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Optimal Parallel Algorithm
for Computing the Prefix Convex Hulls of A Sorted Points Set

Wei Chen, Koji Nakano,Toshimitsu Masuzawa, and Nobuki Tokura
Faculty of Engineering Science,Osaka University,Osaka,560 Japan

The optimal parallel algorithm for computing the convex hull of a sorted set S of n points in the plane is
known to be executed in O(log n) time using n/logn processors on the CREW PRAM. In this paper we present
a parallel algorithm for computing the convex hulls of all prefix sets of S. The algorithm runs in O(log n) time
using n/log n processors on the CREW PRAM, and hence is asymptotically optimal.
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1 Introduction

Given a set S of n points in the plane, the convex hull
of S is the smallest convex polygon containing all the
points of S. The problem of computing the convex hull
has been studied extensively. It has been shown the
problem has a lower bound §2(n log n) of sequential time
complexity (in the quadratic decision-tree model), and
several algorithms achieve this lower bound(!%. If the
set of points are sorted, say, sorted by z coordinates,
the problem can be solved in O(n) time by Graham
scanlt?],

Convex hull algorithms have also been developed
in ‘various parallel models; especially on the CREW
PRAM (i.e., the synchronous shared-memory parallel
model where concurrent reads are allowed but no two
processors can simultaneously write to the same mem-
ory cell). A PRAM algorithm is cost optimal (or speed-
up optimal) if the product of the time and the num-
ber of processors is of the same order as the running
time of the fastest known sequential algorithm for the
same problem. It is time optimal if it is the fastest
possible algorithm using a polynomial number of pro-
cessors. A PRAM algorithm is optimal if it is both
cost optimal and time optimal. Several optimal con-
vex hull algorithms have been proposed on the CREW
PRAMMIBIEE,  They use O(logn) time and O(n)
processors. For a sorted set of points, Goodrich{!%
presented an optimal parallel algorithm which runs in
O(logn) time on CREW PRAM using O(n/log n) pro-
cessors. The optimal parallel algorithms for computing
the convex hull of a sorted point set on the other PRAM
models have also been well studied®He].

In this paper, we consider the problem of comput-
ing the prefiz conver hulls of a sorted set of points in
the plane. Let S={sy,s2,...,5,} be a sorted set of
points in the plane, say, sorted by order of increasing
z coordinates. That is, z(s;)<z(si41) holds for each i
(1 € i< n—1), where z(s) stands for the z-coordinate
of s. The subset S; ={s1,52,...,8:} of the first i ele-
ments of S is called as the ith prefiz of S. The problem
of computing prefix convex hulls of S is to compute the
convex hull of S; for all i(1 < ¢ < n). The problem
is expected to have applications to several probelms
such as the the convex rope problems and the visibility
problems.

Since the convex hull of S; may be é-gon (1 < ¢ < ),
the problem of computing prefix convex hulls has a
lower bound 2(n?) on the cost of the parallel algorithms
if each convex hull is required to be represented inde-
pendently as a list of its vertices. To avoid this lower
bound on the cost, we use a tree of size n to represent all
these n convex hulls as follows. For any 7, s, and s; have
the smallest and the largest z-coordinates in S;, respec-
tively, therefore, they are the vertices of the convex hull
of S;. The line segment 37;5; divides the convex hull
of S; into two convex polygonal curves: the upper con-
vex hull above the line segment, and the lower convex
hull below the line segment. The union of these upper
(resp. lower) convex hulls forms a tree, called the upper
(resp. lower) convex hulls tree of S (we give the formal
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Figure 1: The upper convex hull tree of a sorted points
set

definition later) (Fig.1). In this paper, the upper and
lower convex hull trees of S are adopted to represent the
all prefix convex hulls of S. We propose an algorithm
for constructing these two trees in O(logn) time using
O(n/logn) processors on the CREW PRAM. The al-
gorithm is shown to be optimal. Since the convex hull
of S is one of the prefix convex hulls of S, our algorithm
is regarded as a generalization of Goodrich’s algorithm
in literature [10].

2 Preliminaries

For any point s in the palne, denote z and y coordi-
nates of s as z(s) and y(s) respectively. A set S =
{51,82,--.,5,} of points in the plane is z-sorted if the
points of S are listed by order of increasing z coordi-
nate, i.e., z(s;)< z(si41) (1 i< n—1).

Consider an z-sorted set 5 = {s,,5a,... ,8n } of points
in the plane and the ith (1 < ¢ < n) prefix of 5,
Si= {s1;82,..,8:}. Let ch(S;) denote the convex hull
of S; which is represented by the clockwise sequence of
its vertices begining at s,. The upper (resp. lower) con-
vex hull of S;, denoted by uh(S;) (resp. h(S;)), is the
portion of ch(S;} above (resp. below) the line segment
31,55, and represented by the clockwise (resp. counter-
clockwise) sequence of its vertices, that is, the clockwise
sequences of vertices from s; to s; (resp. counterclock-
wise sequence of vertices from s, to s;} in ch(S;). For
any vertex s of uh(S;) (resp. lh(S;)), we define the im-
mediate predecessor of s in uh(S;) (resp. 1h(S;) ) to be
the vertex immediately before s in uh(S;) (resp.lh(S;)).
We give the formal definition for the upper convex hull
tree of S.

Definition 1 (The upper convez hull tree of S)

Let S be an z-sorted set of points in the plane. Let
p; be the s\-s; path defined by the vertex sequence of
uh(S;). The upper convex hull tree of S, denoted as
uhT(S), is the union of p; overi (1 <1< n). Thatis,
uhT(S) is a graph whose vertez set is S and edge set
is B ={(s,s;) |s; is the immediate predecessor of s; in
uh(S;)} (Fig. 1). B

We can give the similar definition and property for
the lower convex hull tree S. In this paper, we solve
the prefix convex hulls problem of S by constructing
the upper and lower convex hull trees of S. Because of
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Figure 2: The skeleton of uhT(S)

symmetry, we consider the upper convex hull tree only
in the rest of the paper. The lower convex hull tree can
be handled in the similar way.

Throughout this paper, for simpler presentation of
algorithms, we omit the floor and the ceiling operators
ensuring that all values are integers.

3 An overview of the algorithm

Now we give an overview of algorithm MakeuhT(S)
which constructs the upper convex hull tree, ¥hT(S),
in O(logn) time using n/logn processors. In the al-
gorithm, uhT(S) is regarded as a rooted tree with the
root s;, and represented by the function parents such
that

parents(s;) = { the parent of s; in whT(S) 2 <i<n

81 i=1
Note that for any point s; (2 < 7 < n) of S, the
- parent of s; in uhT'(S) is the immediate predecessor of
s; in uh(S;).

{Algorithm} MakeuhT(S)

(Input) An z-sorted set S = {s1,53,...,5,} of points
in plane.

(Output) The upper convex hull tree of S, uhT(S),
represented by function parents.

(M ethod) Our algorithm consists of two steps.

Step 1: Construct a special subgraph of whT(S),
called as the skeleton of uhT(S), in O(logn) time using
n/logn processors. The definition of the skeleton of
uhT(S) is given in Definiton 2.

Step 2: Extend the skeleton of uhT'(S) to uhT(S) in
O(logn) time using n/logn processors. 1

Definition 2 (The skeleton of uhT(S))

Let d = logn and m = n/d. The skeleton of uhT(5),
denoted as uhK(S), is a subgraph of uhT(S) formed by
the union of pr.q (the s,-si.q path defined by the vertex
sequence of uh(Sy.q)) over k (1 < k < m) (Fig. 2).
That is, uhK(S) is a graph whose vertex set 1s SK =
{s: |s: 1s the vertez of uh(Sk.q),1 < k < m} and edge
set is EK ={(s;,s;) |s; is the immediate predecessor of
s; in uh(Ska), 1<k <m}

We describe Step 1in section 4 and Step 2 in section 5
respectively.

The connecting edge

Figure 3: The connecting edges on uhK(S)

4 Constructing uhK(S) (Step 1)

4.1 The outline of the algorithm for
constructing uhK(S)

Let d = logn and m = n/d. This section presents an
algorithm which constructs uhK(S) in O(d + logm +
loglog m - logd) time using m processors. Therefore,
uhK(S) can be constructed in O(logn) time using
n/logn processors. In the algorithm, uhK'(S) is re-
garded as a rooted tree with the root s;.

Partition S = {sy,52,...,5,} into m sets §;, 83, ...,0m

of equal size, where & ={s(-1).a+1,
S(i=1)d+2s- --,8i-a}. It is clear that for any k (1 < k <
m), the vertices appearing in uh(Si.q) are those of
uh(§;) (1 € ¢ < k). Therefore, we construct uhK(S)
by divide-and-conquer technique as follows.

(A) Partition S into &;,8,,...,6,, and compute
uh(6;) in O(d) time sequentially??l. When the com-
putation completes, the sequence of vertices of uh(§;)
(1 € i < m) is stored in array uhé;: [1..d] of point.

(B) Construct uhK(S) from uh(§;) (1 <: < m)in
O(log m + loglog m - log d) time using m processors. g

In Sections 4.2-4.4 we give the algorithm for (B).

4.2 A concise description of uhK(S)

For constructing uhK(S) efficiently, we introduce a
concise description for whK (S). Given uh(§;) (1<i <
m), we show that uhK'(S) is determined by m edges of
uhK(S). We give the definition of these edges.

Definition 3 (The connecting edge of uh(5;) on
uhK(S))

For any i (1 < i < m), let [; = (p}, p;) be the upper
common tangent of uh(8;) and uh(Si-1).qa), where p;
is the ¢;th vertezr of uh(8;) and p! is the tith vertex of
uh(by,) (1 < w; <i—1) (Fig.3). We call (p,p:) as the
connecting edge of uh(6;) on whK(S), define it with a
function, cedges, such that cedges(i) = (t},1;,w;). For
convenience, let cedges(1) = (1,1, 1). M

By Definition 3, there are m — 1 connecting edges
on uhK(S) defined with function cedges. On uhK(S),
the following properties hold.

Property 1 (1} If some vertez of uh(§;) belongs to
uh{Sr.q), then all the vertices of uh(8;) belonging to
uh(Sy.q4) constitute a contiguous subsequence of uh(é;).



That is, if the vertices s, and sy of uh(8;) ((i —1)-d+ (3.1) Compute uh(S?US?U---US) forall j (1 <5<

1<a < b< i - d) are the vertices of uh{Sk.q), vertez s,
{a < c<b)of uh(§;) is also the vertex of uh(Sk.q)-

(2) Upper convez hull uh(S;s) is determined by
at most 1 — 1 connecting edges on uhK(S) as fol-
lows. Let cedges(ix) = (&), tk, tk—1), cedges(ix—1) =
{(thetrth—1, Bk—2), --.,cedges(ia) = (i3,12,41), where
ix =t and iy = 1. The vertex sequence of uh(S;q)
is the concatenation of the contiguous subseguence of
uh(8;;) over j (1< j < k) (note the vertex sequence of
uh(8;) is stored in array uhé;):

uh&;l[tl](t; = 1), uh&;‘[tl -+ 1],
uh&.-, [tz], uh&;, [tg -+ 1],

.., uhé; [th),
o1 uhby[t),

uh&;,[tk], 'Uh'&i,,[tk +1], ..., uhﬁ;k[d']

We call cedges(iy),cedges(iz),. . . ,cedges(ix) as the con-
necting edge sequence of uh(S;.q).

Given uh(6;) (1 < 1 < m), we adopt m connecting
edges on uhK (S) as the concise description of uh K (S).
Therefore, in the algorithm for (B), we compute m con-
necting edges of uhK(S).

4.3  Algorithm for (B)

Now we show the algorithm for (B), that is, to con-
struct uh K (S) (i.e., compute the function cedges) from
uh(§;) (1 <1 < m)in O(logm + loglog m - logd) time
using m processors.

{Algorithm} Makeuh K(S)

(Input) Arrays uhby,uhb,. .. uhb,,, where uhé; stores
the sequence of vertices of upper convex hull uh(§;).

(Output) Array C: [1.m]{1..3] of integer. C[i][1..3]
stores cedges(t) for each 1 (1 < i < m). That is, if
cedges(i) = (¢, 1, 7), Cli][1],c[:][2] and C[¢][3] store ¢/, ¢
and j respectively.
(0) If the number of points in S is at most d, then S

is equal to §; and uhK (S) is equal to uh(§;). This
completes the computation for this case.

Let m = nfd. Divide S(= § U b U--- U6,)
into m!/® equally-sized subsets, St,S2,..., 5™,
where §' = 5(,-_1).,,,2/3+1U6(;_1).m1/3+2 U Ub; a3
Let

St a=8-1ymirisr Usiotymarge U Ul iymes i
(1< k< m?). Note S* =S¢ ;5 , and whK(S*) is

1

the union of uh(S} ) over k.

(2) Recursively
construct uhK (S) (i.e., compute cedges: which is
stored in C(i — 1) - m®/® + 1 .. i - m*?]) for every
i=1,2,...,m? in parallel.

(3) Construct uhK(S) by combining

uh K (S*),uh K (S?),... uhK (S™").

In the following, we explain the process of the com-
bination, that is, to compute cedges from cedgesi (1 <
i < m?).

(3.2)

ml/3).

(i) For each i (1 < i < m'/?), pick out uh(S?) as
follows.

Consider the connecting edge sequence of uh(S)
(= wh(S:.p.,)), that is, the sequence Cli], Clis],
<o C[i), where i) = (i—1)-m?/* 41, iy = 1-m?/3,
and & = Cfi,11][3] (1 <r <k —1). Let Cf§;][1] =
ti and C[1][2] = ¢;. Store the sequence iy, 1,.. . ik
to array Lyt [1..k] of integer such that Li[j] =i;.
The sequence of vertices of uh(S*) is stored in k
arrays: whé;, [t1..45),uhé;, [ta. 1), .. ,uhb [t d]. .
(il) For each 4,5 (1 < i < j < m!/3), compute TY,
the upper common tangent of uh(S*) and uh(S?)
by Lemma 5 of Appendix.

(iii) Foreach j (2 < j < m!/?), find T, the tangent
with the smallest slope among 7% (1 <i < j—1).
(iv) Foreach j (1 <5 < m!?), find uh(S*US?U
-+- U .57) as follows.

Let TVt = Tjk—lyjk,Tjt—l = Tjk—z:jl:—-l’
TJv32 where j, = j and j; = 1.

TR =

(a) Store ji, Ja, - --,jx to array I;: [1.m!/3] of inte-
ger, such that [;fi] = j;.

Let uh’(gfi)j (1 < i < k) be the maximal con-
tiguous subsequence uA(S%) such that all the ver-
tices of uh(S#)’ belong to uh(S'US?U--- U S9).
It can be seen that the sequence of vertices of
uh(S' U S? U .- U S%) is the concatenation of
uh(ShY, uh(S=Y ... ,uh(Si) (Fig.4). We con-
sider how to pick uh(S%) out of uh(S%).

By (3.1)(i) of this algorithm, uh(S%) is stored
in arrays: uh&,[t..t5),uh8),[t2..45],. .., where [, is
stored in I;;[r], and t/ and t, are stored in C{},][1]
and C[l,][2] respectively. Let p and ¢ be the con-
tact points of the upper common tangent 77 and
T?#+1 on uh(S%%), respectively, where p is the zth
vertex of uh(8;,) and ¢ is the 2'th vertex of uh(&,)
(81,,6,,C S% and f < g). The the vertex sequence
of uh@if)J is stored in a list of arrays as follows:
uh&z, [:l:..t',_'_l],uhﬁl!“ [if+;..t}+2],. ey uh&;,[tg..x’].
(b) Let X, X', F and G be the arrays:
[1..m*3][1..m!/?] of integer. Store z, z', f and ¢
such that X[7][{] = z, X'[j][i]= «', F{j]li] = f and
Gl = 5.

For each uh(8;), where §,C S7, determine the con-
necting edge of uh(éy) on uhK(S), cedges(k), as
follows.

(i) Find the upper common tangent of uh(8) and
wh(S* U S?U---US!) by Lemma 5 of Appendix.
Let ¢’ and ¢ be the contact points of the tangent,
and ¢’ be the ¢th vertex of wh(s,) (6,C S*,1 <
h < j—1) and g be the tth vertex of uh(éy).

(ii) Let the connecting edge of uh(8) on uh K (S7),
which is represented by C[k][1..3], is (p',p). Com-
pare the slope of tangent ¢/, ¢ with that of line seg-
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Figure 5: Determining the connecting edge of uh(8;)
on uhK(S)

ment p’, p. If the slope of the tangent is smaller,
then (¢’, ¢) becomes the connecting edge of uh(6y)
on uhK(S) (Fig. 5). In this case, set C[k][1..3] :=
(t',t,r). Otherwise, (¢',p) is the connecting edge
of uh(6;) on whK(S). That is, C[k] remains as
before. u

Theorem 1 The skeleton uhK(S) of uhT(S) can be
constructed in Ologm +loglog m -log d) time using m
processors.

Proof : We prove the theorem by analysing each step
of (3).

In (3.1)(i), we store a list of size O(m??) to array
L; by using the list ranking algorithm. For each ¢, this
can be performed in O(logm) time using m?/3/logm
processorsl’l.  Therefore (3.1)(i) can be executed in

O(logm) time using m/logm processors. In (3.1)(ii),
for each 4, j, common tangent T can be computed in

(log(md)) time using a single processor by lemma 5
of Appendix. Therefore, (3.1)(ii) can be performed in
O(logmd) time using m?/® processors. In (3.1)(iii),
for each 7, 7Y can be computed in O(logm) time us-
ing m!/3/log m processors by using the maximum find-
ing algorithml®. Therefore (3.1)(ili) can be imple-
mented in O(log m) time using m?/®/logm processors.
In (3.1)(iv)(a), for each j, array I; can be gotten in
O(log m) time using m'/*/ log m processors by list rank-
ing similar to Step 1. Therefore (3.1)(iv)(a) can be exe-
cuted in O(log m) time using m*/3/ log n processors. In
(3.1)(iv)(b), arrays F,G, X, X' can be gotten in O(1)
time using m??® processor. Therefore, (3.1)(iv)(b) can
be executed in O(logm) time using m?*/*/logm pro-
cessors. In (3.2)(i), the common tangent of uh(6*) and

wh(S'US? U ... U S 1) can be found in O(log(md))
time using a single processor by Lemma 6 of Appendix.
Since for each 7, there are m?/® upper common tangents
to be computed, (3.2)(i) can be executed in O(log(md))
time using m processors. Step (3.2)(ii) can obviously
be executed in O(1) time using m processors.

From the above analysis, we get the following
recurrence relation for the runnming time T(m) of
Makeuh K(S):

T(m) = T(m??) + O(log(md))

From  the  recurrence  relalion, we  ob-
tain T(m)=0(logm + loglogm -logd). The number
of proccesors used is m.

We have constructed the skeleton of uhT(S),
uhK(S), which is the subgraph of uhT(S). In the nxet
section, we show how to extend uh K (S) to whT(S).

5 Constructing vhT(S) (Step 2 )

This section presents the algorithm which extends
uhK(S) to uhT(S) in O(logn) time using n/ log n pro-
cessors. Let d = logn. The algorithm consists of the
following two steps.

(C) Foreveryi (1 <i<m
convex hull tree of &, uhT(6;) in
by Graham scanf?.

(D) Construct uhT(S) by using vh K (S) and uhT(§;)
(1 <4< m)in O(d) time using m processors. B

Therefore, uhT(S) can be constructed in O(logn)
time using n/logn processors. In what follows we ex-
plain the algorithm for (D). We first give the following
lemma.

1), construct the upper
O(d) time seqentially

Lemma 1 Let U = {v1,vz,...,%,q1,92,- .- ,qn} be an
z-sorted set of points in the plane, and let U, =
{v1,99,..., 04}, Us = {91,92,---,qn}. When uhT(Uy)
and uhT(U,) are given, uhT(U) can be constructed in
O(h) time using a single processor.

Proof : We only need to determine the parent for each
vertex of Uy, since for any i (2 <1 < k) parenty(v;) is
the same as parenty, (v;).

It can be seen that for any point ¢; (1 < ¢ < h)
of U,, parenty(q;) is either parenty,(g;) or the con-
tact point of the tangent from ¢; to uh(U;). Assume
that U, is divided into two points sets: A={¢q € U,
— parenty(g)=parenty,(¢)} and B={q¢ € U, —
parenty(g)=the contact point of the tangent from ¢ to
uh(Uy) }, where the points of both A and B are listed
in order of increasing z-coordinate. We can make the
following observations (Fig. 6).

Observation 1: Traverse the points of B from left to
right . Whenever we arrive a new point we draw the
tangent from this point to uh(U,). From the property of
upper convex hulls, during traversing the contact point
of the tangent on uA(U;) moves to the left only.

Observation 2: For any point g; in U, g; is a point
of B iff there exists a point gx (k < j), called as the
milestone of ¢;, such that

(1) gx is the point of B,

(2) Gk+1,k42;- - - ,qj-1 are all the points of 4, and
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Figure 6: The proof of Lemma 1

(3) suppose that the contact point of the tangent be-
tween gx and uh(U,) is v, the slope of 5, q; is smaller
than the slope of 757, gx.

From above observations, we can compute the par-
ents for all vertices of Uy in O(h) time by sweeping all
these vertices from ¢, to ¢, as follows. First, since ¢

must be the point of B, to compute the parent of ¢; we.

draw the tangent from ¢; to uh(U;) by sweeping from
vy, towards v;. That is, we check if line segment 7,75
is the tangent. This can be done in O(1) time. If it is
not the tangent, check line segment g1, 75-7. We repeat
this process, untill for some 7, line segment 77,75 is the
tangent between ¢; and uh(U;). Thus the parent of ¢;
is v;. Then judge if g, is in B (this can be done in O(1)
time by Observation 2 . Note that the milestone of g,
is q if g, is in B). If it is not in B, the parent of ¢,
is parenty,(g2). Then judge if ¢3 is in B. We repeat
this process, untill we find a point, say ¢; (i > 2),in B
(then the milestones becomes g;. We always keep the
new milestone during processing). By Observation 1,
to compute the parent of ¢; we only need to draw the

tangent from ¢; to v;,v;-1,...,v;. Continuing in the
same way, all parents of Uy will be computed in O(h)
time. u

Lemma 2 Given uhK(S) and uhT(6;)
(1 < i <m)uhT(S) can be constructed in O(d) time
using m processors.

Proof : We show how to determine parents(s.) for
any point s, of & (1 < i < m) by utilizing uhK(S) and
whT(8;). Forany j (1 < j<i—1) let u/?(Tsj)"‘ be
the maximal contiguous subsequence (possibly empty)
of uh(8;) such that all vertices of Umj)‘ ' belong to
uh(Si-1ya). Let cedges(ii),cedges(i), ... cedges(ix)
(ix = i — 1,4, = 1) be the sequence of connecting edges
of uh(S(i-1)4) and let cedges(i;) = (t},1;, f;), where
f;= t;-1. Upper convex hull uh(Si-1)a) is formed
by concatenating ui:(-g;,)‘—l, uh’(gg,),_l, . uhl(-g,-k)z—l,
where uh,l(\“)';j)'_1 is the contiguous subsequence of ver-
tice of wh(8;;) from the ¢;th vertex to the ¢, th vertex.

Let the conmnecting edge of uh(6;) on uh(S;a) be
(p', p), where p’ belongs to uh(&::)"‘l 1<K <k
For the last point of &;_, and the last point of §;, p'
is the nearest common ancestor in tree uhT(S) (Fig.
7). If parents(s,) # parentsi(s,), parents(s,) must
be the vertex of uh(E:)"‘ (M < j < k). That is,

Figure 7: The proof of Lemma 2

if let Region; be the region enclosed by two paths of
uhT(S): one is the path from the last point of &,
to p' and other is the path from the last point of §;
to p' (Fig. 7), parents(s,) can only be contained in
Region;. Therefore, for each j (h < j < k), We use
one processor for ul@j)'—l, to check if parents(s,) be-

longs to uh(&ii)' " for each point s, of §;. This can
be done by using Lemma 1 in O(d) time. Since the
areas Regiong,Regions,...,Region,, are mutually dis-
joint, the number of processors required is m. 1

Since d = log n, we obtain the following theorem from
Lemma 2.

Theorem 2 The upper convex hull tree of S can be
constructed in O(logn) time using n/logn processors

on CREW. »

6 Optimality

In this section, we prove the optimality of algorithm
MakeuhT(S). Obviously, algorithm MakeuhT(S) is
cost optimal. We prove it is also time optimal by show-
ing that it requires Q(log n) time to construct the upper
convex hull tree of a sorted set of n points in plane on
CREW PRAM with a polynomial number of proces-
sors. We give the optimality by reducing the maximum
finding problem to the problem of constructing the up-
per convex hull tree. We first give a lemma as follows.

Lemma 3 Let S ={s1, 82,...,5.} be a set of points in
plane sorted in order of increasing x coordinate and
S = {8n, n—1,-.-,81}. Let uhT(S) and uhT(S') be the
upper convez hull trees of S and S' respectively (S'is
the set of points in plane sorted in order of decreasing
z coordinate. uhT(S') can be defined and constructed
similarly to uhT(S)). Point sy has the largest y coor-
dinate in S if and only if y(s) > y(parents(sy)) and
y(sx) > y(parentsi(sy)) hold.

Proof : Obviously, if s, has the largest y coor-
dinate in S, y(sx) > y(parents(sy)) and y(sp) >
y(parents{sx)) hold. Assume y(si) > y(parents(si))
and y(sx) > parentsi(s,) hold. The condition y(sx) >
y(parents(s,)) implies that s, has the largest y co-
ordinate in Sp ={s1,82,...,5x}. That is because (1)
for any s; (1 < j < k) of Sk s; is contained in the
region closed by uh(Sy), and (2) si is of the largest



y coornate in uh(Sy) by the property of upper con-
vex hull. From the condition y(sx) > parenis(s:),
it follows that s, is of the largest y coordinate in
Stk11={5n) Sn=t, . - ,Sn—k41} similarly. Therefore, s

is of the largest y coordinate in S. .

Theorem 3 [t requires Q(logn) time to construct the
upper convex hull tree of a sorted set of n points in
plane on CREW PRAM with a polynomial number of

processors.

Proof: The problem of finding the maximum of in-
tegers can be reduced to the problem of constructing
the upper convex hull tree of a sorted set of points in
the plane as follows. Let I= {i1,4s,...,4,} be a set of
integers. Construct a set of points in plane sorted in
increasing z coordinate S ={(1,4),(2,2),..-,(n, )}
and compute uhT(S) and uhT(S’) respectively, where
S" = {sn, 8n-1,...,51 }. Find point s, such that y(s;) >
y(parents(sy)) and y(sx) > parentgs(sy) hold. The
largest integer of I is y(sy).

All of the operations except constructing uhT(S) and
uhT(S") can be done in O(1) time using n processors.
uhT(S8') can be constructed in the same way as uhT(S).
Therefore, construction of uhT(S) is at least as hard
as the maximum finding problem for 7. The lower
bound for constructing uhT(.S) then is gotten from the
Q(log n) lower bound for computing the maximum of I
on CREW PRAM®?, n

Conclusion

We have shown an optimal algorithm for solving the
prefix convex hulls problem of a sorted n-point set
in O(logn) time using n/logn processors in CREW
PRAM. This, of course, immediately implies that the
prefix convex hulls problem for a monotone polygon can
be solved in the same complexity. The data structure
we used is very simple. The prefix convex hulls prob-
lem has many application. This is not only because the
convex hull problem has many applications, but also be-
cause we suspect that the prefix convex hulls problem
itself may have the applications to the problems such
as the convex rope problem and the visibility problem.

Appendix

We discuss the sequential methods for finding the up-
per common tangent of two upper convex hulls, which
appear in algorihtm Makeuh K(S) of Section 4.3. For
any two convex polygons, the following lemma holds.

Lemma 4 1 Let U and V be two convex polygon with
the sizes hy and hy respectively. If each of U and V is
gtven in an array, the upper common tangent of U and
V' can be found in O(log(hy + h2)) time. 2

Let S = {s;,5s,...,8,} be a sorted point set in
the plane, d be the integer and m = n/d. Let
6 = {s(im1ya+1,5G-1)a+2, - 504} (1 < ¢ < m) and

S = {8 1ymts 41981y mrs 2V Uiman} (1 < 5 <
1/3

In algorithm MakeuhX'(S), step (3.1)(il) computes
the upper common tangent of two upper convex hulls,
uh(S*) and uh(S7), where

(1) the vertex sequence of uh{S7) is given in a list of f
arrays: uhé; [t,.45),uh;,[ts. 25),. . . ,uhé; [t;..d], where
uh$, is array: [1..d] of point and f < m?/3,

(2) 41,142...,i; are given in array [L[1..f] such that
I;[T] = i,.

(3) ti,15,...,1; are given in array C[i..iz}{1] and
1,15, ..., 1} are given in array C[i;..if][2], where C is
array: [1..m][1..3] of integer.

The vertex sequence of uh(S%) is given in the same
way, if we change 7, ¢ and z and f above to 7, z and g
respectively.

m

Lemma 5 The upper common tangent of uh(S*) and
uh(S9) can be found in O(log(md)) time.

Proof :

Let U’ and V' be two convex polygons formed by the
sequences of vertices: uhé;[t],uhé;,[ta],. .. uhé;,[ty]
and whé;, [z1],uhé;,[za),. . . ,uh8;,[2g], respectively. Since
i, is stored in array /[r] and ¢, is stored in array C[s,][1],
U’ can be considered to be given in an array. Similarly,
V' can also be considered to be given in an array. Find
the upper common tangent of U’ and V’ by Lemma. 4
in O(logm) time. Let the contact points be uh§;[t,]
and uh§; [t,]. Let U” be the convex polygon formed by
the vertices given in uhé;, _, [t;—1..20},uhé; [t,.4, ;] and
V" be the convex polygon formed by the vertices given
in whd;,_ [ty-1.1], ‘
uhé;,[t,.4,,;]. The upper common tangent of uh(SY)
and uh(S5?) must be one of the following three
tangentsll:

(1)the upper common tangent of uh(S*) and V”,

(2) the upper common tangent of U” and uh(S?), and

(3) the upper common tangent of U” and V",

We can find which is the upper common tangent
of uh(S') and uh(SY) by determining which is above
uh(S*) and uh(S7). It can be determined in O(1) time
just by checking whether the adjacents of the contact
points of the tangent are below that tangent. In the
following, we see how to find these three tangents.

The upper common tangent of U” and V" can be
found in O(logd) time by Lemma 4. The upper com-
mon tangent of uh(S*) and V" (the upper common tan-
gent of U” and uh(S?) can be found similarly) is found
as follows. Find the upper common tangent of U’ and
V" in O(log(m+ d)) time by Lemma 4. Let the contact
points in U’ be uhé;[t,]. Let U" be the convex poly-
gon formed by the vertices given in uhS;, , [t,-1..2,] and
uhé;,[t,..1,,,]. The upper common tangent of uh(S’)
and V" is the same as that of V” and UM, Find the
upper common tangent of V” and U’ by Lemma 4 in
O(log d) time.

Therefore, the upper common tangent of uh(S*) and
uh(S57) can be found in O(log(md)) time. 5

In algorithm MakeuhK(S), step (3.2)(i) computes
the upper common tangent of two convex hulls, uh(6))



and uh(S'U §2U- - -UST~!), where ub{é;) is given in an
array uhéy: [L..d] of point, and uh(S' U S?U---US )
is given in a list of arrays as follows:

uhzﬁ,l [z1.4% 1) uhéy, [th+1~t'/1+2]; . ubbyy, g
uh&;h [12.,t}2+1], uh&lh“ [i,fz-H A.t/fz_n], . uh&,h [igz .
uhﬁzh [xk“i9k+l]’ uh61h+l [tfk+1“t/fg+2]! ooy uh&gk [tgk .

where k < j and g, — f, < m?*. In addition,

(1) fi,for---,fx is given in array F[j][1..k] such that
Fjll] = £

(2) 91,92,- - - ,gx is given in array G[j][1..k], such that
Gl = gs-

(3) z1,29,. . .,z is given in array X[j][1..k], such that
X[ = =

(4) zi,2%,...,z, is given in array X'[j][1..k], where
X' = =

(5) L5 dgssy - - olp 1s given is array L;[fi..fi]-

Lemma 6 The upper common tangent of uh(é,) and
wh(S'US?U- - -UST) can be found in O(log(md)) time.

Proof : Let convex polygon U be formed by the se-
quence of vertices: uhdy, [z,],uhéi, [z2],. .., ubby, [i].
Since f;, ly; and z; (1 < i < k) are given in array F,
L; and X respectively, U can be considered to be given
in an array. Find the upper common tangent of U and
uh8, in O(log(m + d)) by Lemma 4. Let the contact
point of the tangent on U be uhé; [z;] and U’ be the
convex polygon formed by the sequence of vertices given
in a list of arrays:

A1 = uh&l!i—l [zi—l"tlf,--,+1]’

Az = uh&;,‘_x“ [tf.--1+1~-t},-_1+2]»

Ao = uhby, [t 2],
Agpr = ublyy [z 25 4],
Aa+2 = Uh6ly;+l[tfi+1"t}i+2])

Aa+b = uh&,“[tm..zf-],
where @ = g;—; — fi-1+ 1 and b = g; — f; + 1. The upper
comumon tangent of uh(6,) and uh(S'US?U- - -USI 1) is
the same as that of U’ and uhé,. Let convex polygon
U" be formed by the first vertex of A, for all

uhly,  [zialuhby,_ [t uhby,_ [t5,_,]
uhdy,, [:c;],uh&,f‘“[tf,.ﬂ],. oy uhby Jt,]

For the same reason as U’, U” can be consider to be
given in an array. Find the upper common tangent of
U" and uhé, in O(log(m + d)) by Lemma 4. Let the
contact point of the tangent on U” be the first vertex
of A, and U"” be the convex polygon formed by the
sequence of vertices given in A,-; and A,. Then, the
upper common tangent of U’ and uwhéy is the same as
that of uhé, and U”. Find the the upper common
tangent of U and uhé, in O(log d) time by Lemma 4.
Therefore, the upper common tangent of u/(6,) and
uh(S* U S?U- . -US~1) is found in O(log(md) time.

References

1) A.Aggarwal, B.Chazelle, L.Guibas, C.0’Dunlaing,
88
and C.Yap: Parallel computational geometry. Al-
gorithmica, 3,293-327,1988.

M.J.Atallah and D.C.Chen:
allel algorithm for the visibility of a sim-
ple polygon from a point. Proc.  of the
Fifth Annual ACM Symposium on Computational
Geometry,114-123,1989.

2]
247)

zil;

An optimal par-

3

~

M.J.Atallah and M.T.Goodrich: Efficient paral-
lel solutions to some geometric problems. Jour-
nal of Parallel and Distributed Computing, 3,492-
507,1986. '

(4) M.J.Atallah and M.T.Goodrich: Parallel algo-
rithms for some functions of two convex polygons.

Algorithmica, 3,535-548,1988.

W.Chen,K.Nakano,

T.Masuzawa, and N.Tokura: Optimal Parallel Al-
gorithms for Finding the Convex Hull of a Sorted
Point Set. Tech.Rep.Trans.IPSJ, AL22-4,1991.

(5)

(6) R.Cole and M.T.Goodrich: Optimal parallel al-
gorithms for polygon and point set problems. In
Proc. of the Fourth Annual ACM Symposium on

Computational Geometry,1988.

~—

R.Cole: Faster optimal paralell prifix sums and
list ranking. Information and Control,81,334-
352,1989.

@

=

P-O.Fjallstrom,J Katajainen,C.Leveopoulos  and
O.Petersson: A sublogarithmic convex hull algo-
rithm. Bit,30,378-384,1990.

(9) A.Gibbons and W.Rytter: Efficient parallel algo-
rithms. Cambridge. University Press,1988.

(10) M.T.Goodrich: Finding the convex hull of a sorted
point set in paralle . Information Processing Let-
ters, 26,173-179,1987.

(11) M.H.Overmars and J.V.Leeuwen: Maintenance of
configurations in the plane. J.Comput. System
Sci. 23,166-204,1981.

(12) F.P.Preparata and M.L.Shamos; Computational
geometry: an introduction. Springer-Verlag,1985.



