a generalization of the order ideals of a poset and it has many
natural examples, such as the convex hull on finite points in R", the transitive closure on the
edges of an acyclic directed graph, the tree closure on the edges of a tree, etc, see [6].

A convez geometry [8] is a pair (E,G) where E is a finite set and G C P(E) satisfying

(G1) 0,EeG;
(G2) G is closed under intersection; and
(G3) if S € G and S # E, then there exists f € E — § such that SU f € G.

Anti-exchange closures ¢ on F and convex geometries (E, G) are equivalent under the following
correspondences:

G = the collection of closed sets of &3
(S)=nN{ReEG:SCR}(SCE).

In this section, we show that convex geometries are closely related to to L! -systems. For X C
{=,0,4}% and X € {~,0,+}%, define X(X) = {Y € X : X < Y}. Given two signed vectors
X,Y € {—,0,+}¥, define their intersectionby XNY = (Xeif X, =Y, and 0 otherwise : e € E).

Let A = (E,T) be an L' -system with acyclons \A. For an acyclon X € A, we define
cl(X) = NT(X) and call it the closure of X. We say an acyclon X € A is closed if cl(X) = X,
and we denote by D the set of closed acyclons of 4, i.e., D = {X € A:cl(X) = X}. It is easily
checked that X!, X% € D implies X' N X? € D. Hence for X € A, ¢/(X) is the smallest closed
acyclon to which X conforms, and we can describe cl/(X) = ND(X). Note that 7 = MazD and
F C D hold. '

Now we consider the poset L(D) = (D U {1}, %), where 1 is an imaginary greatest element, .
le., an element such that X < 1 for all X € D. This poset L(D) forms a lattice as in the
following theorem. We show in Fig.2 the lattice L(D) of the L' -system in Fig.1. '

Theorem 3.1. Let A = (E,T) be an L' -system with closed acyclons D. Then the poset L(D)
forms a coatomic lattice, in which the meet X AY and the join X VY are defined by

XAY =XnY,
XVY={ZeDU{1}: X XZ andY < Z}

for X,Y € DU {1}, where consider X A1 =X for X € DU {1}. Moreover L(D).has the J-D
chain property and the height function h is given by h(X) = |X| for X € D.

In the case where A is a simple acycloid, the above theorem was proved by Tomizawa [20].
In simple acycloids, moreover, the set of atoms of L(D) is given by Min(D — {0}) = {X €
{=,0,+}F :|X| = 1} and L(D) is also atomic [20].

For X € {~,0,+}7, we define Xt = {ec E: X, = +} and similarly define X~. Also we
define, for X C {—,0,4}F, ¥t ={X e X¥: X~ =0} and X = {X : X € X¥}. An L' -system A
is acyclic if it has the positive tope (4 + - - -+), or equivalently it has no positive circuits.

Proposition 3.2. Let A be an acyclic L' -system with closed acyclons D. Then the pair (E, DY)
is a convez geomeiry.



Next, we show that every convex geometry is obtained this way. By the definition of convex
geometries and by [6, Lemma 3.2], we have the following lemma.

Lemma 3.3. Let (E,G) be a convex geometry. Then the poset L = (G, C) is a lattice with the
J-D chain property and the height function h satisfies h(S) = |§| for all § € G.

Proposition 8.4. Let (E,G) be a conver geometry and put G = {X € {—,+}F : Xt ¢ G}.
Then the pair A = (E,G) is an acyclic L' -system with G = D*, where D is the set of closed
acyclons of A. '

Denote by K the set of all convex geometries, and by Kr; the set of convex geometries
obtained from L' -systems as in Proposition 3.2. As an immediate consequence of Propositions
3.2 and 3.4, we have

Theorem 3.5. Kp; =K.

Tor an acyclic oriented matroid M with circuits C, Las Vergnas [15] defined the following
closure, called the conver hull in M;

Convpy(S)=SU{e€ E—5:3X €C such that X~ = {e} and X+ C S} (§ C E).

This closure is a generalization of the notion of convex hull in R™ and the closed sets are called
the conver sets of M. Edelman showed in [7] that if M is simple, this closure is anti-exchange,
and hence the convex sets of M forms a convex geometry. The following proposition shows
that the related anti-exchange closure of the convex geometry obtained from an L*-system is a
natural extension of the convex hull Convyy.

Proposition 3.6. Let A be an acyclic L' -system with closed acyclons D and circuits C and
let ¢l be the anti-exchange closure associated with the convez geometry (E,D*). Then, for all
S C E, we have cl(§)=SU{e€ E— S :3X € C such that X~ = {e} and X+ C §}.

What convex geometries arise from the convex sets of some acyclic simple oriented matroid
[7, 8]? This open problem can be now restated as follows: characterize the set K,,, of convex
geometries obtained from oriented matroids as in Proposition 3.2.

Since the lattice L(D) of closed acyclons of a simple acycloid is atomic, in particular, we
know that if a convex geometry (E, G) is an element of Ky, then the lattice (G, C) is atomic.
Hence, we know that the interval [0,(4+ + +4)] of the lattice in Fig.2 belongs to K1 — Kom
(= K — Kom). An atomic example belonging to K — Ky, is given in [6]. The above mentioned
open problem is still open.



4 Median systems and median graphs

A graph G is median [19] if G is connected, and for any three vertices z,y,z there exists a
unique vertex u such that u lies on a shortest (z,y)-path, a shortest (y, z)-path, and a shortest
(z,z)-path. This vertex v is denoted by m(z,y,2) and called the median of z,y and 2. All
trees, and all undirected Hasse diagrams of distributive lattices are median. Median systems,
introduced in this section, axiomatize median graphs by signed vectors.

Before introducing median systems, we need a theorem by Mulder [18, Thm.1;Lemma 2].
We will present below a simple proof to it using Djokovi¢’s theorem, see [11] for the proof.

Theorem 4.1. (Mulder). A graph G is median if and only if G is isometrically embeddable in
some hypercube Q such that for any three vertices of G their median in Q is also a vertez of G.

Note that every hypercube Q(E) is median, and that the median of XY, Z € V(Q(E)) =
{=,+}¥ is the signed vector U such that, for all e € E,U, = i if and only if at least two of
Xe,Y. and Z. are i. We will denote this signed vector U by < X,Y,Z >.

A median system is a pair A = (E,T) where E is a finite set and 7 is a nonempty set of
elements of {—,+}¥, called the topes of A, satisfying

(M1) X,Y,Z € 7 implies < X,Y,Z > € 7; and
(M2) A s simple, i.e., for every e € E, there exist X,Y € T s.t. X, # Y, and for
every distinct e, f € E, there exist X,Y € 7 such that Xe=Xsand Y, = -Y;.

We define for convenience that 4 = (@, {()}) is a median system. The pair (E,7 = {—,+}¥)is
the only acyclid (oriented matroid) on E which is a median system on F, see [11].

Let A = (E,T) be amedian system. Then for a subset § C E, the pair A-S§ = (E-8,{X\S :
X € T}) is also a median system, called the deletion of A by S. The tope graph G4 of A is a
graph with V(G4) = 7 and E(G4) = {[X,Y]: X,Y € T and |ID(X,Y)| = 1}. An example of
such a graph is given in Fig.3.

Proposition 4.2. Every median system A = (E,T) is an L* -system.
Median systems are equivalent to median graphs by the following proposition.

Proposition 4.3. A graph G is isomorphic to the tope graph of a median system if and only if
G is median.

Now let A = (E,T) be an L! -system. Let T, T € T be such that 3 U7; = T and
T:N7; # 0, and such that for any X € Ty — 75 there exists no e € E with X €T3 — 7;. Let
pEE, andput 7' ={X+p*: X e TIU{X +p~: X ¢ T2}, where X +p' (i € {—,+}) denotes
the signed vector Z on E U {p} with Zp =1 and Z, = X, for other element e. Then we call the
pair A’ = (EU{p},7") the ezpansion of A with respect to 7 and 7;. The expansion A’ is called
convez if there exist closed acyclons X! and X? of 4 such that 7; = 7(X') and 7; = 7(X?).



Proposition 4.4. A pair A = (E,T) of a finite set E and § # T C {=,+}¥ is a median
system if and only if A can be obtained from the smallest median system (9,{()}) by a sequence
of convez expansions.

Let G be a graph. For X,Y C V(G),[X,Y] denotes the set of edges with one endpoint
in X and the other in Y. Now let V3,V C V(G) satisfy ViUV = V(G),hi NV, # § and
[Vi = Vo,Va — VA] = 0. The ezpansion [17] of G with respect to V3 and V; is the graph G’
constructed as follows:

(i)  replace each vertex v € V1 NV, by two vertices ty, ul,, which are joined by an edge;
(i) join u, to the neighbours of v in V; — V3 and u), to those in V3 — Vi3
iii) if v,w € ¥y NV; and [v,w] € E(G), then join u, to u, and ), to uj,.

v w

The expansion G’ is called convez if V4 and V; are convex subsets of V(G).

Lemma 4.5. In the tope graph G4 of an L' -system A = (E,T), a set X of vertices (topes) is
convez if and only if X = T(X) for some closed acyclon X of A. :

By this lemma and Proposition 4.4, we immediately obtain

Theorem 4.6. (Mulder [17]). A graph G is median if and only if G can be obtained from a
one-vertex graph K, by a sequence of convez expansions.

Let A = (E,T) be a pair with a finite set Eand § # 7 C {=,+}F. For X,Y € T, we define
IA(X,Y)={Z € T : D(X,Z) C D(X,Y)}, called the interval between X and Y. The index A
of I4(X,Y) is often omitted when it is clear from the context. Note that if < X,Y,Z > is an
element of 7 then it is the unique element of T4(X,Y) N Ia(Y,Z) N 14(Z, X).

Proposition 4.7. An L! -system A = (E,T) is median if and only if A satisfies

(M3) ife€ E and X,Y € T satisfy X, =Y, andzX, ¥ €T,
then Z € I4(X,Y) impliessZ € T.

The next theorem is similar to Djokovié’s theorem which characterizes the graphs isometri-
cally embeddable in a hypercube.

Theorem 4.8. A graph G is median if and only if G is connected bipartite, and U(a,b) is
convez for all [a,b] € E(G), where U(a,b) = {z € C(a,b) : Iy € C(b,a) s.t. [z,y] € E(G)}.

We proved Theorems 4.6 and 4.8 by using median systems. Such proofs are indeed shorter
and easier to understand than direct proofs by the graph language or properties. In the following,
we will show another example like this.



Lemma 4.9. Let A = (E,T) be an L' -system with faces F and closed acyclons D. Then A is
median if and only if F = D holds.

Now, we extend the definition of < X,Y,Z >, X,Y,Z € {—,+}¥, to the case of any
odd numbered elements of {—,+}¥. That is, for X, X?,.., X%+ ¢ {- +}¥, k > 0, <
X1, X2,...,X%+1 5 denotes the signed vector U such that, for all e € E, U, = i if and only if
at least k+ 1 of X!, X2, ..., X2¥*1 are i. Then we have

Proposition 4.10. Let A = (E,T) be a medzan system and let X', X2, ..., X ?k+1 € 7. Then
< Xl X2 X2k+1 >cT.

For vertices v1,%g,...,vp of a connected graph G, any vertex m that minimize the sum

P _1d(z,v), z € V(G), is called a median of vy,v,,...,9,. Note that a median graph is a

connected one in which any three vetices admit a unique median. It is clear that Proposition

4.10 proves the following result by Bandelt and Barthélemy [1]: a connected graph G is median
if and only if each odd numbered family of vertices in G' admits a unique median.
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