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Abstract

In this paper, we consider the problem of detecting an unknown target rectangle from a
given set of ezamples, i.e., a set of randomly generated points in the rectangle. One algorithm
is presented that yields a good approximation of a target rectangle with high probability from
polynomial number of examples.
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1 Introduction

In this paper, we consider the problem of detect-
ing an unknown target rectangle from a given
set of ezamples, i.e., a set of randomly gener-
ated points in the rectangle. One algorithm is
presented that yields a good approximation of a
target rectangle with high probability from poly-
nomial number of examples.

The above problem — Rectangle Detection
Problem — has been considered [Blu89] in rela-
tion to the PAC learnability of rectangles. For
example, there is an easy detecting algorithm
for axes-parallel rectangles [Blu89]. That is, for
any axes-parallel rectangle C, any ¢ > 0, and
any 6 > 0, if the algorithm is given more than
4/elog(4/6) randomly chosen examples, then

Pr {Er(H|C)< e} > 1-346,

examples

where H is the output of the algorithm.

On the other hand, the problem of detecting
rectangles in general has been left open. This
paper presents one simple algorithm, and show
that it works sufficiently well. That is, for any
rectangle C, any ¢ > 0, and any § > 0, if the
algorithm is given more than 4{(13/¢)*(log4 +
log(1/6))} randomly chosen examples, then

Pr {Er(H|C)<e} > 1-046,

examples

where H is the output of the algorithm.

2 Preliminaries

In this paper, we consider only polygons for
our object, and each polygon is denoted as
an ordered tuple of points in the plain. For
example, an ordered tuple of 4 points S =
(s1, 82, 83, 54) means a quadrangle with four
edges (s1, s2), (2, 83), (83, 84), and (84, 51). Each
polygon S is also considered as the set of points

in S, and by S; U S, for example, we mean the
union of polygons of S; and S;. S; @ S, denotes
(81— 8)U(S— 51), and S C S; means that §;
is contained in S;. For any S, area(S) denotes
the area of S.

Throughout this paper, let C denote a tar-
get rectangle, 1.e., an unknown rectangle that is
a target of our detecting algorithm. Symbols
using C (such as C>™) always denote some
polygon related to C. In the algorithm (or in its
analysis), X is usually regarded as a set of ezx-
amples, i.e., a set of z;, 2y, ..., z, that are picked
up randomly from C. H usually denotes a rect-
angle computed by the algorithm.

3 Rectangle Detection Al-
gorithm

Here we present our rectangle detection algo-
rithm Agy. First we explain some functions used
in the algorithm.

Let X = {21, %,..,%,} be a given set of
points. Define CH(X) to be the convex hull
(51, 825 .-, Smy of X. Note that {s1, s3,..., s} C
{1, 22y ..., 7, } and m < n.

For any convex polygon S = (s, 5, ..., Sn)
(which is CH(X) in the algorithm), and any
1,1 < i < m, define R(S,7) to be the small-
est rectangle that contains S and has an edge

containing (s;, si+1)-

R(S,i)

Figure 1: R(S,1)

Finally define MR(S) to be (one of)
R(S,1) (1< i< m) with the smallest area.



Now the algorithm A is stated as follows:

algorithm Ay;

begin
input X; (* X ={a,2:,..,2.} *)
S « CH(X);
(* S = (51,82, Sm),m < 0 ¥)
H «— MR(S);
halt(H)
end.

Let us now analyze the time complexity of
Ap. Here we state only rough estimation (see
[Kaw93] for detail).

It is known [Gra72],[Jar72] that the convex
hull of given ! points is computable by O(!log ()
basic operations. By using their algorithm, we
can compute S = CH(X) in O(nlogn) steps.

It is not hard to show that R(S,1) is com-
putable by O(m) basic operations for each 7,1 <
i < m. Thus H = MR(S) is O(m?

computable.

) step
Therefore, we have the following

lemma.

Lemma 3.1. For a given X = {z,m, ..., 2.},
the algorithm Ag yields some output in O(n?)

basic operations.

Thus, roughly speaking, Ao runs in polyno-
mial time w.r.t. the number of examples.

4 Analysis of Algorithm

Here we show that Ag yields a rectangle that
is close to the target with high probability when
sufficiently (but still polynomial) number of ran-
domly chosen examples are given.

First we introduce basic notions and nota-
tions. Recall that C, X, and H denote a target
rectangle, a set of examples, and an output rect-
angle, respectively. For any ¢ > 0, we sé.y that
H is e-close to C if

Br(H|C) & det area(H @ C) <e
area(C)

where Er(H|C) is called the error of H w.r.t.
C. Our goal is to show that (if enough examples
are given) H obtained by Ay is e-close to C with
high probability. More Precisely, we show the
following theorem.

Theorem 4.1. Some polynomial pg exists such
that for any ¢ > 0, any 6,0 < § < 1, if
n > po(l/e,1/8) and X = {m,2,..., 2.} C C
is selected randomly, then

{ Ag yields H
Pr
Choice

. >1-6.
that is e-close to C
of X

(e
€™ B 1

—i check

A

(—a)b

Figure 2: Check Zone

For any ¢ > 0, each shadowed rectangle
in the figure 2 is called a check zone. Let
CS.(X) denote any one of polygons consisting
of four vertices of X each of which is from each
check zone.
CS(X) =1L

Our analysis goes by the following two steps:

If no such polygon exists, then

(1) first show that if n is sufficiently large, then
the probability that CS.(X) #.L is larger than
1 — 6, and then (2) show that if CS.(X) #1,
then H (computed by Ap) is e-close to C.

4.1 Analysis: step(1)

For any € and &, define po(1/¢,1/6) to be

P (% %) 4{(15) (log4 +log-2:) + 1}.
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Consider any € > 0 and any 6,0 < § < 1,
and fix them in the following discussion. Here
we show that if n > po(1/e,1/6) and 4, 25, ..., T,
are chosen randomly from C, then probability
that CS.(X) #.L is greater than 1 — 6.

First we prepare one combinatorial lemma
on the probability of a certain event. Consider
any probabilistic trial & where an event E oc-
curs with probability p. Let p:(n, p, ¢) be the
probability that E occurs at least ¢ times in n
independent trials of ®. Then we have

Pl('n, P, C)
n n . .
= X < ) ) pP(l—p) " (1)
Similarly, consider any probabilistic trial ®
where each one of exclusive events Fj, Eo, ..., E,
occurs with probability p. Let ps(n, p, ¢) be the
probability that each E;,1 < k < ¢, occurs at

least once in n independent trials of . Then
we have the following lemma.

Lemma 4.2. For any ¢ > 2,

p2(n,pyc) > pi([2],p,1)°
> 1-¢(l-p)lel,

Proof. Consider n independent trials of ®. For
each h,1 < h < ¢, let E] be the event that
E}, occurs at least once in ((h — 1)[ 2] + 1)-th
~ h|2]-th trials. Then clearly,

p2(n, p, ¢)

> Pr{E{ANE;A...AE}
Pr{E|}-Pr{E;}-...- Pr{E.}
(L2 p 1) @)

On the other hand, from (1) we have

L2 ¢
0= {5

= (1~ a)® (- binomial theorem)

\Y

> 1—cag

where, o; & ( L?J )pi(l —p)lel= o

1

Now we are ready to prove our goal of step

(1)-

Lemma 4.3. If n > py(1/€,1/6), and X =
{21, %2, ..., 2, } C C is chosen randomly, then the
probability that CS.(X) #.L is larger than 1—4.

Proof. From the definitions of CS.(X) and po,
it is not so hard to see that Pr{CS(X) #L.} =
p2(n, (¢/13)?,4). Thus,
Pr{CS.(X) #L}
\2
= :DZ (’I'L, (ﬁ) 74)

€\2 L3]
> 1—4{1—(ﬁ)} .

On the other hand, since n > po(1/¢,1/6), we

have )
n n 13 4
Sl>=—1>(= .
171> 3 1—(6)10% 3)

And, by Taylor’s expansion,
169 €\?
— — . 4
log fgg—a > (13) “)

Thus, from (3) and (4),

n log 4
f— > —_— e

L=

Therefore,

1 —4{1 . (l—eg)z}L

1l
>1-46.

4.2 Analysis: step(2)

Let any ¢ > 0 be fixed. We show that if
CS.(X) #.L, then Ay outputs H that is e-close
to C. First we define some sets. Let ¢S™2!
be the rectangle that has longer edges of length
(1—Z¢€)a and shorter edges of length (1 — Ze)b
and that is located in the center of C, where
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C %mall

check zone
— > —¢

Figure 3: ¢Small

a and b are length of respectively longer and
shorter edges.

Our analysis goes as follows: First we show
that if CS.(X) #.L, then CH(X) contains
¢Small that is, CH(X) is not so small subset
of C. Then we show that MR(CH(X)) (= H)
is not large either.

The first part of the above outline is the fol-
lowing lemma. (The proof is clear from defini-
tion, thus it is omitted.)

Lemma 4.4. Suppose that CS,(X) #L. Then,
¢omall ¢ ¢S(X)c CH(X)c C

Since H (= MR(CH(X))) clearly con-
tains CH(X), we know from the above lemma
that H contains a large part of C. Thus,
it suffices to show that MR(CH(X)) is not
too large compared with C. In the follow-
ing, instead of MR(CH(X)), we investigate
R(CH(X), 1) for one particular 4, and we show
that this R(CH(X),%) is close to C. Re-
call that MR(CH(X)) is the smallest among
R(CH(X),4%),1 < i < n; thus the fact that
(R(CH(X), %) is close to C (thus, not so large)
implies that MR(CH (X)) is of reasonable size.
R(CH(X), i) is a rectangle that contains a good
edge (s, 5i,+1) as a part of its edge.

Now let us discuss precisely. Consider one
edge of C, and let M be its center. Let AB be
the corresponding edge of CS™2!! (see the fig-
ure 4). Then, the edge of CH(X ) that intersects
AM or BM is called a check line.

Let s;s:41 be the check line of AM and s;s;41

M

check zone

A

L i

C

i N
B A L
V4 |_— CHX)
check line csmai
check zone ‘

Figure 4: Check Line

is the check line of BM. Then we have
P(AM) < ¢(si5it1) < p(s5541) < p(MB),

where, ¢(v) means the inclination of v. If fur-
thermore, s;5;41 (Tesp., s;5;+1) satisfies (s;5;:41
) < (AB) (resp., p(4B) < (5757%1)), then it
is called a good check line.

It is clear that there exists a check line on
each side of C. Then now let I and Iz be the
check line of AM and BM respectively. (Note
that there may be the case that one edge crosses
both AM and BM. On that case, we consider
that l4 is the same as Ig.)

Lemma 4.5. Suppose that CS.(X) #1. For
each side of C, there exists at least one good

check line on its side.

Proof. From the definition of a check line, we

know
P(AM) < p(la) < ¢(Ip) < @(MB).

Suppose (AM) < ¢(ix) < ¢(AB). Then Ly is
a good check line. Else then cp(A_é) < (p(a) <
go(l:;) < go(@), therefore Ip is a good check
line. O

We define a new type of rectangle. Let
ClLarg¢ be the rectangle that has edges that is
parallel to AM and that has apices of C on its
edges (refer to Figure 5).

Now we estimate the error of CESmall and
Clarge
A .
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C
CS‘mllI

Claroe

Figure 5: Cla'ge

Lemma 4.6.

{ (1) Er(C{ma") < e
(2) Br(Cl¥ee) < e

Proof. First we prove (1). From the definition
of ¢5mall e know

area(Cesma") ={1- 1—35)2 -area(C).
Then,
Small area( Co™2!) @ area(C)
Br(6) area{C)
1—-(1- Ze)?
= %e(l - &e)
—€
13

Figure 6: Er(Clrge)
Next we prove (2). Let us give a name to
points as figure 6. We know AMAF is similar
to AEJH. Then,

AF :FM = JH : HE
.. area(AEJH)

I
L
=
5

|
-

1 1 1
Zeb: (= — —e)a=
b (5~ 9e

1
4. area( AEJH)

-, Br(cleee) 2rea(0)

A

<ﬁ€

Let us introduce another error ratio.

def area(H @ Cesma“)

Er(H|C) area(C)

This ratio is called pseudo error of H. When
C is clear from the context, Er(H|C) and
Er(H|C) may be abbreviated as Er(H) and
Er(H).

Here we first analyze the pseudo error of

H (= MR(CH(X))).

Lemma 4.7. Suppose that CS.(X) #L. Then,
Er.(MR(CH(X))) < Er(Clge).

Proof. First we prove the following upper
bound.(5):

Er.(MR(CH(X))) < Er(R(CH(X), 1))

Here, 4 is a good check line of a longer
edge of C. Suppose that CS.(X) #.L.
Then we know C°™! < MR(CH(X)) and
¢Small © R(CH(X),%). Recall that the area
of MR(CH(X)) is the minimum among all the
area of R(CH(X),1) (1 < i < m). Thus,

area(MR(CH(X))) < area(R(CH(X), %))-

Hence, we have (5).

Next we define a new type of rectangle. Let
ER(CH(X), 1) be the rectangle that has apices
of C on its edges, and each of that edge is
parallel to the edge of R(CH(X),%). Clearly



ER(CH(X), 1) includes R(CH(X),%). Then

we have (6):

Br(R(CH(X),%)) < Er{ ER(CH(X), ).

1
K /i
T
leé-c\ M E

Y

//WB &?;Smxmo AW

Figure 7: ER(CH(X), %) and Claree

Now note the inclinations of ER(CH(X), %)
and CL2'€ As figure 7, EI, an edge of G218 is
parallel to AM. On the other hand, EK, an edge
of ER(CH(X), %), is parallel to a good check
line sy, 8;,+1. From the definition of a good check
line, we know w(ﬁl) < @(8i5i0+1)- Then go(ﬁ
) < <p(E7( ). Therefore the area of AFEIH is
larger than (or equal to) the area of AEKH.
Thus,

Er(ER(CH(X), %)) < Er(Cloreey,

From (5),(6), and the above, we have the lemma.
a

Now we can prove our goal of step (2).

Lemma 4.8. Suppose that CS.(X) #1. Then,
Er(MR(CH(X))) < e.

Proof.
Er(MR(CH(X)))
area( MR(CH(X)) @ C)
area(C iri;%?%ﬂ (X))
area( C)
+a,rea,(MR(CH(X)) - 0)
area(()
area(C — MR(CH(X)))
area(C)
a,rea.(C' _ CvéSmall)
W

< e (- lemma 4.6)

area(MR(CH(X)) — C)
area(C)
area(MR(CH (X)) — ¢Small)
area(C)

Er(MR(CH(X)))
Er,(C-g®) (- lemma 4.7)
ET( CeLarge) + ET(QSmaII)
(£ + )€ (. lemma 4.6)
- Er(MR(CH(X)))

< Eet(F+5)e

140

=m6<6

A

A

]

Theorem 4.1
Lemma 4.3 and lemma 4.8.

Clearly is derived from

5 Conclusion

In this paper, we present an algorithm A to
detect a general rectangle. That is, for any € >
0, any 6,0 < § < 1, and any rectangle C, if
n, the number of examples to the algorithm, is
larger than 4{(13/¢€)*(log 4+log(1/6))+1}, then
the following probability is guaranteed.

Pr {Er(H|C) <€} >1-4,

Sample Data

where H is the output of the algorithm A,.
This idea will be applied to a PAC learning

algorithm of general rectangles under the uni-

form distribution. (see [Kaw93] for detail).

Acknowledgment

I would thank to Prof. O.Watanabe for fruitful

discussion.

References

[Blu87] A. Blumer, A. Ehrenfeucht, D. Haus-
sler, and M.K. Warmuth, Occam’s Ra-
zor, Inform. Process. Lett. 24 (1987)
377-380.



[Bmém

[Yam91]

[Kaw93]

[Ker92]

[Gra72]

[Jar72)

A. Blummer, A. Ehrenfeucht, D. Haus-
sler, and M.K. Warmuth, Learnabil-
ity and Vapnik-Chervonekis dimen-
sion, J.ACM 36(4) (1989) 929—965.

M. Yamamoto, The equivalence be-
tween weak and strong learnability in
PAC learning, BS. Eng. Thesis. Dept.
Computer Science, Tokyo Institute of
Technology(1991).

S. Kawase, in preparation (1993).

W. Kern, Learning Convex Bodies un-
der Uniform Distribution, inform. Pro-
cess. Lett. 43 (1992) 35—39.

R.L. Graham, An Efficient Algorithm
for Determining the Convex Hull of
a Finite Planar Set, Inform. Process.
Lett. 1(1972) 132—133.

R.A. Jarvis, On the Identification of
the Convex Hull of a Finite Set of
Points in the Plane, Inform. Process.
Lett. 2 (1972) 18-21.

— 76—



