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Abstract This paper introduces a cooperating system of three-way two-dimensional finite automata (CS-TR2-FA) which
is a restricted version of a cooperating system of (four-way) two-dimensional finite automata (CS-2-FA), and mainly
investigates several fundamental properties of this system as a two-dimensional language acceptor whose input tapes are
restricted to square ones. We show that
(1) CS-TR2-FA’s are equivalent in accepting power to three-way two-dimensional simple multihead finite automata;

(2) CS-2-FA’s are more powerful than CS-TR2-FA’s;

(3) £[CS-TR2-DFA(k)*]G£[CS-TR2-NFA(k)*];

(4) Uigkcoo £[CS-TR2-DFA(k)*]G Urchcoo £[CS-TR2-NFA(k)*]; and

(5) £[CS-TR2-DFA(k)*] (£[CS-TR2-NFA(k)*])G £[CS-TR2-DFA(k + 1)*] (£[CS-TR2-NFA(k + 1)%]),

where £[CS-TR2-DFA(k)*] (£[CS-TR2-NFA(k)*]) denotes the class of sets of square input tapes accepted by CS-TR2-FA’s
which consist of k deterministic (nondeterminstic) finite automata.
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1. INTRODUCTION

A cooperating system of two-dimensional finite automata (CS-2-FA) [2,3,4] consists of a finite number of two-dimensional
finite automata and a two-dimensional input tape where these finite automata work independently (in parallel). Those
finite automata whose input heads scan the same cell of the input tape can communicate with each other, that is, every
finite automaton is allowed to know the internal states of other finite automata on the same cell it is scanning at the
moment.

In [2, 3, 4], the maze and labyrinth search problems for CS-2-FA’s were studied. But there is no investigation of CS-2-
FA’s as the recognizers (or acceptors) of two-dimensional patterns. It is worthwhile to investigate properties of CS-2-FA’s
as recognizers, because CS-2-FA’s may be considered as one of the simplest models of parallel two-dimensional pattern
recognizers. Recently, several properties of cooperating systems of one-way finite automata and cooperating systems of
one-way counter machines as one-dimensional language acceptors were investigated in [8] and [10], respectively.

In this paper, we propose a cooperating system of three-way two-dimensional finite automata (CS-TR2-FA) which is a
restricted version of CS-2-FA’s, and mainly investigate its several properties as two-dimensional language acceptors. The
three-way two-dimensional finite automaton [7] is a two-dimensional finite automaton [1] whose input head can move left,
tight, or down, but not up.

The paper has seven sections in addition to this Introduction. Section 2 contains some definitions and notations. Section
3 investigates a relationship between three-way two-dimensional simple multihead finite automata (TR2-SPMHFA’s) and
CS-TR2-FA’s. It is shown that TR2-SPMHFA’s and CS-TR2-FA’s are equivalent in accepting power if the input tapes
are restricted to square ones. Section 4 investigates the difference between the accepting powers of CS-TR2-FA’s and
CS-2-FA’s, and shows that CS-TR2-FA’s are less powerful than CS-2-FA’s. Section 5 investigates the difference between
the accepting powers of deterministic and nondeterministic CS-TR2-FA’s, and shows that deterministic CS-TR2-FA’s are
less powerful than nondeterministic CS-TR2-FA’s. Section 6 shows that for classes of sets accepted by CS-TR2-FA’s and
CS-2-FA’s, hierarchies can be obtained by varying the number of finite automata in the system. Section 7 concludes by
giving some open problems. In this paper only square input tapes are considered.

2. PRELIMINARIES

Definition 2.1. Let I be a finite set of symbols. A two-dimensional tape over L is a two-dimensional rectangular array
of elements of X.

The set of all two-dimensional tapes over ¥ is denoted by £(2). Given a tape z € £®), we let l1(z) be the number of
rows of £ and l2(z) be the number of columns of . I 1 < i < li(z) and 1 < j < ly(z), we let z(i, j) denote the symbol in
z with coordinates (4, j). Furthermore, we define

=[(4,5), (&', 5],
only when 1 <1 <4’ <li(z) and 1 < j < j/ < l5(z), as the two-dimensional tape 2 satisfying the following:
@) W(z)=i"—i+land b(z)=5' -7+ 1.
(ii) for each k,r, [1 < k < li(2), 1 < r < Ia(2)),
2k, r)=z(k+i—1,r4+5-1).

We recall a three-way two-dimensional simple k-head finite automaton (TR2-SPk-HFA) [5,6). A TR2-SPk-HFA M is a
finite automaton with k read-only input heads operating on a two-dimensional input tape surrounded by boundary symbols
#. The only one head (called the ‘reading’ head) of M is capable of distinguishing the symbols in the input alphabet, and
the other heads (called ‘counting’ heads) of M can only detect whether they are on the boundary symbols or a symbol -
in the input alphabet. When an input tape z is presented to M, M determines the next state of the finite control, the
next move dirction (right, left, down, or no move) of each input head, depending on the present state of the finite control,
the symbol read by the reading head, and on whether or not the symbol read by each counting head is boundary symbol.
We say that M accepts z if M, when started in its initial state with all its input heads on z(1,1), eventually halts in
an accepting state with all its heads on the bottom boundary symbols of z. As usual, we define nondeterministic and
deterministic TR2-SPk-HFA’s.

A three-way two-dimensional sensing simple k-head finite automaton (TR2-SNSPk-HFA) is the same device as a TR2-
SPk-HFA except that the former can detect coincidence of the input heads.

We denote a deterministic (nondeterministic) TR2-SPk-HFA by TR2-SPk-HDFA (TR2-SPk-HNFA), and denote a de-
terministic (nondeterministic) TR2-SNSPk-HFA by TR2-SNSPk-HDFA (TR2-SNSPk-HNFA).

We now give a formal definition of a cooperating system of k two-dimensional deterministic finite automata (CS-2-
DFA(k)) as an acceptor.

Definition 2.2. A CS-2-DFA(k) is a k-tuple M = (FA;, FA,, ---, FAy), k > 1, such that for each 1 <1 <k,
FA; = (3, @i, Xi, &, qoi, iy ¢, #),

where



1. ¥ is a finite set of input symbols.
2. Q; is a finite set of states.
3. Xi = (Qu{g})x- - - x(Qic1U{8})x (Qi+1U{#}) X - - - x (QrU{¢}), where ‘¢’ is a special state not in (Q1UQ2U---UQy).

4.6 (ZU{#}) x Xi x Qi — Q; x {1ight (= (0, +1)),left (= (0,—1)),down (= (+1,0)),up (= (~1,0)),no move (=
(0,0))} is the nexst move function, where ‘4’ is the boundary symbol not in 5.

5. qo; € Q; is the initial state of FA;.

6. F; C Q, is the set of accepting states of FA;.

Every automaton of M independently (in parallel) works step by step on the same two-dimensional tape z over &
surrounded by boundary symbols #. Each step is assumed to require exactly one time for its completion. For each i
(1 <4< k), let ¢; be the state of FA; at time ‘’. Then each FA; enters the next state ‘p;’ at time ‘t + 1’ according to the
function

Gile (e, B gt G Gl 5 0, ) = (i, (da, da)),

where z(a, f) is the symbol read by the input head of FA; at time ‘¢’ and for each JE€{l,- i 1041, k},
+_ | 4 €Q; if the input heads of FA; and FA; are on the same input position at the moment ‘r’;
%= ) otherwise,

and moves ist input head to z(o + dq, f + dy) at time ‘¢ + 1°. We assume that the input head of FA; never falls off the
tape beyond boundary symbols.

When an input tape z € () is presented to M, we say that M accepts the tape z if each automaton of M, when started
in its initial state with its input head on z(1,1), eventually enters an accepting state with its input head on one of the
bottom boundary symbols.

We next introduce a cooperating system of k three-way two-dimensional deterministic finite automata (CS-TR2-DFA(k)),
with which we are mainly concerned in this paper.

Definition 2.3. A CS-TR2-DFA(k) is a CS-2-DFA(k) M =(FA1,FA;,--,FA;) such that the input head of each FA; can
only move left, right, or down, but not up.

To give the formal definitions of a cooperating system of k two-dimensional nondeterministic finite automata (CS-2-
NFA(k)) and a cooperating system of k three-way two-dimensional nondeterministic finite automata (CS-TR2-NFA(k)) is
left to the reader.

For each X' € {TR2-SPk-HDFA, TR2-SPk-HNFA, TR2-SNSPk-HDFA, TR2-SNSPk-HNFA, CS-2-DFA(k), CS-2-NFA(k)
CS-TR2-DFA(k), CS-TR2-NFA(k)}, by X* we denote an X whose input tapes are restricted to square ones; by £[X]
(£[X°}) we denote the class of sets of input tapes accepted by X’s (X*’s). We will focuse our attention on the acceptors
whose input tapes are restricted to square ones.

)

3. RELATIONSHIP BETWEEN TR2-SPMHFA’S AND CS-TR2-FA’S

In this section, we establish a relation between the accepting powers of three-way two-dimensional simple multihead
finite automata and cooperating systems of three-way two-dimensional finite automata over square input tapes. This
result will be used in the latter sections.

Lemma 3.1. For any k > 1 and any X€{N, D},
£[TR2-SNSPk-HXFA®} C £[CS-TR2-XFA(2k)°].
Proof. Let M be a TR2-SNSPk-HXFA*. We will construct a CS-TR2-XFA(2k)* M’ to simulate M. M’ acts as follows:

1. M’ simulates the moves of the reading head of M and all the left or right moves of counting heads of M by using
its (k + 1) finite automata.

2. M' simulates all the down moves of counting heads of M by making the right moves of input heads of its other
(k —1) finite automata.

3. During the simulation, if M moves its reading head down, then M’ makes all of input heads of finite automata of
M’ move down so that all the automata of M’ can keep their input heads on the same row and can communicate
with each other in that row.



Tt is easy to see that M’ can simulate M. o

Lemma 3.2. For any k > 1 and any X€{N, D},
£[CS-TR2-XFA(k)*] € £[TR2-SNSP(2k? — k + 1)-HXFA°].

Proof. Let M =(FA;,FA,, --,FA;) be a CS-TR2-XFA(k)*. We will construct a TR2-SNSP(2k? —k + 1)-HXFA* M’ to
simulate M. Let R denote the reading head of M, and k1, ha, -+, hya_j denote the 2k? — k counting heads of M'. M’
acts as follows:

1. M' stores the internal states of FA;,FA,, .- - FA in its finite control.
2. For each row of the input tape:

(a) M' simulates the left or right moves of input heads of FA;,FA2,---FA; by using R and ha, ha,- -, Ag.

(b) M’ stores in its finite control the internal state of each FA;, 1 < i < k, when the input head of FA; leaves the
row and the order, (di,ds,--,dg), in which the input heads of FA;,FA;, --,FA; leave the row subsequently
(i.e., FAg4, firstly moves its input head down from the row, FA;, secondly moves its input head down from the
row, and so on:),! and M’ keeps the position where the input head of each FA;, 1 < i < k, leaves the row by
the positions of A, ko, -+, hg.

(c) Furthermore, for each 1 (1 < i < k — 1), the interval between the times at which FA4; and FAy;,, move their
input heads down from the row is stored by a counter with O(n?*) space bound, which can be realized by using
R(2i—1)k+15 R(2i-1)k+25 * **» B(2i+1)k> Where 7 is the number of rows (or columns) of the input tape.

Note that M works in O(n?*) time, that is, if an input tape with n rows (or columns) is accepted by M, then it can be
accepted by M in O(n?*) time. Thus, it is easy to verify that M’ can simulate M. a

It was shown in [5] that Uigrcoo £]TR2-SPA-HXFA®] = Uichcoo £[TR2-SNSPA-HXFA] for any X€ {N, D}. Combining
this result with Lemmas 3.1 and 3.2, we have the following theorem.

Theorem 3.1. Uigk<coo £[TR2-SPk-HXFA®] = Uickcoo £{CS-TR2-XFA(k)*] for any Xe{N, D}.
Corollary 3.1. For any k > 1, there is no CS-TR2-NFA(k) that accepts the set of connected patterns.?

Proof. 1t is shown in [6] that the set of connected patterns is not in Ujck<oo £[TR2-SPk-HNFA®]. From this result and
Theorem 3.1, the corollary follows. ]

Remark 3.1. It is easy to see that for each £ > 1, (1) (four-way) two-dimensional sensing simple k& head finite automata
[5] ate simulated by cooperating systems of (k + 1) ({four-way) two-dimensional finite automata, and (2) cooperating sys-
tems of k (four-way) two-dimensional finite automata are simulated by (four-way) two-dimensional sensing simple (k + 1)
head finite automata.

Remark 3.2. It is shown in [8] that (one-dimensional) one-way simple multihead finite antomata and cooperating
systems of (one-dimensional) one-way deterministic finite automata are incomparable in accepting power. From this fact,
it follows that TR2-SPMHFA’s and CS-TR2-DFA’s are incomparable in accepting power if the input tapes are restricted
to those z such that {1(z) > l2(z). We can also show that TR2-SPMHFA’s are more powerful than CS-TR2-DFA’s if the
input tapes are restricted to those z such that I1(z) < la(z).

4. THREE-WAY VERSUS FOUR-WAY

In this section, we investigate the difference between the accepting powers of CS-2-DFA(k)*’s [CS-2-NFA(k)*’s] and
CS-TR2-DFA(k)*’s [CS-TR2-NFA(k)*’s].

Theorem 4.1. For each X€{N, D}, £[CS-2-DFA(1)*] — Ui<k<oo £[CS-TR2-XFA(k)*] # 0.
Proof. Let Ty = {z € {0, 1}® |(3m > 2) [l1(2) = lo(z) = m & «[(1,1),(1,m)] = 2[(2,1),(2,m)]]}. Clearly, Ty €£[CS-
2-DFA(1)*]. As shown in [5], T} is not in Ujckcoo £[TR2-SPE-HNFA®]. From this fact and Theorem 3.1, the theorem

follows. o

From Theorem 4.1, we can get the following corollary.

'If the input heads of FA;, FA;, - FA;, (1 < i3 < i2 < --- < % < k) leave the row simultaneously, we refer to the order on them as
(i1, i2, o dr)
2The definition of connected patterns can be found in [1].



Corollary 4.1. For each k > 1 and each Xe{N, D}, (1) £{CS-TR2-XFA(k)*] G £[CS-2-XFA(k)*], and (2) Urck<oo £[CS-
TR2-XFA(k)*] G Urgheoo £[CS-2-XFA(K)*].

5. NONDETERMINISM VERSUS DETERMINISM
In this section, we investigate the difference between the accepting powers of CS-TR2-NFA(k)*’s and CS-TR2-DFA(k)*’s.

Theorem 5.1. £[CS-TR2-NFA(1)*] ~ Uckeoo £[CS-TR2-DFA(k)"] # 0.

Proof. Let Ty = {z € {0, 1} |(3m > 2) [li(z) = h(z) = m] & (1 < i < m) [2(1,4) = 2(2,4) = 1]}. Clearly,
T, €£[CS-TR2-NFA(1)°]. As shown in [5], T; is not in Uscrcoo £[TR2-SPE-HDFA?]. From this fact and Theorem 3.1, the
theorem follows. ]

From Theorem 5.1, we can get the following corollary.

Corollary 5.1. For each k > 1, (1) £[CS-TR2-DFA(k)*] G £[CS-TR2-NFA(k)], and (2) Usck<oo £[CS-TR2-DFA(k)']
G Urcheoo £[CS-TR2-NFA(K)].

6. HIERARCHIES BASED ON THE NUMBER OF AUTOMATA

6.1. Four-Way Case

We first investigate how the number of automata of CS-2-FA*’s affects the accepting power.

Theorem 6.1.1. For each k > 1 and each Xe {N, D}, £[C8-2-XFA () (k)]G £[C8-2-XFA ;0y(k+ 2)*], where £[CS-2-
XFA03(k)°] denote the class of sets of square tapes over a one-letter alphabet accepted by CS-2-XFA(k)’s.

Proof. Tt is easy to prove that every CS-2-DFA(k) [CS-2-NFA(k)] can be simulated by a (four-way) two-dimensional
sensing deterministic [nondeterministic] k-head finite automaton, and every (four-way) two-dimensional sensing determin-
istic [nondeterministic] k-head finite automaton can be simulated by a CS-2-DFA(k + 1) [CS-2-NFA(k + 1)]. As shown in
9], for sets of square tapes over a one-letter alphabet, (four-way) two-dimensional sensing deterministic [nondeterministic]
(k 4 1)-head finite automata are more powerful tnan the cooresponding k-head finite automata. From these facts, the
theorem follows. o

Unfortunately, it is unknown whether £[CS-2-XFA (0} (k)*]G£[CS-2-XFA (63 (k +1)°] for any k > 1 and for any Xe{D,N}.
It is also unknown whether £[CS-2-XFA(k)*]G£[CS-2-XFA(k + 1)°] for any k > 2 and for any Xe{D,N}. (It is easy to
show that £[CS-2-XFA(1)']G£[CS-2-XFA(2)"])

6.2. Three-Way Case

We next investigate how the number of automata of CS-TR2-FA*’s affects the accepting power.

For each n > 1, let T(n) = {z € {0, 1}® [(Am > n) [h(z) = b(z) = m & 2[(1,1),(1,m)] = =[(2,1),(2,m)] €
Ru(m) & 2[(3,1),(m, m)] € {0}]}, where R,(m) = {z € {0, 1} |(z) = 1, b(z) =m & (z has exactly n 1%)} for
each m > n. It is obvious that for any fixed positive integer 7, T'(n) can be accepted by a CS-TR2-DFA(n).

We first consider the following problem: given a fixed positive integer n, find a CS-TR2-FA which accepts T(n) and uses
the minimum number of antomata. Unfortunately, we cannot generally solve the problem in the present paper, but we give
the lower and upper bounds. Let f(n) denote the minimum number of automata required for deterministic CS-TR2-FA’s
to accept T'(n), and g(n) denote the minimum number of automata required for nondeterministic CS-TR2-FA’s to accept
T(n). Clearly, g(n) < f(n) for any n > 1.

Theorem 6.2.1. For each k > 1, (1) f(k* +k —1) < 2k — 1, (2) f(K? +2k) < 2k, and (3) f(k(k — 1)/2 + 1) > k.

Befor giving the proof of Theorem 6.2.1, we will give an example for showing how some CS-TR2-DFA(2) accepts T(3),
which will be used as a basis step in the proof of (1) (or (2)) of Theorem 6.2.1 below.

Example 6.2.1. T(3) € £[CS-TR2-DFA(2)*].

Proof. Let T'(3) = {z[(1,1),(2,12(z))] |& € T(3)}. We actually show that there exists a CS-TR2-DFA(2) M(2) =(FA,,
FA;) accepting T"(3), since one can easily make M(2) accept T(3). Let h;(t) denote the position of input head &; of FA;
at time ¢ for each i € {1,2}.

If the automaton (FA; or FA;) moves its input head one cell every n steps, we say that the speed of its input head is
1/n.



Consider the case when an input tape ¢ with 2 rows and m columns such that z[(1,1), (1, m)], z[(2,1),(2,m)] € Rs(m)
is presented to M (2) which acts as follows. (Input tapes in the form different from the above can easily be rejected by
M(2).) What we have to show is that how M(2) checks whether the symbol on pj(s) is 1 for each i € {1,2,3}, where p(i)
denotes the position just under the position, py(i), of the i-th 1 in the first row (counting from left to right).

1. FA; and FA; move f; and h; simultaneously to the position p;(1) (at some time t3). (Thus, h1(tg) = ho(t2) = p1(1).)
Then

2. (a) FA; moves hy down one cell at speed 1 (thus, hy(#5) = ph(1), ha(tf — 1) = p1(1), where ¢ = ¢£ + 1), and then
checks whether the symbol on p5(1) is 1. If this is the case, then FA; moves k; to the right at speed 1 from
p5(1) to the position of the next symbol 1 (denoted by p,(2)) if it really exists, and then moves h; to the right
at speed 1/2 from po(2) to the position of next symbol 1 (denoted by p2(3)) if it really exists. Otherwise FA;
halts forever (on the right boundary symbol attached to the second row of z), that is, M(2) rejects =.

(b) FA; moves hy to the right from p;(1) to p1(2) at speed 1 and from p;(2) to pi(3) at spedd 1/2, and moves h;
down one cell at speed 1.

3. The time at which ho reaches p5(3) is denoted by ¢§. If hy and ho simultaneously reach py(3) at time 3 (i.e.,
P%(3) = pa2(3)), then goto 4. Otherwise M(2) rejects . Note that hy and h, simultaneously reach ps(3) at time t5
if and only if

(a) h+b=04+1, and
(b) b+ 20 =1 + 28,
(where, for each i € {1,2}, I; denotes the distance from p;(z) to p1(i + 1), and I} and !} denote the distance from
p5(1) to p2(2) and from pa(2) to p2(3), respectively), thus, I; = Ij and I, = 1.
4. M(2) accepts ¢ if the number of 1’s in the second row is exactly 3. Otherwise M(2) rejects .

It will be obvious that M(2) accepts 7'(3). o

Proof of Theorem 6.2.1: The proofs of (1) and (2) are similar. We only give the proof of (2) here. To prove (2) is
equivalent to proving that: for each k > 1, T(k? + 2k) €.£[CS-TR2-DFA(2k)*].

For each n > 1, let T'(n) = {z[(1,1),(2,12(z))] |z € T(n)}. For convenience, we prove by induction on k that
T'(k? + 2k) € £[CS-TR2-DFA(2k)]. 1t will be obvious that (2) follows from this fact.

Basis (k=1): There exists a CS-TR2-DFA(2) M (2) =(FA1, FA;) accepting 7"(3) which satisfies the property that for
each £ € T(3), there are three times % > ¢§ > tZ during the accepting computation of M(2) on  such that

0) k1 (t3) = ha(§) = p1(2),
1) Ra(#f) = p(1), ha(t] ~ 1) = p1(1), and
2) h1(t5) = ha(t5) = p5(3),

where h;(t) denotes the position of input head k; of FA; at time ¢, p1(i) denotes the position of the i-th 1 in the first row
(counting from left to right), and p4(i) denotes the position just under p;(i). This is shown in Example 6.2.1.

Inductive Hypothesis: Suppose that for each 1 < j < k, there exists a CS-TR2-DFA(25) M (25) =(FA;1, FA3, ---, FAy;)
accepting 7"(j2 + 2j) which satisfies the property that for each z € T"(52 + 25), there are 2§ + 1 times § > ¢ > --- > 155
during the accepting computation of M(25) on z such that

0) ha(t§) = ha(tf) - - = ha; (1) = pa(d;[1]),

1) ha(#9) = p3(d;{1]), ha(t] — 1) = ha(t] — 1) = - = haj (] — 1) = p1(d;[1]),
1) k() = ho(8F) = -+ = hi(#F) = p3(d;[i]),
higa(tf = 1) = higa(F ~ 1) ="+ = hoj (#f — 1) = pa(d;[i]),

2j) h1(t3;) = ha(t5;) = - -~ = ho;(13;) = p5(d,[24]),
where
4[] = i(i+1)/2 for1<i<r+1,
=) i —i+3)/2—r(r+1) forr+1<i<2r

(See Fig.1.)

Inductive Step: We show that there exists a CS-TR2-DFA(2(k + 1)) M (2(k + 1)) =(FA;, FA,, - -+, FAgry2) accepting
T'(k? + 4k + 3) which satisfies the property that for each z € T'(k? + 4k + 3), there are 2k + 3 times #§ > 1 > --- > 1%, ,
during the accepting computation of M(2(k + 1)) on z such that



0) h1(t§) = ha(85) -+ = har42(t§) = p1(dr+1[1]),

1) h1(t9) = ph(dr41[1]), haltf — 1) = ha(# — 1) = -+ = hop42(tf — 1) = p1(da1{l]),
i) ha(tF) = ha(tF) = - -+ = hi(tF) = ph(di4a[i]),
hig1(tF = 1) = higa(tF — 1) = - -+ = horg2(t7 — 1) = p1(dr41[i]),
2k+2) hl(tgk-}-z) = h2(t§k+2) == h2k+2(tfk+2) = Pg(dkﬂ[% + 2])
2 i i1 2
1 —t— —— —— —— 1
- - —1___o [ R SE— L—e -1l 1 e -l e
[1] [2] BB 4] [+1] [5+2] [25-2] [25-1] [27]

Fig. 1. ‘@’ and ¥ denote j(7+2) 1’s in the first row of z, and

‘s denotes the position p;(d;[z]) for each 1<i<2;.

Consider the case when an input tape z with 2 rows and m columns such that z[(1,1),(1,m)], z[(2,1),(2,m)} €
Rz 4 ax43y(m) is presented to M(2(k + 1)) which acts as follows. (Input tapes in the form different from the above can
easily be rejected by M(2(k + 1)).)

1. M(2(k +1)) fizst verifies in a similar way as M(2k) that the symbol on ph(i) is 1 for each i € {1,2,--,dr4a [k+1]}.

Th
for

at is, by using the corresponding 2k automata (FAj, FA, - -, FAg), M(2(k + 1)) simulates the action of M(2k)
checking whether the symbol just under the i-th 1 in the first row is 1 when an input tape y with 2 rows and m

columns such that y[(1, 1), (1, m)], y[(2,1),(2,m)] € R(s2495)(m) is presented to M(2k), while FAy ;1 and FAypys
are idle, and move in the same way as FAgy. If this verification is successful, then goto 2. Otherwise M(2(k + 1))

rejects z.
2. (a) Inductive hypothesis implies that hy, hg, -, hxy1 simultaneously reach p)(drs1 [k + 1]) at some time e,
and hk+2, hk+3, ey h2k+2 reach Pl(dkﬂ[k + 1]) at time ti-!—l — 1. Then FA]H—I moves hk+1 to the Iight

(b

from p5(di1[k + 1]) to the position (denoted by pa(dr+1[k + 1] + 1)) of the next symbol 1 at speed 1/(n* +
n*=1 4 .. 4 n 4+ 1), from po(d4a[k + 1] + 1) to the position (denoted by p2(di41k + 1] + 2)) of the next
symbol 1 at speed 1/(nF~1 + nF~2 4 ... 4 n 4 1), .-+, from pa(dx41[k + 1] + k) to the position (denoted by
pa(draalk + 1] + k + 1)) of the next symbol 1 at speed 1, and from py(di41[k + 1]+ k + 1) to the position
(denoted by pa(di41[k + 1] + k + 2) = pa(di41[k + 2])) of the next symbol 1 at speed 1/2 if there really exist
at least k + 2 1’s to the right hand of p4(di41[k + 1]), where n = 2(m + 2). Moreover, hy, hg, ---, hgy Teach
p2(dr+alk + 2]) at the same time if it realy exists. For otherwise, M (2(k + 1)) rejects z. FApyq may do this
with FA1, FAg, ---, FAg.

Note that FAj 1 can move hxy; at speed 1/(n* +n""1 4 ... 4 n + 1) for any i < k by means of FAq, FA,, -+,
FAj. For example, suppose that hy and hj41 reach some cell z(2,7) at the same time, and then FAg4: (FA,)
moves hy41 (k1) to the neighbor cell just when h; meets Ay again after FA; moved h; one cycle of the second
row (2(m + 2) cells) at speed 1. This makes hj41 move at speed 1/(n + 1) on #(2, ;).

FAg+2 moves hy4 to the right from pi(dii[k +1]) to pi(dr4alk + 1]+ 1) at speed 1/(n* +n*~1 ... 4 n 4 1),
from pi(d41[k+1]+1) to pi(disalk+1]+2) at speed 1/(n¥=1 4052 4. 404 1), -+, from py(dpsa[k+ 1]+ k)
to p1(di41[k+1]+k+1) at speed 1, and from py(diqa[k+1]+k+1) to pi(deqalk+ 1]+ k+2) = pr(dpsa[k+ 2])
at speed 1/2. Moreover, hgt2, Ak4s, -+, hor42 reach pi(di41[k+2]) simultaneously. This can be done by means
of FAry3, FAkts, - -+, FAgrqo. Then FAgys moves hyio down one cell at speed 1.

2

3. The time at which /5 reaches p5(dy.41[k+2]) is denoted by ¢, ,. M(2(k+1)) continues the computation on z if by,

ha,

<oy heqo Teach pa(di+1[k+2]) at time ¢F, (ie., ph(drsa[k+2]) = pa(drsa[k+2])), that is, if ha(tfys) = ha(tfy,) =

- = heg(tgg) = Po(disa[k +2]), and hrya(tfiy — 1) = higa(tfyg — 1) = -+ = hoppa( 45 — 1) = pr(dpaalk + 2)).
Otherwise M(2) rejects . Note that hy, hg, -, hxyo reach pa(dri1lk + 2]) at time ¥ ., if and only if

(a

) IdH’l[k+1] Flay e + o Lo 1]k
— 7 1
=l T o ol ks and

(b) Tapyypot) - n* +

(apupern] + lagg o) #5704 4
gy 1) + Lo eanjir + o+ Loy kijrn—1) -0+
lagpaPott] F lagyaerten + o F lap gy ek + 2l kat] k41
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(where !; denotes the distance from p;(3) to p1(i + 1), lldk+l[k+1] denotes the distance from ph(dx41[k + 1]) to the
p2(dr41lk +1]+1), and I;k+1[k+1]+l‘ denotes the distance from pa(dgi1[k+ 1]+ 1) to the pa(disq [k + 1] +4 + 1)), thus

Uiy o] = By et1p b1 = M ot 0 g Bobilbat = da okt
(This means that the symbol on p4(i) is 1 for each i € {dry1[k + 1] + 1, dpqa[k + 1] + 2, -, dpya[k + 2]}).

4. M(2(k + 1)) finally verifies in a similar way as M(2k) that the symbol on p4(z) is 1 for each i € {dpiq[k + 2] +
1,dkr1[k+ 21+ 2, -+, di1[2k + 2]}. That is, by using FA;, FA,, -+, FAy, FAy.s, FAgyy, -+, FAgpq, corresponding
to the 2k automata of M(2k), M(2(k + 1)) simulates the action of M (2k) for checking whether the symbol under
the j-th 1 in the first row is 1 for each j € {di[k] + 1, de[k] + 2,- - -, dx[2k]} when an input tape y with 2 rows and m
columns such that y[(1, 1), (1, m)], y[(2,1), (2, m)] € Rz yox)(m) is presented to M(2k), while FAzy; and FAzyy are
idle, and move in the same way as FAy. If this verification is successful, then goto 5. Otherwise M (2(k + 1)) rejects
T.

5. M(2(k+ 1)) accepts z if the number of 1’s in the second row is exactly k2 + 4k + 3. Otherwise M (2(k + 1)) rejects .

It is obvious that by inductive hypothesis the action of M(2(k + 1)) described above satisfies the required property. This
completes the proof of (2).

We now prove (3). Suppose that there is a CS-TR2-DFA(k — 1)* M (k — 1) =(FA1, FA,, ---, FAy_1) accepting T'(k(k —
1)/2 + 1). Let h; denote the input head of FA; for each i € {1,2,..-, k — 1}.

For each m > k(k —1)/2+ 1, let V(m) = {z € T(k(k - 1)/2 + 1) |l1(z) = I3(z) = m}, and for each permutation
o:{1,2,-++,k~1} — {1,2,--- ,k — 1}, let W;(m) be the set of all input tapes ¢ € V(m) such that during the accepting
computation of M(k — 1) on &, input heads ho(1), ko), ** s ho(k—1) leave the first row of & in this order.® Then there
must exist some permutation 7 such that

W (m)] > [V (m)|/(k — 1)! = Q(mb*-DI241) 1

For each £ € W;(m) and each 1 <4 < k — 1, let ¢,(;5(2), p-(5)(2) and t.;y(z) denote the internal state of FA(;), the
position of k,(;; and the time, respectively, when h.(;) leaves the first row during the accepting computation of M(k — 1)
on r.

For each z € W;(m), let
1(z) = (tr(2)(2) = tr2)(2)s tr(a)(2) — tr2) (%), - s tr(h—1)(2) = trr—2)(2)),

and
U(IB) = ((Q‘r(l)(z)7pr(l)(x))a to 7(Q7(k—l)(z):pr(k—l)(r))1 t(i(:)).
Clearly, for each 2 < i < k— 1, t,;5(2) = t,-1)(2) = O(mF~%), because otherwise FA,Gys -+ FA;(x—1) would enter a
loop on the first tow, and thus M(k — 1) would never accept z. So | {u(z) |z € W,(m)} |= O(m**~D/2). Therefore, it

follows that for large m
| Wo(m) |>] {u(z) |z € Wr(m)} |,

and so there exist two diffirent input tapes z,y € W (m) such that u(z) = u(y). Let z be the tape obtained from z
by replacing the second row of z with the second row of y. It follows that z is also accepted by M(k —1). This is a
contradiction, because z is not in T(k(k — 1)/2 + 1). This completes the proof of (3). m]

Theorem 6.2.2. g(2k? — 5k +4) > k, for k > 1.

Proof. The proof is very similar to that of (3) of Theorem 6.2.1. Suppose, to the contrary, that there is a CS-TR2-
NFA(k — 1)° M(k — 1) =(FAy, FAz, - -+, FAx_1) accepting T'(2k* — 5k + 4). Let k; denote the input head of FA; for each
i€{1,2,---,k—1}.

For each m > 2k? — 5k + 4, let V(m) = {z € T(2k? — 5k + 4) |l1(z) = () = m}. With each z € V(m), We associate
one fixed accepting computation, ¢(z), of M(k — 1) on z in which M(k — 1) operates in O(m2®=1) time. Furthermore,
for each permutation ¢ : {1,2,--+,k — 1} — {1,2,---,k — 1}, let W,(m) be the set of all input tapes z € V(m) such
that during c(z), input heads A, (1), ho(2), ** *» Po(k—1) leave the first row of z in this order.® Then there must exist some

permution 7 such that i
[W,(m)] > [V(m)|/(k — 1)! = Q(m* ~5k+),

3See footnote 1.
*For any finite set A, | A | denotes the number of elements of A.
5See footnote 1.
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For each ¢ € W,(m) and each 1 <i <k —1, let 4-()(%), Pr(i)(2) and ,¢;)(z) denote the internal state of FA (), the
position of h.(;y and the time, respectively, when h-(;y leaves the first row of z during c(z).
For each © € W.(m), let

12) = (tr@2){(®) = tr)(@), t(3)(2) ~ tr2)(2); -+ brrm1)(2) — trro2)(2)),
and
u(z) l ((Q’r(l)(r))pr(l)(z))v to 1(qf(k—l)(z)rp‘r(kﬁl)(z)): t(x))
Clearly, for each 2 < i < k=1, t,((2) = tr-1y(2) = O(m** ). So | {u(z) [z € W,(m)} |= O(m?** =543} Therefore,
it follows that for large m
[ Wr(m) |>] {u(z) lo € We(m)} |,

and so there exist two diffirent input tapes z,y € W,(m) such that u(z) = u(y). Let z be the tape obtained from z
by replacing the second row of ¢ with the second row of y. Clearly, from c(z) and c(y), we can construct an accepting
computation of M(k — 1) on z. This is a contradiction, because z is not in T(2k? — 5k + 4). This completes the proof of
the theorem. =}

From Theorems 6.2.1 and 6.2.2, we can get the following theorem.
Theorem 6.2.3. For each k¥ > 1 and each X€{D,N}, £L[CS-TR2-XFA(k)*]G£[CS-TR2-XFA(k + 1)°].

Proof. For each k > 1, let D(k) = max{n |f(n) = k} and N(k) = max{n |g(rn) = k}. From Theorem 6.2.1 (3) and
Theorem 6.2.2, we have
D(k) < k(k+1)/2 and N(k) < 2k* -k,

respectively.

For each Xe{D,N}, let M be a CS-TR2-XFA(k)* accepting T(X(k)). From M, we can easily construct a CS-TR2-
XFA(k +1)* M' which accepts T(X (k) +1). Thus T(X (k) + 1) € £[CS-TR2-XFA(k + 1)°]. From this and the fact that
T(X (k) +1) g£[CS-TR2-XFA(k)*], it follows that T(X (k) + 1) € £[CS-TR2-XFA(k + 1| £[CS-TR2-XFA(K)]. O

7. CONCLUSION
We conclude this paper by giving several open problems except the open problems stated in the previous section.
1. For each k > 2,
£[CS-2-DFA(k)°]G£[CS-2-NFA(k)*]?
Note that £[CS-2-DFA(1)*]G£[CS-2-NFA(1)*]. (See [1]).
2. For each k > 1, and each X€ {D,N},
.€[CS-TR2—XFA{0)(k)‘]g.ﬁ‘[CS-TRZ—XFA{O}(k +1)°],
where £[CS-TR2-XFA (k)] denote the class of sets of square tapes over a one-letter alphabet accepted by CS-
TR2-XFA(k)’s?
3. Forn > 4, g(n) < f(n)? (It is casy to show that for 1 < n < 3, g(n) = f(n).)
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