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Abstract
We analyze the approximation ratio of the average distance heuris-
tic for the Steiner tree problem on graphs, and prove nearly tight
bounds for the cases of complete graphs with binary weights {«, 8}, or
weights in the interval {a, ], where @ < 2 - 8. The improvement over
other analyzed algoritluns is a factor of about e.



1 Introduction

Given a graph with real-valued edge weights, and a
subset of the vertices distinguished as terminals, the
Steiner tree problem involves finding a tree of mini-
mum weight that spans all terminal vertices. It has
attracted a great deal of attention in recent decades,
partly due to its natural application to minimizing
the lengths of communication paths, for example in
VLSI layout and telephone switching networks.

In this paper we consider a restriction of the
problem when the network is a complete graph and
the ratio between the smallest and the largest edge
weight is small. We distinguish between two cases:
binary weights, when the graph contains only two
weights o or 3, and the more general interval weights,
when the edge weights fall in the interval [, 8). For
both types, we restrict our attention in this paper to
those cases where o < 2- (.

The algorithm that we shall consider for approx-
imately solving the Steiner problem is known as the
Average Distance Heuristic (ADH), and was intro-
duced by Rayward-Smith in [5]. Only later was it
shown by Waxman and Imase [7] that the perfor-
mance ratio of the algorithm, or the worst-case ratio
between the length of the solution it generates to
the length of the optimal Steiner tree, is asymptot-
ically two. Empirical and average case results [6, 8]
also indicate excellent performance in practice. Our
line of work was started by Bern and Plassman [2]
who considered the performance of ADH on the com-
plete graph with binary weights 1 and 2, and proved
a ratio of 4/3. They also showed that the prob-
lem was MAX SNP-hard, and thus unlikely to be
approximable in polynomial time within arbitrary
constant.

We first show that the Steiner problem is NP-
complete on binary weighted graphs, for any « # £.
We then give several bounds on the performance of
ADH on graphs with binary and interval weights.
In both cases the precise bounds are shown to be
of the form 1+ % + O(g), where e is the basis of
the natural logarithm, and the constants behind the
lower order term are small. This improves on the
1+ } performance of other analyzed methods.

The paper is organized as follows. The Aver-
age Distance Heuristic is described in next section
and basic definitions given. Section 3 contains the
NP-completeness proof, and sections 4 and 5 con-
tain the analysis of the performance of the heuristic
in the binary and interval case, respectively. Sec-
tion 6 describes evaluation of the formulas obtained

in sections 4 and 5, closing off with a discussion of
related problems and methods in the final section.

2 Definitions

We are given a weighted, undirected graph G =
(V, E), and a set S of terminal vertices. The ele-
ments of V — S will be referred to as optional vertices.
In the remainder of the paper, F will be assumed to
be the complete graph V x V. Let n denote |S|.
The objective of the Steiner tree problem is to
connect the terminals using minimum total sum of
edge weights. The ADH attacks the problem by re-
peatedly shrinking a terminal subset to a single ter-
minal, choosing each subset greedily so as to mini-
mize the average cost of connections spent on each
reduced terminal. Let AD(v, X) denote the average
distance of vertex v to a set of terminals X, namely

AD(v,X) = E_sl%d:(%ﬁ

where d(v,s) denotes the weight of the edge (v, s).
The algorithm chooses the pair (v,X) that mini-
mizes AD(v, X). The vertex v can either be a termi-
nal in X, or an optional vertex. In the former case,
we may assume without loss of generality that two
vertices are reduced at a time. In the latter case,
these vertices form a star centered at v.

Let o () denote the minimum (maximum) edge
weight in the graph, respectively, and let k be a real
value such that §/a = 1+ 1/k. Let K denote |k].
Let p denote the number of optional nodes in an
optimum Steiner tree.

Let H EU(G) denote the size of the solution found
by the algorithm on G (assuming worst-case tie-
breaking), and OPT(G) denote the size of the opti-
mal Steiner tree for G. Let r;(G) denote the ratio of
HEU(G) to OPT(G), and r} denote the minimum
such ratio over all graphs under consideration. We
are interested only in the asymptotic ratios, as the
size of the input grows, although the differences are
minor. Hence, we ignore all terms that do not grow
linearly with the size of the input.

Finally, let H; denote the k-th harmonic number,
E?:la 1/ i.

3 NP-completeness

Theorem 1 The Steiner Tree problem on a com-
plete graph with binary values is N P-complete for
any choice of values o # 3.



Proof. The problem is clearly in NP. For 8 > 2q,
hardness has already been established, for instance
in the MAX SNP-hardness proof of [2]. We shall
prove it here for the remaining values of § and a.
Let & be the least integer such that 8/a > 1+ 1/x.
The proof is by a reduction from “Exact Cover by
k-Sets” [3, p.221].

We are given an input (C,X) to Exact Cover,
consisting of a basis set X, and collection C of sub-
sets of X of size x each, for which the objective is
to decide if there exists a subcollection C’ of C of
mutually disjoint sets whose union is the basis set
X. From this we construct a network G = (V, E, S)
as follows.

The graph contains a terminal vertex for each
element of the basis set, and an optional vertex for
each set in C, with the vertices labelled accordingly.
The edges with weight alpha are those between two
optional vertices, as well as those between an op-
tional vertex ¢ and terminal vertex o such that the
label of o contains the label of t. More formally,

o ifvandue O OR
ifu€eO,veT,andI(v) €l(u)
B otherwise

wt(u,v) =

We now claim that the weight of the optimal
Steiner tree of the graph and the question whether
the set system has an exact cover are have a strong
relationship, namely that

OPT(G)=|T| - a+(g—1)-a=a((k+1)-g—1)
iff (C,X) has an exact cover

Assume first that (C,X) has a cover C'. Then
if we consider the restriction of the graph to the al-
pha edges between the terminal set along with those
optional vertices associated with C’, this graph is
connected and thus has a Steiner tree of size (|T'| +
|C'| = 1) - a. Moreover, if the cover is exact, the size
of C' is only |T'|/x = g, proving the if part.

On the other hand, consider a Steiner tree with
T beta edges. At least n — r terminals must be con-
nected via at least (n — 7)/x optional vertices for a
cost of [(k+1)g—1Ja~ (x+1)/kra+rB. This is at
most {(x + 1)g — 1]e only if r = 0. Moreover, if n/x
optional vertices sufficed to cover the n terminals,
then they form an exact cover by k sets of the set
system. [ |

4 Binary weights

When dealing with binary weights, there is a natural
way of mapping the weighted problem on a complete
graph to incomplete, unweighted graphs. The edges
of this graph are the lightweight a edges only. We
focus our attention on this graph G'. One useful
observation is that no two terminals will be adjacent
in a worst-case instance.

We can rephrase some of the notation in terms
of this graph. A t-star is an optional vertex in G’
adjacent to at least ¢ terminal nodes. Also, p, de-
fined as the number of optional nodes in an optimum
Steiner tree, is equivalent to the size of the minimum
dominating set of the unweighted graph.

In what follows, we start by generalizing both the
upper and lower bound of [2] to arbitrary k. These
bounds have been included here primarily for the
basis they provide for further intuition, as well as
for their simplicity. We then improve both bounds
to functions that converge as k grows.

A lower bound

For each positive integer ¢, we construct the follow-
ing graph named t-rake, and denoted R;: A sequence
of optional vertices are linked in a path, with ¢ termi-
nals hanging off each optional vertex as a leaf node.
A 3-rake is shown in figure 1.

S

Figure 1: A short 3-rake

1

k(k+2)

Proof. For a t-rake, it is easy to verify that
HEU(R;) =pB(n—1)

when t < |k] + 1, and that

Theorem 2 For k integral, r, > 1+

OPT(R,).—.a-fi;—l-n

whent > |k]+1. Now if we consider the (k+1)-rake,

HEU(Rpi1) Bn _k+lk+1
OPT(Riy1)  on(k+2)/(k+1) k k+2
1

T
|



An upper bound

The following observations were made in [2] in a
somewhat lesser generality.

Observation 1 1. IfG contains at+1-star, then
the algorithm makes progress towards -i'- ra-
tio. More precisely, the Y1 ratio will be at-
tained if ADH attains that ratio on the smaller
graph equivalent to G with the t+1-star reduced
to a single terminal.

2. OPT(G) 2 a(n+p—1), where p is the number
of optional vertices in the optimal solution.

3. If G contains no t + 1-star, then p > [n/t].

4. If the minimum tree contains q t-stars, then at
least 2q nodes will be covered in t-reductions by
the heuristic.

A simple application of observation 1 part 1-3
yields the following bound.

Lemma 1l rp <14 [21Ic]
Proof. Assume G contains no t -+ l-star. Then
OPT(G) > a(n+p—1) > a(n + n/t — 1), while
HEU(G) < B(n — 1). Hence for t = [2k], m(G) <
1+1/k 2k]—k

7l =1+ wy < 1+ e

On the other hand, if G does contain a [2k] +1-
star, then we can make progress towards a 1 + T21’5T
ratio, by observation 1.1. |

By counting just how many ¢+ 1-stars the graph
contains, and showing that the adversary maximizes
the ratio when that number is zero, we can strike a
better balance between the two options of the pre-
vious proof.

Assume the graph contains no ¢ + 1-stars. Let ¢
denote the number of (disjoint) ¢-stars in an optimal
solution. Thenn < gt +(p—¢q)(t—1) = p(t—1) +gq,
and thus p < 3=

From the above, and observation 1.2,

OPT(G) > a(n+p) = a(n+ ) = a..__(n__)

t—

Let m be the number of t-reductions or larger,
and let s be the number of nodes reduced in them.
Then m < sft. Moreover, since at least 2 nodes from
a given star must be reduced in order to decrease the
star, we have that s > 2¢ (see observation 1.4).

HEU(G) £ Bn+m-—s)+as

k+1

= « (n+m—-s(1—m
Ic+1 s s

< gl S

s aint g k+1)
k+1 1

< —2 -

)

We have that the ratio between the two is at
most EF . 9—}1, as long as 2(;((751_—1 —1) > ¢, which is
satisfied when t > 3(k +1).

If we now set ¢t = [2k]+1, the ratio is bounded by
b Il =14 i < 1+ gy Finally, recall
that if there is a (¢ + 1)-star, the same bound holds
(obs. 1.2). Thus we obtain the following theorem.

< —
Theorem 3 rp, <14 PAES!

An improved lower bound

Construct a graph Tk g, for an integer R, as an ad-
justment of the |k|+1-rake in the following way. Let
each center node (an internal node in the “spine”
of the rake) cover R terminals. Let the extra R —
(|k) + 1) terminals be connected to some additional
optional vertices as follows: A specific terminal node
X is adjacent to every new optional vertex. Ensure
that in all cases, the next star will have a) no more
than one terminal from any center node (except pos-
sibly X), b) the node X, and c) exactly as many
terminals as the currently largest star has.

This is constructible and has the property that
the sizes of the reductions will slowly decrease from
R down to k| +2. In particular, there will be about
p/t reductions of size t+1, except for size R for which
there will be 2p/(R — 1).

The upper part of figure 2 shows the graph 713
as an example. The additional optional vertices are
labeled with the round in which they will be reduced
(according to the reduction order we have chosen).
The lower half is a snapshot after all the star re-
ductions have taken place. The heuristic cost of
each star in this particular example, for k = 1, is
4/3 +4/3 + 2 = 14/3, versus the optimal cost of
4, making this a poor 7/6 lower bound. In fact,
this type of construction can not attain the optimal

bound for k = 1, but as we can see, is quite strong
in the more general case.
HEU(Tk,R)
_ (PR p R P(R—l)
= dgit Rt R-2
p- (k] +2)
PrALRI T 2) Akl
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Figure 2: Lower bound example

= wl(R- )+ o+ eyt s
+ LkJ+1+(LkJ+LkJ/k)J
= ap[(R+1)+’R‘@}';T)+HR_‘HLkJ

+(Lkl/k - 1)]

(We have ignored a single o cost in the initial reduc-
tion, and several ceilings here and there, which will
account for no more than R extra a costs. Both of
these are negligible for large n.)

However, OPT(Ty g) = ap(R + 1), hence

(HR—HLI;J>+'E(—I%—_T5+J7}§‘I‘—1

>
r(Ter) 2 1+ J]

€]

An improved upper bound

If p is the size of the minimum dominating set, at
most (k+ 1)p nodes will remain for beta-reductions,
and the rest must be reduced by star-reductions.
The size of a star reduction is the size of the largest
star available, or at least R = [n/p]. Since each t-
reduction decreases the count of terminals by ¢ — 1,
in order to decrease [n/p] by one, the p terminals
must be reduced in at most p - t/(¢t — 1) reductions.

HEU(G)

PR p(R=1) __ p(lk+2)

S Ry s A Y
+Bp(lk] +1)

= apl(R— (1K + 1)+ g+ g

+-I;l—1-]+a(1+1/k)(LkJ +1)p

k] +1—k
=]
And, OPT(G) is the same as before. Hence,

Il

ap[(R+1)+ (Hr-1 = Hp)) +

(Hpo1 — Hyy) + E2=
<1
TSR R+1

5 Interval weights

We now turn our attention to graphs for which only
the ratio between the largest and the smallest weight
‘g =1+ 71; is given. We generalize the notion of a
t-star to a set of terminals of an average distance at

most ?i—l from an optional vertex.

We obtain an exact, albeit non-trivial, bound for
the approximation ratio for these graphs. To distin-
guish it from the ratio for binary weighted graphs,
we refer to the performance ratio as r}.

Theorem 4 r}, =1+ max max Gile, )
where

Gi(z,€)
” v — €
(14 &) (Mo — Higrpep)) + (1+k k(1+ YE+1

z+14+e€

Let us further define gi(e) = max, Fr(z).

The lower bound

We construct a graph Zi g, as a long R-rake with
slightly modified weights on edges between vertices
in the same star. If each star consists of terminals
t1,...,tr and an internal vertex v, and we let &’
denote [(1+ €)k], the weights of the edges are given
by:

Il

d(v,t;) o i=k+1,...,R
aiflte j—i41i=k...R
d(ti,t)) = { B otherwise

Figure 3 gives an example of a modification of
a 3-rake with no ¢ weight, which, in fact, yields a
lower bound of 1.375 for the case k = 1 i.e. weights
in the range [1,2].

The construction ensures that the terminals will
be reduced first, in inverse order of their introduc-
tion. The weight of an added edge (ti,ti—1) will be

{ (1+e¢/k)o i=1,2,...K
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Figure 3: The graph Z; 3.

equal to the average distance at the optional vertex
at the time when the edge is reduced.

Let w denote the largest value of i for which
He > /e, or He>forw=1+(1+€)k].

If we now focus only on the cost of each star, we
have that

HEU(Zy pe)

R
> d(ti i) + Bw

i=w+1

R
= af Y,

i=w+1

i+e€
1—1

+(1+ %)w)

Al w
= aR+(1+0 3 3+7)

i=w

AR+ (1+ (Hror = Hom1) + 7)

On the other hand, OPT(Zxr,) = a(R+ 1+ ¢).
Hence,

™(Zk,Re) =
(1 + ) (Hrr = Hy1pop)) + LFkliI-(rak
14
R+1+c¢
Thus, r}, > 1+ maxpr(Zrre) = 1+ gr(e), for

any € > 0.

The upper bound

To observe that the above bound is tight, we first
make the crucial observation that on some worst-
case instance the heuristic will reduce only pair of
terminals. The idea is that if some star has a low
average cost, we can pass it on to the edges between
those terminals without affecting the heuristic or op-
timal costs adversely.

Lemma 2 For any instance G, there is an instance
G' with identical optimal and heuristic values to G,
for which the heuristic reduces only pairs of termi-
nals.

Proof. Let X be a star consisting of a set of termi-
nals T4,...,T; and an internal node v, and assume it

is of a minimum average weight. Now set the weight
of the edges connecting the terminals to AD{v, X).
That value can be no less than the original edge
weight, hence the heuristic cost is not affected and
the optimal cost not increased. These edges will now
be 2-sets of minimum weight, hence the order of re-
duction remains the same. Apply this argument re-
cursively to obtain the instance G’. [ ]

This implies that we can assume that the stars
of the optimal Steiner tree are disjoint, and thus
consider each separately. Note that it is important
here to allow for continuous weights ~ the binary
case is actually more complicated for this reason.

From now focus on a given star, which we assume
has R terminals, sum C of edge weights to the inter-
nal node, additional weight e, and average distance
a; (at the optional vertex) before the i-th terminal
(of this star) has been reduced (to another terminal
in this star). Denote the cost of reduction ¢ by c;.

Some straightforward relationships are C = a(R+
¢), and ¢; < a;. The important thing is that in a
given reduction, the sum of weights to the internal
node must decrease by at least o, while the number
of terminals decreases by at most one. Hence, the
average cost of the i-th reduction is

< C- a(z — 1)
- R—1
which simplifies to a(1 + ).

Assume w beta reductions are performed. Now
everything falls in place.

a;

HEU(G)
R—w-1
< Y a+puw
1=0
R—-w-1
14+e€ k+1
< o(T-w)+ Y, 5———+——u]
= R—-1-1 k

o R+ (1+ &) (Hp-1 = Hu1) + 7]

And, OPT(G)=C+a=a(R+ec+1).

We know that w is the largest integer for which
the average distance of the remaining w terminals
exceeds #. That is, 9‘-(1;"?"'19- =1+ ;"1{-‘1— > 1+ 71;
Hence, w < (1 + €)k + 1, and since w is the largest
integral value satisfying that bound, we have that

w=[(1+ k] +1.

Thus, r}, < 1+ max, maxp Gi(R,¢), completing
the proof of theorem 1.



6 Evaluation

Asymptotic evaluation

Theorem 5 The performance ratio of the average
distance heuristic on complete graphs with either bi-
nary weights {a, (1 + 1/k)}, or interval weights
[a, (1 +1/k)), is 1+ 1/(ek) + O(1/k?).

Let us first consider the case of interval weights.
A simple approximation of the harmonic number H,,
is by Inn+ 4+ O(1/n), where v is a constant. This
gives us

- 1+4+e)(n(z—1) — In(1 + )k + (9(%;))

Gi(z,€) z4+1+¢

The additive terms can be conveniently hidden in the
lower order term, and the term involving ¢ eventually
factored out.

maxgi ()
1+ e)lnﬁf—e)-k- L
= mx—ar.e o)
_ (1+¢€)lny 1
- e,y=n:l?i§+e) yl+ek+(1+e¢) * O(L—T)
_ Iny 1
= myaxy—k + 0(75!')
- 1 1
= = + O(g)

Hence, vt = 1+ % + O().

In the case of binary weights, the lower bound in
equation (1) differs from the upper bound (2) by at
most RlTi[% e RU%‘-‘-TT] = O(g). Since the upper
bound equals 1 + gi(0), the equality also holds for
the binary case, by the above derivation.

Empirical observations

The function G(z, €) we have obtained is not a sim-
ple one, and, in particular, it depends on the max-
imization of two parameters, z and e. The follow-
ing results have been observed experimentally. Let

k]+1-k
fi denote gi(0) = max, l';‘:ﬂmij‘r_‘, and f.

z+1
denote gk(ﬂfl -1).

We find that for any given ¢, gi(e) is monotone
decreasing in the interval [[k]/k—1,00). In fact, the
maxima of gx(€) occurs at one of two specific values
of e.

Claim 1 gi(€) = max(fy, f})

Thus when k is an integer, gr assumes a max-
imum when € = 0. The actual winner of the two
depends subtly on the size of the fractional part of
k, with the exact tradeoff being a slowly decreasing
function approaching %‘

Claim 2 1. fi > f} when k— k] < &1 ~ 0.62.

2. fr < fi when k — k| > 2/3 = 0.66.

3. The difference between fi and fi amounts to
less than 0.5% of the relative value of r},, and
for k > 52, it is less than 0.001%.

Note that fi is exactly the upper bound we ob-
tained in the binary case. Even for that special case
of gr, we have been unable to obtain a closed form
expression. By experimentation, we find that f is
maximized when z = round(e(k — .5)). Note fi has
only a single maxima for z in [k, 00}, and is therefore
easily computable.

Current bounds for specific cases

Table 1 lists the current best bounds for some spe-
cific values of k, along with the relative improvement
over minimum spanning tree based methods.

Binary weights
k Upper bnd Lower bnd 57=%
1 1.3 1.3 3
2 1183 1.15(x) 33
3 1121786  1.100952  3.302
4 1.0913029 1.0790349 3.163
10 1.0366375 1.0344664 2.901

100 1.003677 1.0036539 2.737

Interval weights

ko7, MST MST-L
1 1.375 2.0 2.6

2 1.183333 1.5 2.72727
3 1121786 1.3 2.73705
4 1.0913029 1.25 2.73814
10 1.0366375 1.1 2.72944
100 1.003677 1.01  2.71966

Table 1: Some performance ratio bounds.

Note that the lower bound for k = 2 in the bi-
nary case was obtained from a construction slightly
different from those of section 4.



7 Discussion

Comparison with other heuristics

The binary weighted network corresponding to the
graph consisting of a single, huge star shows that the
performance of the Minimum Spanning Tree heuris-
tic is B/q, for 8 < 2a. It is well-known that this
ratio never exceeds 2, and until recently, that was
the best result known. Most other methods with a
comparable performance ratio have been found to
simulate the MST construction either directly or in-
directly.

A recent breakthrough by Zelikovsky [9] improved
this ratio to 11/6. His method finds optimal Steiner
trees of all 3-element subsets of S, greedily adding
them the solution. This was further generalized by
Berman and Ramaiyer [1] to t-element sets of ter-
minals. They obtained a ratio of 16/9 for t = 4,
and improvements with every increase in ¢. Never-
theless, the limiting ratio is still above 5/3, and the
time complexity grows at least as fast as n'.

1t turns out that these advanced techniques yield
little improvement over MST on the restriction of
the Steiner problem considered in this paper. For in-
stance, Zelikovsky’s method performs no better than
MST-based methods on graphs with § < 4/3 - a.
More generally, we state the following observation.

Observation 2 If a heuristic considers sets of ter-
minals of size at most k, then on binary weighted
graphs with B/a < 1+ 1/k, its performance ratio is
at least B/a.

Thus ADH yields a “relative” factor of e im-
provement over the competition on these problems!.

Extensions

We have also considered the case of binary weights
{a, da}, when the ratio d = §/c is greater than 2 [4].
For the case d = 2.5, we have a tight bound of 1.5,
and when d = 3, the performance ratio lies between
30/19 =~ 1.57 and 5/3 = 1.6. In general, we have a
lower bound of 2 — 4/(3leg d + 5) when d is a power
of 2. Tt is an interesting question if the convergence
to the asymptotic bound of 2 is only logarithmic in
the weight ratio.

While we have been able to generalize the tech-
nique of the proof of theorem 3 to obtain reasonable
upper bounds for d up to 3, going beyond that will

1 Partly because of comparisons like these, the performance
ratio measure is often defined as one less than our definition.

require different techniques as we must take into ac-
count weights of pairs of edges.
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