FAFTYRA 24-5
(1991 11 22)

P LD n i S kEORE AR RO B R

Ik EE =¥ LT

© MFREEIAYE EERISH
b OHAIBM HURIERETZA

TELIE n AOES S = {p1,payerpn} BEASGATOE 6D LT Bo SORDEI k- TEE 5(])HO
LEMENS VI d S d < 0 < dp) EF 5o ABXTHEO 2 >OMBER Y. (1) () LM
5. RADLOD S MERDBo (2) (EO LMD E. BAD0h S kEARD 20 02 20MBENT S
O(min{n?, n + (k*3/log"/* k)}logn) R 7 v = Y X A % BET 5,

Finding k£ Best Distances of n Points in the Plane
Naoki Katoh* Kazuo Iwanot

* Department of Management Science,
Kobe University of Commerce
1 Tokyo Research Laboratory, IBM Japan

Given a finite set S of n points py, ps,. .., pn in the plane, let dy < dy < --- < d(;) be the L,-distances determined
by the pairs of points in S. This paper considers the following two problems:
Problem 1: For a given positive integer £ < (;), enumerate k pairs of points which realize d(,.)_k“, e d(..).
2 2
Problem 2: For a given positive integer & < (;), enumerate k pairs of points which realize dj, ..., dx. We shall
present an O(min{n?, n + (k*3/log'’® k)} logn) time algorithm for both problems.

€13

1 Introduction

Given a finite sel .S of n points py, pa,...,p, in the plane, let dy < dy < --- < d(;) be the L,-distances determined

by the pairs of points in S. This paper considers the following two problems:

Problem 1 (Enumerating & Largest L,-distances in the Plane)- For a given positive integer £ < (;),

enumerate k pairs of points which realize d(;)_kﬂ, R d(,;)‘

A
~
&
~

Problem 2 (Enumerating k Shortest L,-distances in the Plane) For a given positive integer £ <
enumerate & pairs of points which realize dy, ..., dx.

In other words, problem 1 (resp. problem 2} is to report the k largest (resp. k shortest) distances among (’2‘)
distances determined by (;) pairs of points. We assume that for multiple pairs of equivalent distances, we may
enumerate them in an arbitrary order.

Problem 2 has been studied by some researchers: Smid [12] presented an O(nlogn) time algorithm for & = O(n?/?)
in general d-space for any L,-metric, and Dickerson and Drysdale [5] recently gave an O(nlogn + klogn) time
algorithm for Ly-metric. A closcly related but slightly simpler version of Problem 2 is to select the k-th smallest
distance dy as well as a pair of points realizing it. For this problem, Chazelle [3] gave an O(n®®log"/® n) time algorithm
and Agarwal, Aronov, Sharir, and Suri [1] improved this time bound by giving an O(n®?log™*n) determ'\niétic
algorithm as well as O(n%?log®® n) randomized one. Both algorithms work for any dimension but only for 7.
metric. Salowe [11] extended Chazelle’s result to general L,-metric, and showed that this problem can be solved in
O(nlog®n) time for L or Ly, metric in the plane.

Regarding to Problem 1, to the authors’ knowledge, however, no one has ever studied this problem. Furthermore,
no one has ever studied Problem 2 for general L, metric with p # 2 except Smid’s result [12]. In this paper, we
shall present an O(min{n? n + (k*/*/log"* k)}logn) time algorithm for both problems. The techniques we use in
our algorithms for both problems are (1) k farthest neighbor Voronoi diagrams for problem 1 and & nearest neighbor
Voronoi diagrams for problem 2, and (2) the generalization of the technique developed by Frederickson and Johnson
[7].

The k nearest neighbor Voronoi diagram (also called the k-th order Voronoi diagram) in the plane, Vi(S), is a
generalized notion of the Voronoi diagram in the plane, which is a subdivision of the plane into maximal regions,
so that all points within a given region have the same set of £ ncarest neighbors. The & farthest neighbor Voronoi
diagram, V,f(S), is similarly defined. The first algorithm for computing Vi(S) was presented by Lec [10], which

requires O(k*nlogn) time. Though his algorithm was given for L, metric, he remarked in [10] that the algorithm

€23

can be generalized in a straightforward manner without changing time complexity to any L, metric as well as to the
k farthest neighbor Voronoi diagram. It has also been shown that, after obtaining Vi(S) (or V/(5)), k nearest (or
farthest) neighbors of each point p; can be computed within the time complexity of computing Vi(S) (or V().
Later Iidelsbrunner [6] gave an O(k(n — k) /nlogn) time algorithm, and Chazelle and Edelsbrunner [4] presented an
O(n® + k(n — k)log? n) time algorithm.

Notice that the following two trivial algorithms solve Problems 1 and 2. The first one sorts all pairs of distances
and selects the desired & distances. Thus, it requires O(n?logn) timc. Another naive approach to solve Problem 1
(resp. Problem 2) is to compute min{n, k} farthest (resp. min{n, k} nearest) neighbors of each point by constructing
the min{n, £} farthest (resp; min{n, &} nearest) neighbor Voronoi diagram and to select & largest (resp. shortest)
distances {rom the obtained n - min{n, k} distances. We shall improve this O(k*nlogn) time algorithm roughly by
O(n/k?1?) factor when k < n3/2,

For this purpose, our algorithm for Problem 1 (resp. Problem 2) employs as a subroutine an O({*nlogn) time
algorithm by Lee [10] for construciing V;/(S) (resp. Vi(S)). Since the algorithms by [6] and [4] work only for L,
metric and the algorithm by [4] requires O(n?) time for preprocessing, they are not appropriate for our purpose.
Since the techniques we use for both problems are almost identical, we shall focus only on Problem 1 throughout
this paper. Since the algorithm we shall present can be described independent of the underlying metric, we shall not
explicitly indicate which metric we use in the algorithm.

Initially we apply Lee’s algorithm for [= [4k/n]. Then we have [farthest neighbors for cach point p;. From them
we obtain /n = 4k pairs of points in total. Then we select 2k largest distances. The key observation is that at least
a half of points can be discarded in the further search for the desired & largest distances. Then, we again apply Lee’s
algorithm to the set of remaining points with the size of at most n/2 by letting { = [4}c'/n’], where n’ is the number
of remaining points. At each iteration, the algorithm computes O(k) pairs of points that are stored in the candidat‘e
set, and halves the number of points at least a half and determines { as above for the next iteration. After iterating
this process a certain number of times, the size of the remaining points becomes so small that directly computing all
pairs of remaining points is less time consuming than applying Lee’s algorithm,v At this point, we apply such a direct
method. At each iteration we obtain O(k) canditates of pairs of points, and discard at least a half of the renaining
points. We shall show that this approach significantly reduces the time complexity of the above naive approach.

We sec that this technique can be regarded as a generalization of the one developed by Frederickson and Johnson
[7] for finding the k-th smallest element in matrices with sorted rows and/or columns (sec also [8], [9]). Selccting
the %-th smallest element in an ordered set is a rather classical problem and is called the selection problem. The

complexity of this problem is known to be linear in the size of an input set (2.

€33

When the set is defined implicitly, this complexity is not necessarily optimal. For cxample, nontrivial tilne
complexity was achieved [or selecting the k-th smallest element in matrices with sorted rows and/or columus [7],
(8], [9]- Chazelle [3] followed the techniques therein, and proposed a more general technique which enables us to
efficiently solve several geometric selection problems including the following: (1) given two disjoint convex polygons
with n vertices, compute k shortest bridges between them, (2) given n points in E4, compute k shortest distances
between pairs of points, (3) given n points in E?, compute triangles formed by three points with & smallest areas.
The technique we develop in this paper is different from the one by Chazelle [3], and can be viewed as another
generalization of the one by Frederickson and Johnson [7].

The major contribution of this paper is not only to propose efficient algorithms for the above two problems but
also to propose a general scheme that enables us to develop efficient algorithms for enumerating & best solutions for
geometric optimization problems.

This paper is organized as follows. Section 2 gives the outline of the algorithm for problem 1. Section 3 describes

the algorithm and analyzes the time complexity.

2 Outline of the Algorithm

As briefly mentioned in the previous section, our algorithm repeatedly applies Lee’s algorithm by reducing the size
of point set at least a half until the size becomes small enough so that the straightforward O(n®logn) time method
is faster than Lee’s algorithm. Suppose that the m-th iteration of Lee’s algorithm obtains [, farthest neighbors of
cach point for n,, remaining points. We use I, = [4k/ny] for m 2 1.

Al the m-th iteration, we obtain l,nm, = 4k pairs of points together with their distances. Among them, there
may be two identical pairs of points, say (p:, p;) and (pj, p:); one pair (pi, p;) is obtained as one of I farthest neighbors
of p; and the other pair (p;,p;) as one of [farthest neighbors of p;. For the technical reason, however, we regard
them as distinct ones. Our algorithm proceeds by distinguishing these two identical pairs as il they are ordered pairs
until the second stage of the algorithm. Therefore, the algorithm computes in the first stage 2k ordered pairs with
2k largest distances and then select from them the desired & unordered pairs with k largest distances in the second
stage.

The first stage of the algorithm is carried out as follows. Initially it applies Lee’s algorithm for I = [4k/n] and
n; = n and computes {yn; = 4k ordered pairs of points. This requires O(max{n, (k*/n)}log n) time. Then we select
2k ordered pairs with 2k largest distances from them. Other pairs are discarded because the distance for a discarded
pair is not larger than the distance of any of the selected 2& pairs and it is not eligible for 2k largest distances we

want to find.

€43

An important observation here is that there are some points p; such that some distance(s) between p; and some
other point(s) p; is discarded, and that such points can be discarded from the succeeding search for the desired 2k
largest distances. The reason is as follows: Suppose we are at the m-th iteration. For the discarded distance from
pi to pj, p; is one of L, farthest neighbors of p; (let p; be the A-th farthest neighbor of p; with h < l,,). Since each
distance {from p; to R'-th (A’ > h) farthest point of p; is not larger than any distance in the 2k distances sclected
above. This implies that we need not search for I’ farthest neighbors of p; for I’ > I,,. Thus the point p; can be
eliminated. Furlhermore it can be shown that the number of such points is at least a half of of n,,, since otherwisc the
number of remaining pairs of points is larger than f,, - (nm/2), which is larger than or equal to 2k by the definition
of I,,, which contradicts that the number of remaining pairs is 2k.

For each discarded point p;, if an ordered pair (p;,p;) belongs to the set of 2k selected pairs, the triplet
{d(p:, p;),%,7) is stored in the candidate set C. The set C is used to keep these triplets from which the desired
2k ordered pairs with 2k largest distances are eventually obtained at the end of the first stage.

Letting lp41 = [4k/nm41] where npyq is the number of remaining points, we repeat the same process for

the remaining point set. This requires O((lm+1)*m+110g Mamy1) time. Repeating this process until the number

2/37.,1/3

of remaining points is less than k*>log!/® k. We then compute all pairs of the remaining points together with their
distances in a straightforward manner because in this case this work is less expensive than applying Lec’s algorithm.
We then add the corresponding triplets to the candidate set C. Finally, 2k ordered pairs of points with 2k largest
distances are selected from the set C by applying the linear time selection algorithm.

As mentioned before, the second stage is carried out to find k unordered pairs with % largest distances, which can
be done in O(klog k) time as will be shown in the next section. The overall running time is shown to be bounded

by O(min{n?, n+ (k*/*/(log k)*/®)} log n). Thercfore, this algorithm is much faster than ‘the naive approach that was

mentioned in Section 1.

3 The Algorithm

Based on the idea explained in the previous section, we shall describe the algorithm for selecting k largest distances
of n points in the plane. Let S = {p1, ps,...,pn} be the given n points. Let Fi(p;) be the set of k farthest points of

pi-
Algorithm (Finding k Largest L,-Distances)

Step 0: C :=0 and m = 0.

€53

Step 1: m:=m+1,n, :=|S|, and I, = [4k/ny]. If n, < k?3(log k)*/?, then go to step 4. Else apply Lee’s algorithm

to compute F,,(pi) for all p; € S. Let D(m) := {(d(pi, p5), %, 1) | p; € Fr{pi)}-

Step 2: (a) Let D := UpesD(p:) and compute the subset D' of D with 2k largest distances by applying the linear time

selection algorithm.

(b) For each p; € S, delete from D(p;) the triplets (d{p:, p,),% 7) that are not selected in (a).

Step 3: (a) Let S’ be the subset of $ such that all I, triplets in D(p;) are selected in D' in Step 2(a).

(b) Let C := C U (Up,es—s'D(pi)) and discard the points in § — S'. Let S = S’ and return to Step 1.

Step 4: (compute all pairs of remaining points and their distances)
(2) For each p; € S, let D(p:) = {(d(pi,p;),5,5) | i # j,p; € S}. Let C = C U (Upes D(pi))-

(b) Select 2k triplets with 2k largest distances in C.

Step 5: (second stage) Select k distinct unordered pairs of points with k largest distances and report them. Stop. O

As we discussed in the previous section, we iterate the loop of Steps 1 through 3 until the straightforward O(n2,)
time method becomes faster than Lee’s algorithm to find /., farthest neighbors of each point. Thus, we stop iterations

when n2, < 12 n,, 10g N, ie., n = O(k2 log'* k).
m m g

Theorem 1 The above algorithm correctly computes k pairs of points with k largest distances in O(min{n? n +

(k413 /(log k)/3))} log n) time.

Proof. The correctness of this algorithm is obvious from the discussion given so far. We then analyze the running
time. Suppose that the loop of Steps 1 through 3 is iterated M times. Let n,, (resp. 4,,) denote the number of points
in S obtained in Step 1 (resp. the value of [) at the m-th iteration of the loop. When k < n;/4, I; = 1 holds and the
first iteration clearly requires O(nlogn) time. In this case, Step 3 discards exactly ny — 2k points and the number
of remaining points is 2k. Therefore, k > n,,/2 holds for all m with m > 2. From the discussion given in Section 2,
Timg1 < N /2 follows. Therefore, the loop is iterated M = O(log(n/(k*/*log!/* k))) times. The time required for the

m-ih loop with m > 2 is analyzed as follows. As shown in Lemma 2 below, Step 1 after m > 2 in total requires

M M
O(S” Binglogn,) = O(Y (1/n.)k* logn) = O((k**/log"/® k) log n)
=2 m=2

time. Step 2 requires O(npyl,) = O(k) time. Step 3 also requires O(k) time. Summing up these terms from m = 2

to M = O(log(n/(k*/*log*’* k)), we have

O(k log(n/(k** log' k)) + (1) (k*/*10g'/* k)) - (k*/n) log n)

= O(klogn+ (k*/log'® k)logn)

€6l

time. Therefore the loop of Steps 1 through 3 requires in total O(nlogn + (k*3/log!/® k) log n) time.

When the loop of Steps 1 through 3 has not been exccuted at all (i.e., the case when n < k**log!/* k), Step 4(a)
requires O(n?) time, and Step 4(b) requires O(n?logn) time. Otherwise, Step 4(a) requires O(k*/?(log £)%/?) time.
When l; = [4k/n] > n%2/log?n, Step 4(b) requires O(n?logn) time. Otherwise, since O(k) triplets are added
to C' al every itcralion and the loop of Steps 1 through 3 is iterated O(logn) times, Step 4(b) requires O(klogn)
time. Step 5 is carried out as follows. First, for each triplet (d(pi, p;),7,7) selected in Step 4(b), we swap ¢ and j if
j > 1. After this, sort the 2k triplets in lexicographical oxder of the components of the triplets. Then we can choose

in O(k) time the desired & non-redundant unordered pairs of points with £ largest distances. Summarizing the above

discussion we establish the claimed time bound. m]

Lemma 2 TM_,1/n, = O(1/(k*Plog"*k)) holds, where M = max{m | nn, > k*Plog'® k} is the number of

m=2

iterations of the loop of Steps through 3.

Proof. We first define two sequences ay,as,---,ay and by, b3, -, by as follows: let a,, = 1/n,, for m > 2,
by = aj, and by, = 2b,,_y for m > 3. Let M’ = max{m | 1/b,, > 2k2/3log’’® k}. Let f(m) be defined in such a way
that bg(m)-1 < @m < by for m > 3. Notice that since 2ap—1 < am < by(my, We have byguy—1 < by for all m > 3.

We also have byary < bpsr. Therefore, we have

M M M!
S an € 3 by € 3 b = O(2M'a5) = O(1/ (6 10g™* k)

m=2 m=2 m=2

4 Conclusion

This paper proposed an O(min{n?,n + (k*3/log!® k)}log n) time algorithm for (1) enumerating & largest L,-
distances in the plane and (2} enumerating & shortest L,-distances in the plane. To the authors’ knowledge, no one
has ever studied Problem 1, and we thus provided the first nontrivial algorithm for this problem. The idea behind
the algorithm is general and may be applicable to other enumeration problems. For example, we can efficiently
enumerate k shortest (resp. k largest) distances for the set of non-overlapping convex polygons or line segments if
there exists an efficient algorithm for constructing k nearest (resp. k farthest) neighbor Voronoi diagrams for such

geometric objects.

BE R

(1] P.K. Agarwal, B. Aronov, M. Sharir, and S. Suri, Selecting Distances in the Plane, Proceedings of the Sixth

Annual ACM Symposium on Computational Geometry 1990, 321-331

€73

[2] M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, Time Bounds for Selection, J. Computer and

System Sciences 7(1973), 448-461.

[3] B. Chazelle, New Techniques for Computing Order Statistics in Euclidean Space, Proceedings of the First

Annual ACM Symposium on Computational Geometry 1985, 125-134

[4] B. Chazelle and H. Edelsbrunner, An improved algorithm for constructing kth-order Voronoi diagrams, IEEE

Transactions on Computers, C-36 (11) (1987), 1349-1354.

[5] M. Dickerson and R.L. Drysdale, Enumerating & Distances for n Points in the Plane, Proceedings of the

Seventh Annual ACM Symposium on Computational Geometry 1991.
[6] H. Edelsbrunncr, Edge-skeltons in arrangements with applications, Algorithmica, 1 (1986), 93-109.

[7] G.N. Frederickson and D.B. Johnson, The complexity of selection and ranking in X 4+ Y and matrices with

sorted columns, J. Computer and System Sciences 24 (1982), 197-208.

[8] G.N. Frederickson and D.B. Johnson, Generalized selection and ranking: sorted matrices, SIAM J. on Com-

puting, 13 (1) (1984), 14-30.

[9] Z. Galil and N. Megiddo, A fast selection algorithm and the problem of optimum distribution of effort, J. of

ACM, 26 (1979), 58-64.

[10] D.T. Lee, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Transactions on Computers, C-31 (6)

(1982), 478-487.

[11] J. Salowe, Selection problems in computational geometry, Ph.D Thesis, Department of Computer Science,

Rutgers University, New Brunswick, New Jersey, 1987.

[12] M. Smid, Maintaining the minimal distance of a point set in less than linear time, Universitat der Saarlandes

06/90, 1990.

€83l

