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In this paper, we shall investigate the upper bounds on the numbers of transitions of minimum and maximum
spanning trees (MinST and MaxST for short) for linearly moving points. Suppose that we are given a set of n points
in general d-dimensional space, S = {p1,p2, ..., P}, and that all points move along different straight lines at different
but fixed speeds, i.e., the position of p; is a linear function of a real parameter {. We shall investigate the numbers
of transitions of MinST and MaxST when ¢ increases from —oo to +o00. We assume that the dimension d is a fixed
constant. Since there are O(n?) distances among n points, there are naively O(n*) transitions of MinST and MaxST.
We shall improve these trivial upper bounds for L; and L, distance metrics.

Let cp(n, min) (resp. c,(n, max)) be the number of maximum possible transitions of MinST (resp. MaxST) in L,
metric for n linearly moving points. We shall give the following results in this paper: ¢i{n,min) = O(n%2a(n)),
Ceoln, min) = O(n®2c(n)), ci(n,max) = O(n?) and co(n, max) = O(n?) where a(n) is the inverse Ackermann’s
function. We shall also investigate two restricted cases, i.e., the c-oriented case in which there are only ¢ distinct -
velocity vectors for moving n points, and the case in which only % points move.



1 Introduction

Computational geometry problems for moving objects are theoretically interesting and have important applications
in motion planning of robotics. The pioneering work in this field was done by Atallah [2], who gave nontrivial upper
bounds on combinatorial transitions of several fundamental geometric structures such as convex hulls for moving
points. Voronoi diagrams and Delaunay triangulations for moving points have recently been investigated by Imai
and Imai [6] and Guibas et al. [3]..

Although the two-dimensional minimum spanning tree (MinST) is a sub-graph of the Delaunay triangulation, it
is not even clear that the number of transitions of MinST is smaller than that of Delaunay triangulation. Recently,
Monma and Suri [10] have investigated the case where only one point is allowed to move in an arbitrary manner,
and gave an O(n?%) bound (especially a ©(n?) tight bound in Euclidean two-dimensional space) for transitions of
MinST. However, to the authors’ knowledge, no one has ever succeeded in improving naive bounds on the numbers
of combinatorial transitions of MinST and the maximum spanning tree (MaxST) when all points move linearly.

In this paper, we shall investigate the upper bounds on the numbers of transitions of MinST and MaxST for lmearly
moving points. Our paper is the first to give nontrivial upper bounds for these numbers.

Let us formulate the problem: Suppose that we are given a set of n points in general d-dimensional space, § =
{p1,P2,---,Pn}, and that all points move along different straight lines at different but fixed speeds, i.e., the position
of p; is a linear function of a real parameter {. We shall investigate the numbers of transitions of MinST and MaxST
when ¢ increases from —oa to +00. We assume that the dimension d is a fixed constant,

When t is fixed, MinST and- MaxST are determined only by the relative order of edge lengths. This implies that
MinST (resp. MaxST) changes only if the relative order of the lengths for some pair of edges changes.

Since there are O(n?) distances among n points, there are naively O(n*) transitions of MinST and MaxST. On
the other hand, it is easy to construct an example that requires Q(n?) transitions for each of MinST and MaxST.
Therefore, there is a rather big gap between lower and upper bounds of such transitions. Note that known bounds
for the number of transitions of a planar Delaunay triangulation are O(n®) and Q(n?) [6,3].

Let cp(n, min) (resp. ¢,(n, max)) be the number of maximum possible transitions of MinST (resp. MaxST) in L,
metric for n linearly moving points. In this paper, we shall restrict ourselves to the cases of p = 1 and co (except in
Section 3), and give improved bounds for them as Iollows:

ci(n,min) = O(n*?a(n)),  coo(n, min) = O(n*a(n)),

c1(n, max) = O(n?), ce(n, max) = O(n?),

where o(n) is the inverse Ackermann’s function and is very slowly growing [5]. In particular, a ©(n?) tight bound
for MaxST is attained. ’

We shall then consider two restricted cases. The ﬁrst is the c-oriented case in which there are only ¢ distinct
velocity vectors for moving n points. The second is the case in which only k£ points move, while the other points
remain in their original positions. We shall improve the above upper bounds for these cases.

L; and L, metrics are referred to as linear metrics in the subsequent discussion. Thé. common technique we use
to derive our upper bounds is the generalization of the combinatorial results obtained by Gusfield [4], and Katoh
and Ibaraki [7] for the number of transitions of the minimum (or maximum) weight base in a matroid in which the
weights of all elements are linear functions of a single parameter ¢. -Note that the ‘minimum (or maximum) weight
base in a matroid is an abstract notion of MinST and MaxST for general graphs.

Since the distance between two points is piecewise linear convex in ¢ for linear metrics, we must generalize the result
of [4,7) to the piecewise linear convex case. For this purpose; we introduce a minimum (resp. maximum) weight base
problem for matroids appropriately defined on certain multigraphs such that the weights of all elements -are linear in
t, and the transition of the minimum (resp. maximum) welght base occurs if the transition of MmST (resp. Ma\(ST)
for the original graphs occurs. : :

Fromi this, we obtain O(m??) and O(m./n) nontrivial upper bounds on the numbers of transitions of MinST
and MaxST, respectively, for general graphs with n vertices and m edges in which the edge lengths are piecewise
linear convex in a single parameter . As a direct consequence of thesé results, we have c¢;(n, min) = O(n®) and
¢1(n, max) = O(n*?2). These bounds are further improved to those stated above through geometric insights into the
structures of the problems. In particular, we use Yao’s lemma [13], with which [13] developed efficient algorithms for
the Euclidean MinST. ‘

Finally we study the problem of finding the value of ¢ at which the total length of MaxST is minimized. For linear
and L, metrics, we give nearly-linear time algorithms for moving points in a plane, based on the parametric search
technique developed by Megiddo [8].



2 Linear metric spanning trees of moving points

We shall derive the upper bounds on the number of transitions of MinST and MaxST in L; and L., metrics. Since
the results we obtain and the techniques we use are the same for both metrics and for any d-dimensional space, we
shall concentrate only on L; metric case and on d = 2. Let pi(t) = (2:(t), 5:(t)) denote the position of point p; at ¢,
where z,(¢) and y;(t) are linear functions of ¢. The L, distance between two points in the plane is a piecewise linear
convex function in ¢ with at most two breakpoints. Here ¢’ is said to be a breakpoint of a piecewise linear function
if the slope of the function changes at t'. The L, distance between points p; and p; is denoted by dy(pi, p;). Since
dp(pi, p;) is a function of ¢, it should be written as d,(p:(t), p;(t)), but for convenience we shall omit the argument ¢
unless there is a possibility of confusion. :

2.1 Number of distinct MinST’s and MaxST’s with p1ecew1se linear convex weight
functions

First, we introduce a theorem on the minimum weight base of a linearly weighted matroid, previously presented by
Gusfield [4], and Katoh and Ibaraki [7]. Let B be a finite set and B a family of subsets of E. The pair (E, B) is
called a matroid M(E,B), a1d the elements of B are the bases of M(E, B), if the following two axioms hold [11}:

(A1) ForanyBCCwathB;éC’ ifBeBand CCB,C¢B. v
(A2) For any B, B' C B with B % B’ and for any ¢ € B~ B, there exists ¢’ € B — B such that (B- {e}ju{e’} €B.

For instance, let 7 be a set of spanning trees'in an undlrected connected graph G = (V, E); then (E,T) forms a
matroid and 7 is a set of bases [11]. ’

The number |B| of elements of a base B € B is independent of the choice of B [11], and is denoted by p. Let
m = |E|, and assume the elements of F to be indexed from 1 through m. We assume that each element s has a
real-valued weight w;(¢) = a:t + b; that is linear in' the parameter ¢{. The minimum (resp. maximum) weight base i
the one in which the sum of weights of elements is minimum (resp. maximum). It is known [11] that the minimum
(resp. maximum) weight base changes only if the relative order of weights of some two elements i and J changes.

Since the wexght functions of two elements have at most one intersection, we have an O(m?) trivial upper bound
on the number of transitions of the minimum (resp. maximum) weight base of M(E, B). This was improved by [4,7],
as will be shown in the following theorem.

Theorem 2.1 ([4,7]) When all w;(t) are Iznear in t, the number of transitions is

O(mmin{yF VATF)). . o

Next, let us apply the above theorem to analyze the number of transn;lons of MmST (and Ma*{ST) of a graph w1th
p1ecewxse-lmear convex weights.

The weight w;(t) of an edge i of a graph G = (V, E) is a piecewise linear convex function of a parameter ¢. Let J;
denote the number of breakpoints of w;(t), and let '

M= (L+1). (2)
i€E . : o

When ¢ increases from —oo to +00, we want to estimate the numbers Ny, and Nya, of transitions of MinST and
MaxST of G. Notice that MinST (resp. MaxST) changes only if the relative order between the weights for a pair of
edges changes. For each pair of edges 7 and j, the functions w;(t) and w;(t) have at most [; + [; + 1 intersections.
Therefore, the trivial upper bound for both of N,.a; and N,.i, is O(Zip5 bi +l + 1) O(Mm)

In order t6 improve this bound, we construct a multigraph G' = (V, E') from the original graph G = (V, E) in such
a way that the vertex set of G' is V, the weight of each edge of G is linear in ¢, and the minimum (or maximum)
weight base of an appropriate matroid defined on G’ changes if (not necessarily only if) the topology of MinST (or
MaxST) changes. Thus, apparently the number of transition of the matroid is at least the number of transition of
MinST (or MaxST).

The convex function w;(¢) can be thought of as the upper envelope of ; + 1 linear functions. Let such [; + 1 linear
functions be

) =aft+ 05, k=1,...,L+1 (3)



The edge set E' consists of /; + 1 multiple edges e}, e?, ..., el*! connecting two endpoints for each edge ¢ of G. The
edge ¢ has the linear weight 2¥(t) defined by (3). |E'| = M holds from the definition of M. Fig. 1 illustrates an
example of graph G and its corresponding multigraph G'. As illustrated in the left side of the figure, G has three
vertices and three edges indexed from 1 through 3, and the weight of each edge is piecewise linear convex with one
breakpoint. The corresponding multigraph G’ has six edges with linear weights as illustrated in the figure.

Lemma 2.2 (i) Let C be a subset of E' such that at most one edge among {e},e?,...,el*'} does not belong to C
1 1 g
for each i, and the set
{i € E | all edges e},¢é?,..., el belong to C} (4)

is a spanning tree in G. Let C be the set of all such C’s. Then (E',C) is a matroid.
(ii) Let T be the set of spanning trees of the multigraph G'. Then (E',T) is a matroid.

Proof. Since (ii) is obvious, we prove only (i). Since any C € € has M — (m — n + 1) edges, the axiom (A1) holds.
For the axiom (A2), let us consider C,C" € C with C # C'. Choose an arbitrary e¥ € C — C’. Let T and T" be two
spanning trees defined by (4) for C and C’ respectively. The following two cases are possible.

. Case 1: i ¢ T. There exists some ¥ € C' — C, because there are exactly /; edges with subscript 7 in C from i ¢ T,
and at least /; edges with subscript i in C’ from the definition of C. Thus (C Ue¥') — e¥ again belongs to C.

Case 2: i €T. Since ¢f & C', i ¢ T' follows. Thus, there exists.a unique path on T connecting both endpoinis of 4.
Choose an edge j on the path such that j T (such an edge always exists). Then (T'U{j}) — {¢} is again a spanning
tree. Since there exists a unique edge e;" such that e_’;' €eC'-CfiomjeT"-T,(C Uef') — ¥ again belongs to C. O

Theorem 2.3 For an undirected graph G = (V, E) in which the edge weights are piecewise linear conver functions
of a single parameter t, (i) there ezist O(M\/m) transitions of MinST, and (%) there exist O(M\/n) transitions of
MazST.

Proof. (i) Consider the matroid in Lemma 2.2(i). Given an MinST, T, at a certain value ¢, the set C defined by

C=F— (g T4 0 =, max #0)
is a minimum weight base in the matroid as can be easily shown. Conversely, for a minimum weight base in the
matroid at a certain ¢, the corresponding spanning tree defined by (4) is MinST for the same . Therefore, if MinST
changes, the corresponding minimum weight base in the matroid always changes. Thus, since every base in the

matroid has M — (m — n + 1) elements, the theorem follows from Theorem 2.1.
(ii) Consider the matroid defined in Lemma 2.2(ii). It is clear that if MaxST changes, the corresponding maximum
weight base in the matroid always changes. Thus, since every base in the matroid has n — 1 elements, the theorem
follows from Theorem 2.1. u]

2.2 Number of transitions of MinST

Based on Theorem 2.3(i), the following theorem is immediate.
Theorem 2.4 c;(n,min) = O(n?).

Proof. Consider a complete graph G = (5,5 x S), where S is the set of n points in the plane, and the length of
an edge between two points is measured in L; metric. Since the L, distance between two points is a piecewise linear
convex function in ¢ with at most two breakpoints, we have M = 3n(n — 1)/2 from (2). Thus, the theorem follows
from Theorem 2.3(i). ]
This bound is further improved by using the technique developed by Yao [13]. We shall first define an L;-version of
Yao’s graph introduced by Yao [13]. For a given ¢ and a given point p;, we divide the plane into eight regions relative
to p;. The regions are formed by four lines passing through p; and forming angles of 0°, 45°, 90°, 135°, respectively,
with the z-axis. We number the regions counterclockwise, and use Ri(p;) to denote the set of points in the /-th region
(including the boundary), for 1 <1 < 8. We then have the following lemma: :

Lemma 2.5 ([13]) If p; and pi are points in Ri(p;) for some I, then di(p;,pr) <
max{d;(p:, p;), di(pi, pe) }- e



For each Ri(p:), let px be the one such that dy(pi, p) = min{di(pi,p;) | 7 # 1,p; € Ri(p:)}- The point p is called
the nearest neighbor to p; in Ri(p;). An L;-version of Yao’s graph, G = (S, E), is the one such that S is the set of n
points in the plane, and (p;, p;) € E if and only if p; is the nearest neighbor to p; in R(p;) for some ! with 1 <[ < 8.
G = (S, E) contains at most 8n edges. :

Lemma 2.6 ([13]) The edge set E of G = (S, E) contains an MinST in Li-metric. ) o

Since G = (S, E) depends on the parameter ¢, we shall write it as G(t) = (V, E(t)). How many times does E(t)
change as t inceases from —co to +c0? The lemma below follows from the theory of the upper envelope of line
segments [12].

Lemma 2.7 For each p; and each | with 1 < I < 8, the nearest neighbor to p; in Ri(p;) changes O(na{n)) times.
when t moves from —co to 400, where the function a(n) is the inverse Ackermann’s function [5]. )

Thus, we have the following lemma:
Lemma 2.8 The edge set B(t) of G(t) = (V, E(t)) changes O(n*a(n)) times. O

Letting ¢1,%s,...,%, with ¢; <3 <--- <, be the sequence of t’s at which E(t) changes, [—o0, +00] is divided into
O(na(n)) disjoint intervals Iy, I, ..., Jna(n) so that each interval contains O(n) ¢4’s. Now let.us consider the interval
I, and define

By ={(pi,p;) | (piyp;) € E(2) for some t € I;}. (5)

Then |Ex| = O(n) follows. Consider the graph G\ = (S, Ex) in which the weight of each edge (p:, p;) is equal to
dy(pi(t), p;(t)). Note that MinST of G = (S, Ex) changes at some t € I if and only if MinST for the same point
set in the plane changes. From |Ex| = O(n) and Theorem 2.3(i), the number of transitions of MinST of G}, over the
interval I is O(n®/?). Therefore, we have the following theorem:

Theorem 2.9 ¢;(n, min) = O(n%?a(n)). o

The Euclidean (i.e., Lz) MinST is also contained in the edge set of Yao’s graph (of Lz norm). We can easily show
that the number of transitions of Yao’s graph is As(n) = ©(n22*™) for L, norm by using the result of [5], where
Ag(n) is the maximum length of a Davenport-Schinzel sequence of order 4. Thus, by applying the argument similar
to the one given after Lemma 2.8, we immediately obtain the following:

Proposition 2.10 c,(n, min) = O(n322(™),

2.3 Number of transitions of MaxST

As a direct consequence of Theorem 2.3(ii), we get ¢;(n, max) = O(n%?) by the same argument as in the proof of
Theorem 2.4. This upper bound is further improved to O(n?). We shall also prove that ¢;(n, max) = 2(n?). Thus
we establish the tight bound ¢;(n, max) = ©(n?).

Theorem 2.11 ¢;(n, max) = O(n?).

Proof. The Q(n?) lower bound is easily given, even in the one-dimensional case (the details are omitted in this
version). We show the O(n?) upper bound for the planar case. It is not difficult to generalize it for any fixed-
dimensional case. As shown by [9], MaxST contains the furthest neighbour graph (FNG). The L, hull of S is the
set of points which maximizes one of the linear form z + y, z — y, —z + y, and —z — y. From the definition, the L,
furthest neighbour of a point of S is located on the L; hull. It is easy to see that the number of transitions of the L,
hull is O(n), and that the number of transitions of the FNG is O(n?).

The FNG contains at most two connected components. Let ! be the longest distance between the connected
components. Then, { is the distance between a point in the L; hull of one component and a point in the L, hull of the
other. MaxST of S is the union of the furthest neighbour graph and I. The number of transitions of the L; hull of
each connected component is O(n?). Since at most four points are located on the L; hull if the points are in general
position, the edge ! is changed O(1) times for a fixed topology of the I; hulls of components. Thus, we obtain the
O(n?) upper bound. o



2.4 Restricted cases

We shall consider in this section two restricted cases: the c-oriented case and the case where only £ points move. We
are interested in the case where ¢ and k are small compared with n. In order to deal with the c-oriented case, we
shall first give the following lemma which is a counterpart of Theorem 2.1 for the c-oriented case.

Lemma 2.12 Let M(E, B) be a matroid with m elements in which the weight of each element is linear in t, and
suppose that there are only ¢' distinct slopes among all weight functions. Then the number of changes of the minimum
(resp. mazimum) weight base is O((c'mp)*/? + ¢'p), where p denotes the number of elements in ¢ base.

Now the number of transitions of MinST in the c-oriented case can be analyzed in the same fashion as in Section
2.2. Tt is easy to show that the number of transitions of Yao's graph is O(cn?) for the c-oriented case. Thus we
establish the following theorem from Lemma 2.12:

Theorem 2.13 ¢;(n, min) = O(c*n?) holds in the c-orienled case. o

The above bound is tight for fixed c, since it is easy to show the 0(n?) lower bound for the 2-oriented case.

Now let us analyze the number of transitions of MaxST in the c-oriented case. Consider the complete graph
G = (5,8 x §) defined in the proof of Theorem 2.4, and the corresponding multigraph G' introduced in Section 2.1.
It is easy to see that there are O(c?) distinct slopes among O(n?) edge weights. Thus, from Lemma 2.12, we have
the following theorem:

Theorem 2.14 ¢;(n, max) = O(cn®?) holds in the c-oriented case. O

We shall now consider the case where there are only k¥ moving points. Other points are called fixed. Let S’ and
S” be the sets of k moving points and n — k fixed points. Let MaxST(S") (zesp. MinST(S")) be the MaxST (resp.
MinST) for the point set S”. This does not change even if ¢ changes, since the points in $” are fixed. MaxST (resp.
MinST) {or any ¢ is contained in the set of the union of MaxST(S") (resp. MinST(S")) and edges connecting the
points in §' and S(= S’ U S”). There are O(kn) edges in this set. Furthermore, since the situation can be regarded
as the (k + 1)-oriented case, we have the following theorems from Lemma 2.12:

Theorem 2.15 c¢;(n, max) = O(k*n) holds when only k points linearly move. u]

Theorem 2.16 ¢;(n, min) = O(k®n) holds when only k points linearly move. ]

3 Finding the smallest MaxST

It is an interesting problem to find the value of ¢ when the MaxST of linearly moving points satisfies some minimality
condition. In this section, we give efficient algorithms for finding the value of ¢ when the total edge length of MaxST
becomes minimum.

Theorem 3.1 We can find the value of t when the total edge length of MazST becomes minimum in O{nlog?n) time
and O(nlog* n) time for Ly and L, metrics, respectively.

Proof. First, note that the total length of a given spanning tree is a convex function in ¢. Thus, the total length of
MaxST is also convex in t, since it is an upper envelope of convex functions each of which corresponds to the total
length of a spanning tree. Therefore, the optimal value ¢* can be found as the supremum of ¢ such that the slope of
the function representing the total length of MaxST at ¢ is negative. Thus, for a given ¢, we can tell whether t* <,
t* > 1, or t* = t in O(nlogn) time by computing the MaxST at ¢ by using the algorithm given by [9] (for L; metric).
The time complexity can be reduced to O(n) for the Ly case.

Next, by directly parallelizing the algorithm of [9], we obtain an O(logn) time and an O(n) processor algorithm
to compute the L; MaxST, and an O(log® n) time and an O(n) processor algorithm to compute the Ly MaxST. We
use O(log? n) time and O(n/logn) processor algorithm to compute the furthest Voronoi diagram of Aggarwal [1].

From the above observations, it is now an easy exercise to apply Megiddo’s parametric search [8] in order to obtain
the results. O

Notice that these results are valid only for d = 2, since no parallel algorithm with the above running time is known
for the general d-dimensional case.



4 Concluding remarks

We have investigated the upper bounds on the number of transitions of dynamic MinST and MaxST of points moving
linearly in a fixed-dimensional space. For linear metrics, we have obtained a tight bound ©(n?) for the MaxST case.
On the other hand, for the MinST case, there is still a gap of \/na(n) factor between the lower and upper bounds.
We conjecture that the bound for the MinST is also ©(n?).

It is important to investigate the problem for the Euclidean L, metric. So far, we have only been able to show
an O(n®2°(™) bound for MinST, and a trivial O(n*) bound for MaxST. However, we believe that these bounds will
significantly be improved in future.

We also investigated the problem of finding the minimum length of MaxST for moving points, and proposed an
efficient algorithm with O(nlog* n) running time for L, metric. The MinST version of this problem is much important
in practical applications. However, the total length of MinST is neither concave nor convex in ¢, and it is left for
future research to design subquadratic algorithms for finding the value of ¢ minimizing the total edge length of the
dynamic MinST.
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wy(t) = |t — 1] At)y=-t+1, 2Z(t)=t-1
w(t) = (2t — 4| 23(t) = -2t +4, 2(t)=2t-4
wa(t) = |3t - 5] 2(t) = -3t +5, 23(t)=3t-5

Fig. 1  An example of graphs G and G'.



