k 組多重グラフ的次数列集合から k 組多重グラフを 構成するアルゴリズム

髙橋 昌也 (愛知技術短期大学電子工学科)

k≥3 なる任意の整定数 k について、グラフ G = (V, E) がk組(多重)グラフであるとは、次の (1) \sim (3) が成り立つような頂点集合 V が存在することである。

- (1) $V = V_1 \cup V_2 \cup \cdots \cup V_k$,
- (2) 任意の2つの整数 h, j ($1 \le h \le k$, $1 \le j \le k$, $h \ne j$) について、 $V_h \cap V_j = \Phi$ 、
- (3) 任意の辺 $e=(u,v) \in E$ について、 $u \in V_j$ ($1 \le j \le k$) ならば $v \notin V_j$ が成り立つ。

本稿では、k 個の次数列 s_i : d_{j1} , d_{j2} , \cdots , d_{j-p_j} ($1 \le j \le k$) と k 個の頂点集合 $V_j = \{v_{j1}, v_{j2}, \cdots, v_{j-p_j}\}$ が与えられた時、次の(1)(2)を行う線形時間アルゴリズムを提案する。

- (1) $S = (s_1, s_2, \dots, s_k)$ が k 組多重グラフ的次数列集合であるか否かを判定する。
- (2) S がそうならば、 $1 \le j \le k$, $1 \le q \le p_j$ なる j, q について、 $v_{j,q}$ に入っている辺の数が $d_{j,q}$ であるようなk 組多重グラフを構成する。

An Algorithm of Constructing a k-partite Multigraph from a k-partite Multigraphical Sequence Set

Masaya Takahashi (Department of Electronic Engineering, Aichi College of Technology)

For a given integer constant k which satisfies $k \ge 3$, and a graph G = (V, E), G is called a k-partite (multi) graph if there is a set of vertices V such that the following (1) through (3) are satisfied: (1) $V = V_1 \cup V_2 \cup \cdots \cup V_k$,

- (2) For any two integer h and j, $1 \le h \le k$, $1 \le j \le k$, $h \ne j$, $V_h \cap V_j = \Phi$ is satisfied, and
- (3) For any edge e=(u,v), if $u \in V$; then $v \notin V$; is satisfied, where $1 \le j \le k$.

In this paper, when k digree sequences s_i : d_{i1} , d_{i2} , \cdots , d_{i,p_i} , for every j, $1 \le j \le k$, and k sets of vertices $V_i = \{v_{j1}, v_{j2}, \cdots, v_{j,p_i}\}$, for every j, $1 \le j \le k$, are given, propose an algorithm satisfying the following (1) through (3):

- (1) Decide that whether a given non-negative integer sequence set $S=(s_1,\ s_2,\ \cdots,\ s_k)$ is a degree sequence set of a k-partite multigraph.
- (2) If $S = (s_1, s_2, \dots, s_k)$ is a degree sequence set of a k-partite multigraph then construct a k-partite multigraph $G = (V_1 \cup V_2 \cup \dots \cup V_k, E)$ such that the degree of v_{jq} is d_{jq} for every $q, 1 \le q \le p_j$.
- (3) The time complexity of above (1) through (2) is O ($|\ V\ | + k^3)$, where $|\ V\ | = \sum_{j=1}^k p_j$.

In the following sections, $S = (s_1, s_2, \dots, s_k)$ is called a k-partite multigraphical sequence set if S is a degree sequence set of a k-partite multigraph.

1. Introduction

The subject of this paper is the problem of finding an algorithm of constructing a k-partite multigraph from a k-partite multigraphical sequence set: "For a given integer constant k which satisfies $k \ge 3$, and, for k given non-negative integer sequences $s_1, s_2, \dots, s_k, s_j : d_{j1}, d_{j2}, \dots, d_{j.p_j} (p_j \ge 1)$ for every j, $1 \le j \le k$, decide that whether $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set. If S is so then construct a k-partite multigraph $G = (V_1 \cup V_2 \cup \dots \cup V_k, E)$ from it ", where $V_j = \{v_{j1}, v_{j2}, \dots, v_{j.p_j}\}$ for every j, $1 \le j \le k$, and, for every q, $1 \le q \le p_j$, the degree of v_{jq} is d_{jq} . Set $x_j = \sum_{j=1}^{p_j} d_{jq}$ for every j, $1 \le j \le k$.

In this paper, show that the k-partite multigraph construction problem (kMC-problem, for short) can be solved in linear time.

The problem of finding an algorithm of constructing a (multi) graph from a (multi) graphical sequence, is solved in [1][2][3][5]. In them, a polynomial time algorithm was given by Havel and Hakimi. The problem of finding an algorithm of constructing a bipartite (multi) graph from a bipartite (multi) graphical sequence set, is solved in [6]. In it, for a bipartite multigraph construction, a linear time algorithm was given, and, for a bipartite graph construction, a polynomial time algorithm was given.

In this paper, an O ($|V| + k^3$) algorithm of solving the kMC-problem is given, where $|V| = \sum_{j=1}^k p_j$. In the following sections, the following (1) through (2) will be discussed:

- (1) Show a condition C such that a non-negative integer sequence set $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set if and only if C holds.
 - (2) Propose an O ($|V|+k^3$) algorithm satisfying the following (i) through (ii):
- (i) Decide that whether a given non-negative integer sequence set $S=(s_1,\,s_2,\,\cdots,\,s_k)$ is a k-partite multigraphical sequence set.
- (i i) If $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set then construct a k-partite multigraph $G = (V_1 \cup V_2 \cup \dots \cup V_k, E)$ such that $V_j = \{v_{j1}, v_{j2}, \dots, v_{j,pj}\}$ for every j, $1 \le j \le k$, and such that, for every j, $1 \le q \le p_j$, the degree of v_{jq} is d_{jq} .

2. Preliminaries

A graph G = (V, E) consists of a finite set of vertices V and finite set of edges E such that each element of E is an unordered pair of distinct elements of V : $E = \{(u,v) \mid u,v \in V\}$.

For a given integer constant k which satisfies $k \ge 3$, and a graph G = (V, E), G is called a k-partite (multi) graph if the following (1) through (3) are satisfied:

- (1) $V = V_1 \cup V_2 \cup \cdots \cup V_k$,
- (2) For any two integer h and j, $1 \le h \le k$, $1 \le j \le k$, $h \ne j$, $V_h \cap V_j = \Phi$ is satisfied, and
- (3) For any edge e=(u,v), if $u \in V$, then $v \notin V$, is satisfied, where $1 \le j \le k$.

For an edge e = (u,v), u (v, respectively) is <u>adjacent</u> to v (u), u (v) is <u>incident</u> to e, and e is incident to v (u). If v then the edge v is called a <u>self-loop</u>. For two edges v if v and v if v is called a <u>multiple edges</u> if and only if v if v is called a <u>multiple edges</u> if v if v is called a <u>multiple edges</u> and no self-loop. For a graph v is called a <u>multiple graph</u> (graph, for short) if v contains no multiple edge and no self-loop. For a vertex v is v if v is called a <u>degree</u> of v and it is denoted by v is v is called a <u>degree</u> of v and it is denoted by v is v in v is v is v in v in v is v in v is v in v in

A non-negative integer sequence set $S=(s_1,s_2,\cdots,s_k)$ is a k-partite multigraphical sequence set if, for every j, $1 \le j \le k$, all vertices of V_j can be labeled $v_{j1}, v_{j2}, \cdots, v_{j,p_j}$ such that the degree of v_{jq} is d_{jq} for every q, $1 \le q \le p_j$, where $s_j : d_{j1}, d_{j2}, \cdots, d_{j,p_j}, p_j \ge 1$.

Set $x_j = \sum_{q=1}^{p_j} d_{jq}$ for every j, $1 \le j \le k$.

3. Necessary and Sufficient Condition of a k-partite Multigraphical Sequence Set

In this section, discuss the condition C such that $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set if and only if C holds, where $s_i : d_{j1}, d_{j2}, \dots, d_{j,p_j}$ ($p_j \ge 1$ and $x_i \ge 1$) for every j, $1 \le j \le k$, is a given non-negative integer sequence.

Such the condition C is obtained by the following theorem.

Theorem 1. For every j, $1 \le j \le k$, suppose that $s_i : d_{i1}, d_{i2}, \dots, d_{i,p_j}, p_j \ge 1, x_i \ge 1$, is a non-negative integer sequence, and suppose that $x_1 \le x_2 \le \dots \le x_k$. Then $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set if and only if the following condition (1) through (2) are satisfied: (1) $\sum_{i=1}^k x_i$ is an even number, and (2) $\sum_{i=1}^{k-1} x_i \ge x_k$.

In the following, show the proof of Theorem 1.

Suppose that $S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set. Then it is clear that above (1) and (2) hold.

Inversely, suppose that there are k non-negative integer sequences s_1 , s_2 , ..., s_k , satisfying above (1) and (2). Then the following proposition can be obtained.

<u>Proposition 1.</u> For k non-negative integer sequences s_1 , s_2 , \cdots , s_k , such that $\sum_{j=1}^k x_j$ is an even number, assume that $\sum_{j=1}^{k-1} x_j \ge x_k$ holds, where s_j : d_{j1} , d_{j2} , \cdots , $d_{j,pj}$ ($p_j \ge 1$, $x_j \ge 1$) for every j, $1 \le j \le k$. Set $x'_1 = x_1 - t_1$, $x'_2 = x_2 - t_2$, \cdots , $x'_{k-1} = x_{k-1} - t_{k-1}$ and $\sum_{j=1}^{k-1} t_j = x_k$, and let f: b_1 , b_2 , \cdots , b_{k-1} , be a sequence which is a result of sorting a sequence f': x'_1 , x'_2 , \cdots , x'_{k-1} , and which satisfies $b_1 \le b_2 \le \cdots \le b_{k-1}$.

Then there is a sequence $g: t_1, t_2, \cdots, t_{k-1}$, which satisfies $\sum_{k=2}^{k-2} b_i \ge b_{k-1}$ and which satisfies that $\sum_{k=1}^{k-1} b_i$ is an even number.

Proof. Consider two sequences f and g being made by using the following algorithm.

Algorithm A.

Begin

- 1. For every j, $1 \le j \le k$, $x'_i \leftarrow x_i$ and $t_i \leftarrow 0$; $x'_0 \leftarrow 0$;
- 2. For j=k-2, 0, -1 do begin
 - (1) $y \leftarrow x'_{j+1}-x'_{j}$;

If $\{x'_k < y \cdot (k-1-j)\}$ then begin $q \leftarrow j$; go to Step 3 end;

- (2) For r=k-1, j+1, -1 do begin $t_r \leftarrow t_r + y$; $x'_r \leftarrow x'_r y$ end; $x'_k \leftarrow x'_k y \cdot (k-1-j)$; If $\{x'_k=0\}$ then halt end;
- 3. $y \leftarrow \text{div}(x'_k/(k-1-q))$; $x'_k \leftarrow \text{mod}(x'_k/(k-1-q))$;
- 4. For r=k-1, q+1, -1 do begin $t_r \leftarrow t_r+y$; $x'_r \leftarrow x'_r-y$ end; $r \leftarrow r-1$;
- 5. while $\{x'_k>0\}$ do begin $t_r \leftarrow t_r+1$; $x'_r \leftarrow x'_r-1$; $x'_k \leftarrow x'_k-1$; $r \leftarrow r-1$ end;
 - . Make a sequence $f: b_1, b_2, \dots, b_{k-1}$, which is a result of sorting a sequence $f': x'_1, x'_2, \dots, x'_{k-1}$, and which satisfies $b_1 \le b_2 \le \dots \le b_{k-1}$;
- 7. Make two sequences g_1 : t'_1 , t'_2 , \cdots , t'_{k-1} , and g_2 : V'_1 , V'_2 , \cdots , V'_{k-1} , satisfying the following: Assume that $b_r \leftarrow x'_h$ $(1 \le r \le k-1, 1 \le h \le k-1)$ holds by the sorting of step 6. Then, $t'_r \leftarrow t_h$ and $V'_r \leftarrow V_h$ are satisfied;
- For every j, 1≤j≤k-1, x; ← b;, t; ← t'; and V; ← V';
 End. (Algorithm A terminates.)

Suppose that $x_{k-2}=0$. Then $x_k=x_{k-1}$ holds since $x_k \ge x_{k-1}$ and $x_k \le \sum_{k-1} x_j = x_{k-1}$ are satisfied.

Thus $b_j = x'_j = 0$ for every j, $1 \le j \le k-1$, and, therefore, $\sum_{k-2} a_{j-1} b_j \ge b_{k-1}$ holds.

Suppose that $x_{k-2}>0$. Assume that Algorithm A halts at Step 2 or that it executes Step 4 and and does not execute Step 5. Then $b_j=x'_j$ for every j, $1 \le j \le k-1$, and $b_{k-1}=b_{k-2}$ holds. Hence $b_{k-1} \le \sum_{k=2}^{k-2} a_{j-1} b_j$ holds.

Assume that Algorithm A executes Step 5. If $b_{k-1} = b_{k-2}$ then it is clear that $b_{k-1} \le \sum_{i=1}^{k-2} b_i b_i$ holds. Assume that $b_{k-1} > b_{k-2}$ holds. Then it is clear that $b_{k-1} = b_{k-2} + 1$ holds by the behavior of Algorithm A. If $b_{k-3} = 0$ then $\sum_{i=1}^{k} x_i = \sum_{i=1}^{k-1} b_i + 2x_k$ is an odd number, a contradiction. Thus $b_{k-3} \ge 1$, and, therefore $b_{k-1} \le \sum_{i=1}^{k-2} b_i$ holds.

Hence, by above discussion, $b_{k-1} \le \sum_{j=1}^{k-2} b_j$ is satisfied for every b_j , $1 \le j \le k-1$, which is made by Algorithm A.

Thus Proposition 1 can be proved.

Q. E. D.

By Proposition 1, the following proposition is obtained.

<u>Proposition 2.</u> For three non-negative integer sequences s_1 , s_2 , s_3 , such that $\sum_{j=1}^3 x_j$ is an even number, assume that $x_1 + x_2 \ge x_3$ holds, where s_j : d_{j1} , d_{j2} , ..., d_{j,p_j} ($p_j \ge 1$, $x_j \ge 1$) for every j, $1 \le j \le 3$. Set $x'_1 = x_1 - t_1$, $x'_2 = x_2 - t_2$ and $t_1 + t_2 = x_3$, and let f: b_1 , b_2 , be a sequence which is a result of sorting a sequence f': x'_1 , x'_2 , and which satisfies $b_1 \le b_2$. Then there is a sequence g: t_1 , t_2 , which satisfies $b_1 = b_2$.

Q. E. D.

By using Proposition 1 and 2, it is easy to prove that, for k non-negative integer sequences $s_1, s_2, \dots, s_k, 1 \le x_1 \le x_2 \le \dots \le x_k, S = (s_1, s_2, \dots, s_k)$ is a k-partite multigraphical sequence set if the following conditions (1) through (2) are satisfied:

(1) $\sum_{j=1}^{k} x_j$ is even number, and (2) $\sum_{j=1}^{k-1} x_j \ge x_k$.

The proof is obtained by the following algorithm easily.

Algorithm B.

Begin

- 1. $k \leftarrow a$ given integer constant n which satisfies $n \ge 3$;
- while {k≥2} do begin perform Algorithm A; k ← k-1 end End. (Algorithm C terminates.)

It is clear that, by performing Step 2 at most k-1 times, a k-partite multigraph G which is constructed from a k-partite multigraphical sequence set $S = (s_1, s_2, \dots, s_k)$, can be constructed.

By above discussion, Theorem 1 has been proved.

4. Data Structure and Algorithm

By Theorem 1, an algorithm of solving the BMC-problem, can be obtained directly. In this section, discuss such an algorithm.

4.1 Data Structure

Suppose that $V_j = \{v_{j1}, v_{j2}, \dots, v_{j,p_j}\}$, $p_j \ge 1$, for every j, $1 \le j \le k$. Use an array ADJLIST containing k listheads. Each listhead represents a set of vertices V_j . For every j,

 $0 \le j \le k$, j-th listhead has the form [NUM, PNT], where NUM contains a current x_i and PNT is a pointer field. The nodes in the linked lists have the form [VTX, DEG, LINK], where VTX is a vertex number, DEG is a current degree of a vertex, LINK is a pointer field and $x_0 = 0$. Use an array ELIST containing a listhead. The listhead represents a set of edges of the final k-partite multigraph which is constructed from $S = (s_1, s_2, \dots, s_k)$. The nodes in the linked list have the form [u, v, ENM, ELK], where u is a vertex of V_i ($1 \le j \le k$), v is a vertex of V_h ($1 \le h \le k$, $h \ne j$), ENM is a number of edge (u,v), satisfying ENM ≥ 1 , and ELK is a pointer field.

For example, suppose that k=3, that s_1 : 5, 5, 5, that s_2 : 6, 6, 6, that s_3 : 6, 4, 4, 5, and that a final k-partite multigraph is shown in Fig.1. Then the data structure is the following.

```
ADJLIST

V_{0} [0, \Lambda], V_{1} [15, \rightarrow] \rightarrow [v_{11}, 5, \rightarrow] \rightarrow [v_{12}, 5, \rightarrow] \rightarrow [v_{13}, 5, \Lambda]

V_{2} [18, \rightarrow] \rightarrow [v_{21}, 6, \rightarrow] \rightarrow [v_{22}, 6, \rightarrow] \rightarrow [v_{23}, 6, \Lambda]

V_{3} [19, \rightarrow] \rightarrow [v_{31}, 6, \rightarrow] \rightarrow [v_{32}, 4, \rightarrow] \rightarrow [v_{33}, 4, \rightarrow] \rightarrow [v_{34}, 5, \Lambda]

ELIST [\rightarrow] \rightarrow [v_{31}, v_{11}, 2, \rightarrow] \rightarrow [v_{31}, v_{12}, 2, \rightarrow] \rightarrow [v_{31}, v_{13}, 2, \rightarrow] \rightarrow [v_{32}, v_{12}, 1, \rightarrow]

\rightarrow [v_{32}, v_{13}, 1, \rightarrow] \rightarrow [v_{32}, v_{22}, 1, \rightarrow] \rightarrow [v_{32}, v_{23}, 1, \rightarrow] \rightarrow [v_{33}, v_{21}, 2, \rightarrow]

\rightarrow [v_{33}, v_{22}, 1, \rightarrow] \rightarrow [v_{33}, v_{23}, 1, \rightarrow] \rightarrow [v_{34}, v_{21}, 1, \rightarrow] \rightarrow [v_{34}, v_{23}, 2, \rightarrow] \rightarrow [v_{21}, v_{11}, 2, \rightarrow] \rightarrow [v_{21}, v_{12}, 1, \rightarrow] \rightarrow [v_{22}, v_{13}, 1, \rightarrow] \rightarrow [v_{23}, v_{12}, 1, \rightarrow] \rightarrow [v_{23}, v_{13}, 1, \Lambda]
```

In the following of this paper, for every j, $1 \le j \le k$, NUM of a listhead V_i is denoted by $\underline{NUM(V_i)}$, PNT of a listhead V_i is denoted by $\underline{POINT(V_i)}$, VTX of a vertex v_{jh} ($1 \le h \le p_i$) is denoted by $\underline{VTX(v_{jh})}$, DEG of a vertex v_{jh} is denoted by $\underline{DEG(v_{jh})}$ and LINK of a vertex v_{jh} is denoted by $\underline{LINK(v_{jh})}$, a listhead of ELIST is denoted by \underline{PTR} , ENM of an edge e = (u, v) is denoted by $\underline{ENM(e)}$ and ELK of an edge e = (u, v) is denoted by $\underline{ENM(e)}$.

4.2 Algorithm

Suppose that $x_1 \leq x_2 \leq \cdots \leq x_k$.

Algorithm kMGC.

Begin

- perform Procedure Prep;
- 2. If (status≠0) then go to Step 5;
- 3. while {k≥2} do begin

perform Procedure Edgdec; perform Procedure Edgadd; $k \leftarrow k-1$ end

- 4. A k-partite multigraph G = (V₁ UV₂ U···· UV_k, E) with, for every j, 1≤j≤k, deg(v_{jq}) = d_{jq} for every q, 1≤q≤p_j, is constructed; halt;
- 5. A sequence set $S = (s_1, s_2, \dots, s_k)$ is not a k-partite multigraphical sequence set End. (Algorithm k MGC terminates.)

Procedure Prep.

<u>Begin</u>

- 1. $NUM(V_i) \leftarrow \sum_{j=1}^{p_{j-1}} d_{j,q}$ and $POINT(V_i) \leftarrow \Lambda$ for every j, $1 \le j \le k$; $PTR \leftarrow \Lambda$; status $\leftarrow 0$;
- 2. For j=1, k do begin

```
For q=1, p_j do begin
```

If {d; <>0} then begin

LINK(v_{iq}) \leftarrow POINT(V_i); DEG(v_{iq}) \leftarrow d_{iq} ;

```
VTX(v_{jq}) \leftarrow v_{jq}; POINT(V_j) \leftarrow VTX(v_{jq}) end end
3. \mathbf{x} \leftarrow \Sigma^{k_{j-1}} \text{NUM}(V_j); \mathbf{y} \leftarrow \mathbf{x} - \text{NUM}(V_k); \underline{\mathbf{If}} \{ \text{NUM}(V_k) > \mathbf{y} \} \underline{\mathbf{then}}  status \leftarrow 1
    End. (Procedure Prep terminates.)
    Procedure Edgdec.
     Begin
1. For every j, 1 \le j \le k-1, t_j \leftarrow 0; NUM(V_0) \leftarrow 0; POINT(V_0) \leftarrow \Lambda;
2. For j=k-2, 0, -1 do begin
  (1) y \leftarrow NUM(V_{i+1}) - NUM(V_i);
          If \{NUM(V_k) < y \cdot (k-1-j)\} then begin q \leftarrow j; go to Step 3
  (2) For r=k-1, j+1, -1 do begin t_r \leftarrow t_r + y; NUM(V_r) \leftarrow NUM(V_r) - y
          NUM(V_k) \leftarrow NUM(V_k) - y \cdot (k-1-j); If \{NUM(V_k) = 0\} then halt
       y \leftarrow \text{div } (\text{NUM}(\nabla_k)/(k-1-q)) ; \text{NUM}(\nabla_k) \leftarrow \text{mod } (\text{NUM}(\nabla_k)/(k-1-q)) ;
       For r=k-1, q+1, -1 do begin t_r \leftarrow t_r + y; NUM(V_r) \leftarrow NUM(V_r) - y
                                                                                                     end; r \leftarrow r-1;
       while \{x' > 0\} do begin
          t_r \leftarrow t_r + 1; NUM(V_r) \leftarrow NUM(V_r) - 1; NUM(V_k) \leftarrow NUM(V_k) - 1; r \leftarrow r - 1
6. Make a sequence f': b_{11}, b_{12}, \cdots, b_{1,k-1}, which is a result of sorting a sequence f:
    NUM(V_1), NUM(V_2), ..., NUM(V_{k-1}), and which satisfies b_{11} \le b_{12} \le \cdots \le b_{1,k-1};
      Make two sequences g_1: t'_1, t'_2, \cdots, t'_{k-1}, and g_2: b_{21}, b_{22}, \cdots, b_{2,k-1}, satisfying
     the following: Assume that b_{1r} \leftarrow \text{NUM}(V_h) (1 \le r \le k-1, 1 \le h \le k-1) holds by the sorting of
     step 6. Then, t'_r \leftarrow t_h and b_{2r} \leftarrow POINT(V_h) are satisfied;
8. For every j, 1 \le j \le k-1, NUM(V_j) \leftarrow b_{1j}, t_i \leftarrow t'_i and POINT(V_j) \leftarrow b_{2j}
     End. (Procedure Edgdec terminates.)
     Procedure Edgadd.
     Begin
       For j=k-1, 1, -1 do begin
          u \leftarrow POINT(V_k); v \leftarrow POINT(V_i);
          while {t;>0} do begin
```

```
For j=k-1, 1, -1 do begin

u \leftarrow POINT(V_k); v \leftarrow POINT(V_j);

while \{t_i>0\} do begin

y \leftarrow \min (t_i, DEG(u), DEG(v)); ENM(e) \leftarrow y, where e=(u,v); ELK(e) \leftarrow PTR;

PTR \leftarrow u; DEG(u) \leftarrow DEG(u) - y; DEG(v) \leftarrow DEG(v) - y; t_i \leftarrow t_j - y;

If \{d'_{kh}=0\} then begin POINT(V_k) \leftarrow LINK(u); u \leftarrow POINT(V_k) end;

If \{d'_{jr}=0\} then begin POINT(V_j) \leftarrow LINK(v); v \leftarrow POINT(V_j) end end

End. (Procedure Edgadd terminates.)
```

Example

Set $d_{11} = 5$, $d_{12} = 5$, $d_{13} = 5$, $d_{21} = 6$, $d_{22} = 6$, $d_{23} = 6$, $d_{31} = 6$, $d_{32} = 4$, $d_{33} = 4$ and $d_{34} = 5$ ($p_1 = 3$, $p_2 = 3$ and $p_3 = 4$). Then it is clear that $S = (s_1, s_2, s_3)$ is a k-partite multigraphical sequence set.

```
    By Step 1, the following data structure is obtained.
    V₁ [15, →] → [v₁₃, 5, →] → [v₁₂, 5, →] → [v₁₁, 5, Λ]
    V₂ [18, →] → [v₂₃, 6, →] → [v₂₂, 6, →] → [v₂₁, 6, Λ]
    V₃ [19, →] → [v₃₄, 5, →] → [v₃₃, 4, →] → [v₃₂, 4, →] → [v₃₁, 6, Λ]
    By Step 3, the following (1) through (3) are performed:

            By performing Procedure Edgdec, t₂=11, t₁=8, NUM(V₂)=7 and NUM(V₁)=7 are obtained.
            By performing Procedure Edgadd, the following data structure is constructed.

    ELIST [→] → [v₃₁, v₁₂, 3, →] → [v₃₁, v₁₃, 3, →] → [v₃₂, v₁₃, 2, →] → [v₃₂, v₂₂, 2, →] → [v₃₃, v₂₂, 3, →] → [v₃₃, v₂₃, 1, →] → [v₃₄, v₂₃, 5, Λ]
```

- (3) Then k=2 and the following data structure are obtained.
- V_1 $[7, \rightarrow] \rightarrow [v_{12}, 2, \rightarrow] \rightarrow [v_{11}, 5, \Lambda]$, V_2 $[7, \rightarrow] \rightarrow [v_{22}, 1, \rightarrow] \rightarrow [v_{21}, 6, \Lambda]$
 - 3. By Step 3, the following (1) through (3) are performed:
 - (1) By performing Procedure Edgdec, $t_1 = 7$ and $NUM(V_1) = 0$ are obtained.
 - (2) By performing Procedure Edgadd, the following data structure is constructed.
- ELIST [\rightarrow] \rightarrow [v_{21} , v_{11} , 5, \rightarrow] \rightarrow [v_{21} , v_{12} , 1, \rightarrow] \rightarrow [v_{22} , v_{12} , 1, \rightarrow] \rightarrow [v_{31} , v_{12} , 3, \rightarrow] \rightarrow [v_{32} , v_{13} , 3, \rightarrow] \rightarrow [v_{32} , v_{13} , 2, \rightarrow] \rightarrow [v_{32} , v_{22} , 2, \rightarrow] \rightarrow [v_{33} , v_{23} , 1, \rightarrow] \rightarrow [v_{34} , v_{23} , 5, Λ]
 - (3) Then k=1 and the following data structure are obtained: V_1 [0, Λ].
 - 4. Algorithm kMGC terminates, and a k-partite multigraph being shown in Fig. 2, is obtained.

The final graph G satisfies $deg(v_{11}) = 5$, $deg(v_{12}) = 5$, $deg(v_{13}) = 5$, $deg(v_{21}) = 6$, $deg(v_{22}) = 6$, $deg(v_{23}) = 6$, $deg(v_{23}) = 6$, $deg(v_{33}) = 6$, $deg(v_{33}) = 4$ and $deg(v_{34}) = 5$.

6. Time complexity

In this section, discuss the time complexity of Algorithm kMGC.

- 1. The time complexity of Step 1 is O (|V|), where $|V| = \sum_{j=1}^{k} p_{j}$.
- 2. For Step 3, discuss the following [1] through [2].
 - [1] For Procedure Edgdec, discuss the following (1) through (4):
 - (1) The time complexity of Step 1 is $O(\Sigma_{i=2}^{k}j) = O(k^2)$.
 - (2) The time complexity of Step 2 is $O(\Sigma^{k_{j=2}}j^2) = O(k^3)$.
 - (3) The time complexity of Step 4 and 5 is O(k).
- (4) The time complexity of Step 6 through 8 is $O(\Sigma^{k_{j+2}} j \cdot \log_2 j)$.

Thus the time complexity of Procedure Edgdec is O (k3).

[2] For Procedure Edgadd, discuss the following discussion.

Table.1

Table.2

For above two tables, let A_{jq} $(1 \le j \le k, j \ne q)$ be a set of edges of a final graph satisfying $A_{jq} = \{(u,v) \mid u \in V_j \text{ and } v \in V_q\}$. Then $A_{jq} = A_{qj}$ holds, and let V'_{jq} be a set of vertices of V_j satisfying $u \in V_j$ and $v \in V_q$ for an edge $e = (u,v) \in A_{jq}$. Two sets that exist side by side in Table.2 share at most one vertex.

Hence $\sum_{j=1}^{k} \sum_{q=1}^{k} |V'_{jq}| \le |V| + k \cdot (k-2)$ holds and Edge addition is performed at $\sum_{j=1}^{k} \sum_{j=1}^{j-1} \sum_{q=1}^{j-1} (|V'_{jq}| + |V'_{qj}| - 1) \le |V| + k \cdot (k-2) - k \cdot (k-1)/2 = O(|V| + k^2)$ times.

Thus the time complexity of Procedure Edgadd is $O(|V| + k^2)$.

By above [1] and [2], the time complexity of Step 3 is $O(|V| + k^3)$.

By above discussion 1 and 2, the time complexity of Algorithm kMGC is O ($|V| + k^3$).

7. Conclusion

In this paper, a k-partite multigraph construction algorithm which performs the following (1) through (2), is obtained, where $k \ge 3$:

- (1) For a given sequence set $S = (s_1, s_2, \dots, s_k)$, $s_i : d_{i1}, d_{i2}, \dots, d_{i,p_i}$, for every j, $1 \le j \le k$, decide that whether S is a k-partite multigraphical sequence set, and
- (2) If S is so then construct a k-partite multigraph from S. Then the result is O (| V | $+k^3$), where | V | = $\sum_{j=1}^{k} p_j$.

I want to find an improved algorithm of Procedure Edgdec, and an algorithm of constructing an n-partite graph from an n-partite graphical sequence set $S = (s_1, s_2, \dots, s_n)$ for further investigation, where n is a given integer which satisfies $n \ge 3$.

References

- [1] P.Erdos and T.Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat, Lapok 11(1960), 264-274
- [2] S.L.Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, J.SIAM, Appl, Math, 10(1962), 496-506
- [3] V.Havel, A remark on the existence of finite graphs (Czech), Casopis Pest, Mat, 80(1955), 477-480
- [4] H. Frank and W. Chou, Connectivity considerations in the design of survivable networks, IEEE Trans. Circuit Theory, CT-17.(1970), 486-490
- [5] M.Behzad, G.Chartrand and L.Lesnik-Foster, "Graphs and Digraphs," Prindle, Weber and Schmidt, (1979)
- [6] M. Takahashi, An Algorithm of Constructing a Bipartite Graph from a Bipartite Graphical Sequence Set, Information Processing Society of Japan, Tech. Rep. 92-AL27-5.

Fig.1

Fig.2