k組グラフ的次数列集合からk組グラフを構成する アルゴリズム

髙橋 昌也

爱知技術短期大学電子工学科

〒443 愛知県蒲郡市西迫町馬乗50-2

あらまし 本稿では、 $k \ge 2$ なる任意の整定数 k について、k 個の次数列 s_i : d_{i1} , d_{i2} , \cdots , d_{i+1} (1 $\le j \le k$) が与えられた時、次の(1)(2)について述べる。

- (1) $S = (s_1, s_2, \dots, s_k)$ が k 組グラフ的次数列集合であるための必要十分条件を示す。
- (2) その必要十分条件より、以下の ①~③ を充たすようなアルゴリズムを提案する。
 - \square S から、k組グラフ G=(V, E) を構成できるかどうかを判定する。

gent to year of the

- ② もし、そのようなk組グラフが構成できるなら、S はk組グラフ的次数列集合である。
- ③ 上記 ①② の時間複雑度が (k+V+²) である。ただし、|V+=∑^kj=1pj である。

和文キーワード k組グラフ,k組グラフ的次数列集合,必要十分条件,多項式時間アルゴリズム,データ構造

An Algorithm of Constructing a k-partite Graph from a k-partite Graphical Sequence Set

Masaya Takahashi

Department of Electronic Engineering, Aichi College of Technology

Nishihasama-cho, Gamagori-shi, Aichi-ken, 443 Japan

Abstract In this paper, when $k (\geq 2)$ degree sequences $s_i : d_{i1}, d_{i2}, \dots, d_{i,i_i}$, for every $j, 1 \leq j \leq k$, is given, discuss the following (1) and (2):

- (1) Find the necessary and sufficient condition C of a k-partite graphical sequence set $S = (s_1, s_2, \cdots, s_k)$.
 - (2) By the condition C, propose the algorithm satisfying the following (i) through (iii):
 - (i) Decide that whether a k-partite graph can be constructed from S.
 - (i i) If such the graph can be constructed then S is a k-partite graphical sequence set.
 - (iii) The time complexity is O $(k \mid V \mid^2)$, where $\mid V \mid = \sum_{k=1}^{k} p_k$.

英文 key words $\frac{\text{k-partite graph, k-partite graphical sequence set, necessary and sufficient condition, polynomial time algorithm, data structure}$

1. Introduction

The subject of this paper is the problem of finding an algorithm of constructing a k-partite graph from a k-partite graphical sequence set: "For a given integer constant k which satisfies $k \ge 2$, and, for k given non-negative integer sequences $s_1, s_2, \cdots, s_k, s_j$: $d_{j1}, d_{j2}, \cdots, d_{j,pj}$ ($p_j \ge 1$) for every $j, 1 \le j \le k$, if a k-partite graph $G = (V_1 \cup V_2 \cup \cdots \cup V_k, E)$ such that, for every $q, 1 \le q \le p_j$, the degree of v_{jq} is d_{jq} for every $j, 1 \le j \le k$, is constructed from the sequences, then $S = (s_1, s_2, \cdots, s_k)$ is a k-partite graphical sequence set ", where $V_j = \{v_{j1}, v_{j2}, \cdots, v_{j,pj}\}$ for every $j, 1 \le j \le k$. Set $x_j = \sum_{p \ne q = 1}^p d_{jq}$ for every $j, 1 \le j \le k$.

In this paper, show that the k-partite graph construction problem (k C-problem, for short) can be solved in polynomial time.

The problem of finding an algorithm of constructing a (multi) graph from a (multi) graphical sequence, is solved in [1][2][3][5]. In them, a polynomial time algorithm is given by Havel and Hakimi. The problem of finding an algorithm of constructing a bipartite multigraph from a bipartite multigraphical sequence set, is solved in [6]. In it, a linear time algorithm is given. The problem of finding an algorithm of constructing a k-partite multigraph from a k-partite multigraphical sequence set, is solved in [7]. In it, a linear time algorithm is given.

In this paper, for a given integer constant k which satisfies $k \ge 2$, an $O(k \mid V \mid^2)$ algorithm of solving the $k \setminus C$ -problem, is given, where $|V| = \sum_{k=1}^{k} p_k$.

In the following sections, the following (1) and (2) will be discussed:

- (1) Show a condition C such that a non-negative integer sequence set $S = (s_1, s_2, \dots, s_k)$ is a k-partite graphical sequence set if and only if C holds, where s_j : $d_{j,1}, d_{j,2}, \dots, d_{j,p_j}, p_j \ge 1$, for every j, $1 \le j \le k$.
- (2) By the condition C , propose an algorithm satisfying the following (i) through (iii):
- (i) Decide that whether a k-partite graph $G=(V_1\cup V_2\cup\cdots\cup V_k,\ E)$ such that $V_j=\{v_{j1},\ v_{j2},\ \cdots,\ v_{j,\,p\,j}\}$ for every $j,\ 1\leq j\leq k$, and such that, for every $q,\ 1\leq q\leq p_j$, the degree of v_{jq} is d_{jq} , can be constructed from $S=(s_1,\ s_2,\ \cdots,\ s_k)$,
- (i i) If such a k-partite graph can be constructed then $S=(s_1,\ s_2,\ \cdots,\ s_k)$ is a k-partite graphical sequence set, and
 - (iii) The time complexity of above (i) and (ii) is $O(k | V|^2)$.

2. Preliminaries

A graph G=(V,E) consists of a finite set of vertices V and finite set of edges E such that each element of E is an unordered pair of distinct elements of V: $E=\{(u,v)\mid u,v\in V\}$.

For a given integer constant k which satisfies $k \ge 2$, and a graph G = (V, E), G is called a k-partite graph if the following (1) through (3) are satisfied:

- $(1) V = V_1 \cup V_2 \cup \cdots \cup V_k,$
- (2) For any two integers h and j, $1 \le h \le k$, $1 \le j \le k$, $h \ne j$, $V_h \cap V_j = \Phi$ is

satisfied, and

(3) For any edge e = (u,v), if $u \in V_i$ then $v \notin V_i$ is satisfied, where $1 \le i \le k$.

For an edge e=(u,v), u (v, respectively) is <u>adjacent</u> to v (u), u (v) is <u>incident</u> to e, and e is incident to v (u). If u=v then the edge e is called a <u>self-loop</u>. For two edges $e_1=(u,v)$ and $e_2=(u',v')$, e_1 and e_2 are called <u>multiple edges</u> if and only if $e_1\neq e_2$, u=u' and v=v' hold. For a graph G, G is called a <u>simple graph</u> (<u>graph</u>, for short) if G contains no multiple edge and no self-loop. For a vertex $v\in V$, a number of edges being incident to v, is called a <u>degree</u> of v and it is denoted by $\underline{deg(v)}$.

A non-negative integer sequence set $S=(s_1,s_2,\cdots,s_k)$ is a k-partite graphical sequence set if, for every j, $1 \le j \le k$, all vertices of V_j can be labeled $v_{j,1}, v_{j,2}, \cdots, v_{j,p,j}$, such that the degree of $v_{j,q}$ is $d_{j,q}$ for every $q, 1 \le q \le p_j$, where s_j : $d_{j,1}, d_{j,2}, \cdots, d_{j,p,p,j}$, $p_j \ge 1$. Set $x_j = \sum_{p,p,q=1}^{p,p} d_{j,q}$ for every $j, 1 \le j \le k$.

3. Necessary and Sufficient Condition of a k-partite Graphical Sequence Set

In this section, discuss the condition C such that $S=(s_1,\,s_2,\,\cdots,\,s_k)$ is a k-partite graphical sequence set if and only if C holds, where s_i : $d_{j1},\,d_{j2},\,\cdots,\,d_{j+\rho\,j}$ $(p_j \ge 1,\,x_j \ge 1)$ for every $j,\,1 \le j \le k$, is a given non-negative integer sequence.

Let f: b_1 , b_2 , \cdots , b_p , be a sequence which is a result of sorting a sequence s: d_{11} , \cdots , $d_{1.p1}$, d_{21} , \cdots , $d_{2.p2}$, \cdots , d_{k1} , \cdots , $d_{k.pk}$, and which satisfies $b_1 \le b_2 \le \cdots \le b_p$, where $p = \sum_{k=1}^{k} b_j = 1$, $b_j =$

Make two sequences g_1 : u_1 , u_2 , \cdots , u_p , and g_2 : n_1 , n_2 , \cdots , n_p , satisfying the following: Assume that $b_r \leftarrow d_{j,h}$ ($1 \le r \le p$, $1 \le j \le k$, $1 \le h \le p_j$) holds by above sorting. Then, $u_r \leftarrow v_{j,h}$ and $n_r \leftarrow j$ are satisfied. Set $V = \{u_1, u_2, \cdots, u_p\}$ (i.e., set $V = V : \bigcup V_2 \bigcup \cdots \bigcup V_k$). Such the condition C is obtained by the following theorem.

Theorem 1. For every non-negative integer sequence s_j : d_{j1} , d_{j2} , \cdots , $d_{j,pj}$, $1 \le j \le k$, suppose that $d_{j1} \le d_{j2} \le \cdots \le d_{j,pj}$, that $p_j \ge 1$ and that $1 \le d_{j,pj} \le p - p_j$, and suppose that $u_p \in V_r$ for some r, $1 \le r \le k$, and that $x_1 \le x_2 \le \cdots \le x_k$, where $p = \sum_{j=1}^k p_j$. Then f: b_1 , b_2 , \cdots , b_p , is a k-partite graphical sequence (i.e., $S = (s_1, s_2, \cdots, s_k)$) is a k-partite graphical sequence set) if and only if f': b'_1 , b'_2 , \cdots , b'_{p-1} , is a k'-partite graphical sequence, where k' is an integer satisfying, k' = k - 1 if $p_r = 1$, k' = k otherwise, and f' is a sequence which is made by the following algorithm.

Algorithm A.

Begin

```
1. x \leftarrow \sum_{j=1}^{k} x_{j}; b'_{p} \leftarrow b_{p}; r \leftarrow n_{p};

2. For j=p-1, 1, -1 do begin

b'_{j} \leftarrow b_{j}; h \leftarrow n_{j};

If \{b'_{p}>0\} and \{h\neq r\} then begin

x' \leftarrow x-2; x'_{r} \leftarrow x_{r}-1; x'_{h} \leftarrow x_{h}-1;

z \leftarrow \min(r, h); q \leftarrow \max(r, h);

y \leftarrow \max(x'_{r}, x'_{h}, x_{1}, \dots, x_{z-1}, x_{z+1}, \dots, x_{q-1}, x_{q+1}, \dots, x_{k});

If \{y \leq x'-y\} then begin
```

In the following, show the proof of Theorem 1.

Suppose that f': b'_1 , b'_2 ,, b'_{p-1} , is a k'-partite graphical sequence. There is a k'-partite graph $G_1 = (V_1, E_1)$ such that $deg(u'_j) = b'_j$ holds for every j, $1 \le j \le p-1$.

Let G = (V, E) be a new k-partite graph having $V = V_1 \cup \{u_p\}$ and $E = E_1 \cup A$, where $A = \{(u_p, u'_j) \mid \text{ every } j \text{ satisfies } b'_j \neq b_j\}$.

For every vertex $u'_{j} \in G_{1}$, $1 \le j \le p-1$, assume that the label of u'_{j} is replaced to $u_{j} \in G$. Then, for G, $deg(u_{j}) = b_{j}$ is satisfied for every j, $1 \le j \le p$.

Hence f: b_1 , b_2 ,, b_p , is a k-partite graphical sequence.

Inversely, suppose that f: b_1 , b_2 , \cdots , b_p , is a k-partite graphical sequence. (i.e., suppose that there is a k-partite graph G such that $deg(u_j) = b_j$ holds for every j, $1 \le j \le p$.)

Assume that G contains a vertex $u\in V_q$ for some q, $1\leq q\leq k$, such that the following (1) and (2) are satisfied :

- (1) $deg(u) = b_p$, and
- (2) For every j satisfying $b'_{i} \neq b_{j}$, there is an edge $e = (u, u_{j})$.

Then a k"-partite graph G-u has a sequence $f':b'_1,b'_2,\cdots,b'_{p-1}$, and, therefore, f' is a k"-partite graphical sequence, where k" is an integer satisfying, k" = k-1 if $p_q = 1$, k" = k otherwise.

In the following, suppose that G does not contain a vertex $u \in V$ such that above (1) and (2) are satisfied. Then, for the vertex u_p , there are two sets of vertices U_1 and U_2 satisfying the following conditions (3) through (5):

- (3) For any vertex $u_i \in U_1$, $b'_j \neq b_j$ $(1 \le j \le p-1)$ is satisfied, and G does not have an edge (u_p, u_j) ,
- (4) For any vertex $u_i \in U_2$, $b'_i = b_i$ is satisfied, and G has an edge (u_p, u_i) , and (5) $\mid U_1 \mid = \mid U_2 \mid$ is satisfied.

Suppose that $w_1 \in V_h$ ($1 \le h \le k$, $h \ne r$) for any vertex $w_1 \in U_1$. For a vertex $w_2 \in U_2$, set $e_1 = (u_p, w_1)$ and $e_2 = (u_p, w_2)$. (It is clear that e_1 is not contained in G.) Since $deg(w_1) \ge deg(w_2)$, there is a vertex $v' \notin V_h$ such that there is an edge $e_3 = (w_1, v')$ and such that there is not an edge $e_4 = (w_2, v')$. Then the following [1] and [2] are discussed.

- [1] Assume that there is a vertex of $U_2 \cap V_h$. Let w_2 be any vertex of $U_2 \cap V_h$. Since $v' \notin V_h$, set $G' = G + \{e_1, e_4\} \{e_2, e_3\}$. Then G' is a k-partite graph and has a same sequence $f: b_1, b_2, \cdots, b_p$, of G.
- [2] Assume that there is not a vertex of $U_2 \cap V_h$. Let w_2 be any vertex of $U_2 \cap V_h$ ($1 \le n \le k$, $n \ne r$, $n \ne h$). Then the following (1) and (2) are discussed.
- (1) Assume that there is a vertex $v'\notin V_n$. Set $G'=G+\{e_1,\ e_4\}-\{e_2,\ e_3\}$. Then G' is a k-partite graph and has a same sequence f: $b_1,\ b_2,\ \cdots,\ b_p$, of G.
- (2) Assume that $v' \in V_n$ is satisfied for every vertex v', and that there is a vertex $w_3 \in U_2 \cap V_q$ ($1 \le q \le k$, $q \ne r$, $q \ne h$, $q \ne n$). Set $e_5 = (u_p, w_3)$, $e_6 = (w_3, v')$ and $G' = G + \{e_1, e_6\} \{e_3, e_5\}$. Then G' is a k-partite graph and has a same sequence f:

 b_1 , b_2 ,, b_p , of G.

(3) Assume that $v' \in V_n$ is satisfied for every vertex v', and that there is not a vertex of $U_2 \cap V_q$ for every q, $1 \le q \le k$, $q \ne h$, $q \ne n$. Then the following proposition is obtained.

<u>Proposition 1.</u> For every j, $1 \le j \le k$, let $B_j = \{(u_p, v^n) \mid v^n \in V_j\}$ be a set of edges in G, and $D_j = \{v^n \mid (u_p, v^n) \in G \text{ and } v^n \in V_j\}$ be a set of vertices in G. Set $t_j = 1$ $B_j \mid v_j \mid$

<u>Proof.</u> Since G is a k-partite graph, $z \le a$ is satisfied. Assume that z = a is satisfied. Let q be any integer satisfying $1 \le q \le k$, $q \ne h$ and $q \ne n$. Since $\|U_2 \cap V_q\| = \Phi$ holds, $b'_j \ne b_j$ holds for every vertex $u_j \in D_q$, $1 \le j \le p$. Similarly, $b'_j \ne b_j$ holds for every vertex $u_j \in D_n$, $1 \le j \le p$.

Set $D'_n = \{u_i \mid \text{every } j \text{ satisfies } b'_i \neq b_i \}$ and $t'_n = |D'_m|$ for every m, $1 \leq n \leq k$. Set $z' = x_n - t'_n$ and $a' = \sum_{j=1}^k (x_j - t'_j) + z'$. Then $t'_n \geq t_n$ holds and $t'_n \geq t_n$ holds for every q. If $t'_n > t_n$ holds or, for some q, $t'_q > t_n$ holds then $t'_n < t_n$ holds, and, therefore, z' > a' is satisfied, a contradiction. (Contradict the behavior of Algorithm A.) Thus $t'_n = t_n$ and $D'_n = D_n$ hold, and $t'_q = t_q$ and $D'_q = D_q$ hold for every q.

Thus any edge $e \in B_q$ can not removed and t_h can not be increased since z=a.

Hence, since $b'_j \neq b_j$ holds for every vertex $u_j \in D_h = D'_h$, $1 \le j \le p$, w_1 does not become a vertex of $U_1 \cap V_h$ by the behavior of Algorithm A, a contradiction.

Hence z < a is satisfied.

Q. E. D.

By Proposition 1, there is an edge $e'=(w'_1,w'_2)$ such that $w'_1\notin V_0$, $w'_2\notin V_0$, $w'_1\neq u_0$ and $w'_2\neq u_0$ hold. Set $e_4=(w_2,w'_1)$, $e_5=(v',w'_2)$ and $G'=G+\{e_1,e_4,e_5\}-\{e_2,e_3,e'\}$. Then G' is a k-partite graph and has a same sequence f: b_1 , b_2 , \cdots , b_n , of G.

By repeating above operation [1] and [2] until | U $_1$ | = | U $_2$ | = 0, a k-partite graph containing the vertex $u_p \in V$ such that the following condition is satisfied, can be obtained: For every j satisfying $b'_{ij} \neq b_{j}$, there is an edge $e = (u_p, u_j)$.

Then a k'-partite graph $G-u_0$ has a sequence set f': b'_1 , b'_2 ,, b'_{p-1} , and, therefore, f' is a k'-partite graphical sequence.

By above discussion, Theorem 1 has been proved.

4. Data Structure and Algorithm

By Theorem 1, an algorithm of solving the k C-problem, can be obtained directly. In this section, such an algorithm is discussed.

4.1 <u>Data Structure</u>

Use two linked lists H_1 and H_2 . Their data structures are the following (1) and (2):

- (1) $\,$ H $_2$ represents the vertex u_{ρ} , and H $_1$ represents a set of vertices $\,$ V $\{u_{\nu}$
- (2) The nodes in the linked lists have the form [VTX, DEG, BLG, LINK], where VTX is a vertex number, DEG is a current degree of the vertex, BLG is a set of vertices V; containing the vertex $(1 \le j \le k)$ and LINK is a pointer field.

For every n, $1 \le n \le 2$, use an array L S T n containing p-1 listheads. Their data structures are the following (1) and (2):

- (1) There are p-1 listheads. Each listhead represents a degree of vertices of $V \{u_p\}$. For every r, $1 \le r \le p-1$, r-th element of the array indicates a node which represents a vertex v with deg(v) = r.
 - (2) The nodes in the linked lists are the same of the form of $H_{\,1}$ and $H_{\,2}$.

For example, suppose that s_1 : 1, 3, that s_2 : 2, 2, that s_3 : 1, 2, 2, 3, that $V_1=\{v_{11},\,v_{12}\}$, that $V_2=\{v_{21},\,v_{22},\,v_{23}\}$ and that $V_3=\{v_{31},\,v_{32},\,v_{33},\,v_{34}\}$. Then three sequences f: 1, 1, 2, 2, 2, 2, 2, 3, 3, g_1 : v_{31} , v_{11} , v_{32} , v_{33} , v_{21} , v_{22} , v_{23} , v_{34} , v_{12} , and g_2 : 3, 1, 3, 3, 2, 2, 2, 3, 1, are obtained. The data structures are the following.

```
\begin{array}{c} H_{1} \ [\rightarrow] \ \rightarrow \ [v_{34}, \ 3, \ 3, \ \rightarrow] \ \rightarrow \ [v_{23}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \ [v_{22}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \ [v_{21}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \\ \ \rightarrow \ [v_{33}, \ 2, \ 3, \ \rightarrow] \ \rightarrow \ [v_{32}, \ 2, \ 3, \ \rightarrow] \ \rightarrow \ [v_{11}, \ 1, \ 1, \ \rightarrow] \ \rightarrow \ [v_{31}, \ 1, \ 3, \ \Lambda] \\ H_{2} \ [\rightarrow] \ \rightarrow \ [v_{12}, \ 3, \ 1, \ \Lambda] \\ L \ S \ T_{1} \ : \ 1 \ [\rightarrow] \ \rightarrow \ [v_{11}, \ 1, \ 1, \ \rightarrow] \ \rightarrow \ [v_{31}, \ 1, \ 3, \ \Lambda] \ , \ 3 \ [\rightarrow] \ \rightarrow \ [v_{34}, \ 3, \ 3, \ \Lambda] \ , \\ \ 2 \ [\rightarrow] \ \rightarrow \ [v_{23}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \ [v_{22}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \ [v_{21}, \ 2, \ 2, \ \rightarrow] \ \rightarrow \\ \ \rightarrow \ [v_{33}, \ 2, \ 3, \ \rightarrow] \ \rightarrow \ [v_{32}, \ 2, \ 3, \ \Lambda] \ , \end{array}
```

 $4 [\Lambda]$, $5 [\Lambda]$, $6 [\Lambda]$, $7 [\Lambda]$, $8 [\Lambda]$, where p=9.

In the following of this paper, for every j, $1 \le j \le 2$, a pointer of a listhead of H_j is denoted by $\underline{POINT(H_j)}$, and an r-th listhead of $L S T_n$ is denoted by $\underline{POINT_n(r)}$ ($1 \le n \le 2$). For every j, $1 \le j \le k$, V T X of a vertex $v_{j,q}$ ($1 \le q \le p_j$) is denoted by $\underline{VTX(v_{j,q})}$, D E G of a vertex $v_{j,q}$ is denoted by $\underline{DEG(v_{j,q})}$, B L G of a vertex $v_{j,q}$ is denoted by $\underline{BLG(v_{j,q})}$, and L I N K of a vertex $v_{j,q}$ is denoted by $\underline{LINK(v_{j,q})}$.

4.2 Algorithm

In this section, discuss the algorithm of solving the $k \, C$ -problem. The algorithm is the following.

Algorithm kGC.

Begin

- 1. perform Procedure Prep; If (status≠0) then go to Step 5;
- 2. perform Procedure Settle;
- 3. while $\{POINT(H_2) \neq \Lambda\}$ do begin

 $u \leftarrow POINT(H_2)$; perform Procedure Edgadd;

<u>If</u> {status≠0} <u>then</u> <u>go to</u> Step 5 ; perform Procedure Settle <u>end</u> ;

4. f: b_1 , b_2 , ..., b_p , is a k-partite graphical sequence and G is a k-partite graph with, for every j, $1 \le j \le p$, $deg(u_j) = b_j$; halt;

```
5. f:b_1, b_2, \dots, b_p, is not a k-partite graphical sequence
      End. (Algorithm k G C terminates.)
      Procedure Prep.
      Begin
 1. status \leftarrow 0; POINT(H<sub>1</sub>) \leftarrow \Lambda; Make three sequences f, g<sub>1</sub> and g<sub>2</sub>;
 2. For j=1, p-1 do POINT_n(j) \leftarrow \Lambda for every n, 1 \le n \le 2;
        For j=1, k 	ext{ do } x_i \leftarrow \sum_{j=1}^{p_j} d_{jq};
        For j=1, p do begin
          If \{b_i \ge p\} then go to Step 8
        x \leftarrow \sum_{j=1}^{k} x_j ; z_1 \leftarrow x - x_k ;
 5. If \{x \text{ is an odd number}\} or \{x_k>z_1\} then go to Step 8;
 6. G \leftarrow G = (V, E), where E = \Phi;
 7. For j=1, p do begin
           If \{b_i > 0\} then begin
             LINK(u_i) \leftarrow POINT<sub>1</sub>(b_i); DEG(u_i) \leftarrow b_i; VTX(u_i) \leftarrow u_i; BLG(u_i) \leftarrow n_i;
             POINT_1(b_j) \leftarrow VTX(u_j)  end
                                                       end; halt;
      status ← 1:
     End. (Procedure Prep terminates.)
     Procedure Edgadd.
     Begin
 1. status \leftarrow 0;
 2. while \{POINT(H_1) \neq \Lambda\} do begin
           v \leftarrow POINT(H_1); POINT(H_1) \leftarrow LINK(v); r \leftarrow DEG(v); LINK(v) \leftarrow POINT_1(r);
           POINT_1(r) \leftarrow VTX(v)
                                        end;
3. For j=p-1, 1, -1 do begin
           while \{POINT_1(j) \neq \Lambda\} do begin
             v \leftarrow POINT_1(j); r \leftarrow BLG(u); h \leftarrow BLG(v);
             \underline{\text{If}} \quad \{h = r\} \quad \underline{\text{then}} \quad j' \leftarrow j
             else begin
                x' \leftarrow x-2; x'_r \leftarrow x_r-1; x'_h \leftarrow x_h-1;
                z \leftarrow \min(r, h); q \leftarrow \max(r, h);
                y \leftarrow max(x'_r, x'_h, x_1, \cdots, x_{z-1}, x_{z+1}, \cdots, x_{q-1}, x_{q+1}, \cdots, x_k);
               If \{y > x' - y\} then j' \leftarrow j
               else begin
                  G \leftarrow G + e, where e = (VTX(u), VTX(v)); DEG(u) \leftarrow DEG(u) - 1;
                  DEG(v) \leftarrow DEG(v) - 1; x \leftarrow x'; x_r \leftarrow x'_r; x_h \leftarrow x'_h;
                  j' \leftarrow j-1
                                    end
                                              end :
             POINT_1(j) \leftarrow LINK(v);
             \underline{\text{If}} {DEG(v)>0} \underline{\text{then begin}}
               LINK(v) \leftarrow POINT<sub>2</sub>(j'); POINT<sub>2</sub>(j') \leftarrow VTX(v)
             If \{DEG(u) = 0\} then go to Step 5 end end;
4.
       If \{DEG(u)>0\} then status \leftarrow 1;
5.
```

halt

```
End. (Procedure Edgadd terminates.)
```

Procedure Settle.

Begin

1. For j=1, p-1 do begin

For n=1, 2 do begin

while $\{POINT_n(j) \neq \Lambda\}$ do begin

 $v \leftarrow POINT_n(j)$; $POINT_n(j) \leftarrow LINK(v)$; $LINK(v) \leftarrow POINT(H_1)$;

 $POINT(H_1) \leftarrow VTX(v)$ end end;

2. If $\{POINT(H_1) \neq \Lambda\}$ then begin

 $v \leftarrow POINT(H_1)$; $POINT(H_1) \leftarrow LINK(v)$; $LINK(v) \leftarrow \Lambda$; $POINT(H_2) \leftarrow VTX(v)$

<u>end</u>

End. (Procedure Settle terminates.)

Example. Set $d_{11}=1$, $d_{12}=3$, $d_{21}=2$, $d_{22}=2$, $d_{23}=2$, $d_{31}=1$, $d_{32}=2$, $d_{33}=2$ and $d_{34}=3$. Then the following [1] through [4] are obtained.

[1] By Step 1 and 2, f: 1, 1, 2, 2, 2, 2, 2, 3, 3, g_1 : v_{31} , v_{11} , v_{32} , v_{32} , v_{21} , v_{22} , v_{23} , v_{34} , v_{12} , g_2 : 3, 1, 3, 3, 2, 2, 2, 3, 1, and the following data structure are obtained.

 $H_2 [\rightarrow] \rightarrow [v_{34}, 3, 3, \Lambda]$

[2] By Step 3, three edges (v_{34},v_{12}) , (v_{34},v_{23}) , (v_{34},v_{22}) , and the following data structure are obtained.

```
LST<sub>1</sub>: 1 [\rightarrow] \rightarrow [v_{11}, 1, 1, 1, \rightarrow] \rightarrow [v_{31}, 1, 3, \Lambda], 3 [\Lambda], \cdots, 8 [\Lambda]
2 [\rightarrow] \rightarrow [v_{21}, 2, 2, \rightarrow] \rightarrow [v_{33}, 2, 3, \rightarrow] \rightarrow [v_{32}, 2, 3, \Lambda]
```

LST₂:
$$1 \rightarrow [v_{22}, 1, 2, \rightarrow] \rightarrow [v_{23}, 1, 2, \Lambda]$$
, $2 \rightarrow [v_{12}, 2, 1, \Lambda]$, $3 \land [\Lambda]$, \cdots , $8 \land [\Lambda]$

[3] Similarly, the following edges are obtained.

```
(1) (v_{12}, v_{21}), (v_{12}, v_{33})
```

(2) $(v_{32}, v_{11}), (v_{32}, v_{22})$

$$(3)$$
 (v_{31}, v_{23})

(4) (v_{21}, v_{33})

[4] Hence a final graph being shown in Fig.4.1, can be obtained.

A final graph G is a 3-partite graph (k=3) and G satisfies $deg(v_{11}) = 1$, $deg(v_{12}) = 3$, $deg(v_{21}) = 2$, $deg(v_{22}) = 2$, $deg(v_{23}) = 2$, $deg(v_{31}) = 1$, $deg(v_{32}) = 2$, $deg(v_{33}) = 2$ and $deg(v_{34}) = 3$.

5. Time complexity

In this section, discuss the time complexity of Algorithm $k \ G \ C$.

The time complexity of Procedure Prep is the following: Step 1 is $O(p \cdot \log_2 p)$, Step 4 is O(k) and Step 2, 3, 5 and 7 are O(|V|), where |V| = p. Thus the time complexity of Procedure Prep is $O(p \cdot \log_2 p)$.

The time complexity of Procedure Edgadd is the following: Step 2 is O(IVI)

and Step 3 is O (k \mid V \mid) . Thus the time complexity of Procedure E dgadd is O (k \cdot \mid V \mid) .

It is clear that the time complexity of Procedure Settle is O(+V+).

The time complexity of Algorithm k G C is the following: Step 1 is O $(p \cdot log_2 p)$, Step 2 is O (|V|) and, Step 3 is O $(k|V|^2)$ since Procedure Edgadd and Settle are performed at p-1 times. Hence the time complexity of Algorithm k G C is O $(k|V|^2)$.

6. Conclusion

In this paper, a k-partite graph construction algorithm which performs the following (1) through (4), has been obtained:

- (1) For a given sequence set $S=(s_1,s_2,\cdots,s_k)$, s_j : $d_{j\,1}$, $d_{j\,2}$, \cdots , $d_{j\,(p\,j)}$, for every j, $1\leq j\leq k$, decide that whether $\sum_{k=1}^{k-1} \sum_{j=1}^{k} x_j \geq x_k$ is satisfied, where $x_j = \sum_{p\,j} \sum_{q=1}^{k} d_{j\,q}$ for every j, $1\leq j\leq k$.
- (2) If $\Sigma^{k-1}_{j=1}x_j \ge x_k$ is satisfied then decide that whether a k-partite graph $G = (V_1 \cup V_2 \cup \cdots \cup V_k, E)$ such that $V_j = \{v_{j1}, v_{j2}, \cdots, v_{j,p_j}\}$ for every $j, 1 \le j \le k$, and such that, for every $q, 1 \le q \le p_j$, $deg(v_{jq}) = d_{jq}$ holds, can be constructed from $S = (s_1, s_2, \cdots, s_k)$, and
- (3) If such a k-partite graph can be constructed then $S=(s_1,\,s_2,\,\cdots,\,s_\nu)$ is a k-partite graphical sequence set.
- (4) The time complexity of above (1) through (3) is O (k | V | 2) , where | V | = $\sum_{j=1}^{k} p_j$.

I want to find an (approximation) algorithm of weighted version for further investigation.

References

- [1] P.Erdos and T.Gallai, Graphs with prescribed degrees of vertices (Hungarian), Mat, Lapok 11(1960), 264-274
- [2] S.L.Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, Journal of the Society for Industrial and Applied Mathematics, 10(1962), 496-506
- [3] V. Havel, A remark on the existence of finite graphs (Czech), Casopis Pest, Mat, 80(1955), 477-480
- [4] H.Frank and W.Chou, Connectivity considerations in the design of survivable networks, IEEE Trans. Circuit Theory, CT-17.(1970), 486-490
- [5] M.Behzad, G.Chartrand and L.Lesnik-Foster, "Graphs and Digraphs," Prindle, Weber and Schmidt, (1979)
- [6] M. Takahashi, An Algorithm of Constructing a Bipartite Graph from a Bipartite Graphical Sequence Set, Information Processing Society of Japan, Tech. Rep. 92-AL-27(1992), 31-38
 - [7] M. Takahashi, An Algorithm of Constructing a k-partite Multigraph from a k-

partite Multigraphical Sequence Set, Information Processing Society of Japan, Tech. Rep. 92-AL-28(1992), 17-24

Fig.4.1