Ty Xa 32—9
(1993 3 18)

BATHEOZSEICL 32 ERFRRRE 7L Y X L

AR EE
HEAZTHER

"TEECLERREARODEEERFSRAT AT) XLk RET 5, TAT)X4LATH, &
BREACETIBHMHN L 08T 3. 5. TRCOBHMO_LAIBORTERD, TOHE
FHE L. KiC, COMRCEIROTARBOBHENMA. COMOMALHHT 2, HEOHH
KR FLCERRTIGRBCHEEE B3, n 7~ FOMARA L T, PRERRIET S
eHEn+ 17— FLIrBEE Lk, ¥k, HHERR. n7—-FORFE20Y—-F/ 17—}
ORFEOGH LERECH I, TATI XAk, I—FarEa—2% ZAEROPECEHAHE
LCoEHICHLTEY, ChooHESOARBRECI 32X) 74 M ECHHTHS,

A Multiple-Precision Modular Multiplication Algorithm

with a Two-Way Splif Summation Process

Naofumi TAKAGI
Department of Information Science, Kyoto University
Kyoto 606-01, Japan
takagi@kuis.kyoto-u.ac.jp

A new algorithm for multiple-precision modular multiplication is proposed. In the algo-
rithm, we split the summation process of the ordinary multiple-precision multiplication into
two. We first add up the upper half part of the whole partial products, and then calculate the
residue of the sum. Next, we add the sum of the lower half part of the whole partial products
to the residue, and then calculate the residue of the total amount. We use a new efficient pro-
cedure for residue calculation. For an n-word modular multiplication, the algorithm requires
only (n+1)-word memory space for storing the intermediate result and requires about the
same number of operatjons as for an n-word multiplication and a 2n-word by n-word division.
The algorithm is fast and efficient for implementation on a small computer such as a card

computer, and is useful for adoption of public-key cryptosystem in such computer.

1 Introduction

With the spread use of card computers so-called smart cards which are the basis of prepaid cards, banking cards,
credit cards and so on, security on these computers increases its importance. Adopting public key cryptosystems,
such as RSA [1] and ElGamal [2], to card computers for the sake of security is attractive. In encryption and
decryption of such public key cryptosystems, modular multiplication with a large modulus (longer than 500-bit)
is the main operation. Therefore, developing a fast algorithm for multiple-precision modular multiplication which
requires small amount of memory space is the key to adopting a public key cryptosystem to card computers which
have small amount of main mermory.

Various algorithms for multiple-precision modular multiplication have been proposed. Most of them are classified
into two methods, i.e., "division-after-multiplication” and "division-during-multiplication”. In an n-word modular
multiplication by the former method, an ordinary n-word multiplication is carried out first and then a 2n-word by
n-word division for residue calculation is performed. In the latter method, each subtraction step for the division
for residue calculation is embedded in the repeated multiply-addition [3]. The former requires more amount of
memory space than the latter does, because it treats a 2n-word number [4]. On the other hand, in general, the
latter requires more addition/subtractions for residue calculation than the former does [5].

In this paper, we propose a new multiple-precision modular multiplication algorithm which is efficient for imple-
mentation on a very small computer such as a card computer. It is a completely new algorithm and belongs to
neither the division-after-multiplication method nor the division-during-multiplication method. It requires about
the same amount of memory space that the division-during-multiplication method does. At the same time, it
Tequires about the same number of addition/subtractions that the division-after-multiplication method does.

In the algorithm, we split the summation process of the ordinary multiple-precision multiplication into two. we
first add up the upper half part of the whole partial products, and then calculate the residue of the sum. Next, we
add the sum of the lower half part of the whole partial products to the residue, and then calculate the residue of
the total amount. We use a new efficient procedure for residue calculation. For an n-word modular multiplication,
our algorithm requires only (n+1)-word memory space for storing the intermediate result and requires about the
same number of operations as for an n-word multiplication and a 2n-word by n-word division.

In the next section, we give assumptions on our computation model and describe the notations to be used
through the paper. We show a new efficient procedure for residue calculation in Section 3, and propose a new

multiple-precision modular multiplication algorithm using it in Section 4. Section 5 is a conclusion.

2 Assumptions and Notations

We consider a modular multiplication of A x B mod N. We assume that the modulus N is an n-word number
and satisfies 7™ /2 < N < r™ where 7 is the radix of each word. (For example, when each word consists of 8 bits,
r = 2% = 256.) We assume 7 > 2n. (This assumption is very practical. For example, when the modulus is 512-bit
and r = 256, n = 64 and this assumption is satisfied.) The multiplicand 4 and the multiplier B are also n-word
numbers and satisfy 0 < 4,B < N.

The i-th word of N where: = 0, 1, ...,n—1is denoted by N;. Namely, N = E:‘:ol N;-r'. Similarly, A = Z?.—_—ol Aprt
and B= Y1) Bi-r'.

In the proposed algorithm, we represent intermediate result P which satisfies -N-r < P < N-r as an (n+1)-word
number with a sign ps. When ps is 0, P is positive and otherwise (i.e., ps is 1), P is negative. P is represented in
two’s complement form. Namely, P = —ps-7**1 + 3" P - i,

We assume that our computer has the following operations.

1. Addition/Subtraction

Adding two unsigned single-word operands with the content of the carry flag as carry-in, and obtaining
the unsigned single-word sum and the carry. The carry (overflow) is automatically set to the carry flag.

Subtraction is performed by addition with complementation of the subtrahend.
2. Complementation

Given a single-word operand, and obtaining its one’s complement. Z denotes the one’s complement of .

T=r-x-—1
3. Multiplication

Multiplying two unsigned single-word operands, and obtaining the unsigned double-word product. The upper
word and the lower word of the product of z and y are denoted by { - y)rign and (z - ¥)low, Tespectively.

4. Division
Dividing an unsigned double-word dividend by an unsigned single-word divisor, and obtaining the unsigned

single-word quotient and the unsigned single-word remainder. The dividend js assumed to be smaller than

r times the divisor. We refer to the quotient and the remainder of z/y as DIV(z,y) and REM(z,y),

respectively.

5. Comparison

Comparing a single-word number with another single-word number.

Note that an n-word addition/subtraction can be performed by n " Addition/Subtraction” operations.

When z and y are single-word numbers, z||y is the concatenation of z and y, i.e., the double-word number z-r+y.

3 A Residue Calculation Procedure

In our modular multiplication algorithm, we use a new efficient procedure, Function MOD(P, N}, for residue
calculation where N is the modulus satisfying v /2 < N < r” and P satisfies —-N -7 < P < N-r. P is represented
by n + 1 words with sign. MOD(P, N) satisfies MOD(P,N) =P (mod N)and -N < MOD(P,N) < N.

The function is as follows.

Function MOD(P,N)
(Arguments)

N (=) Ni-7*) (an n-word number, 7*/2 < N < 1)

P(=—=ps-r"*1 4+ 3 (P -7} (an (n+1)-word number with sign, -N .7 < P <N -7)
(Result) »

MOD(P,N) (an n-word number with sign, MOD(P,N)= P (mod N), ~-N < MOD(P,N) < N)
(Procedure)

Hps=0(/*P>0%*/)then do

begin

if P, =N, theng:=r—-1

else do

begin
G := DIV(P,||Pa=1, Nuz1)
rem := REM(P,||Pn-1, Na—y)

i (§+ Nue2)high —7em > [Ny_1/2] theng:=§—lelse g:=¢ '
end
end
else (/* P <0*/) do
begin
if P, = No_i theng:=7r—-1
else do
begin
§ = DIV(BPy||Pu=1, Nu-1)
rem 1= REM(P,||Pr-1, Nu-1)
if (¢ Nuwa)nigh —7em > [No1/2) then gi= g —1else gi=§
end
end

return P — (=1)?* -q- N . o

The function returns an n-word number with sign. The n-word is the lower n-word of the result of the final
addition /subtraction. We let the sign be 0 if the n-th word (the most significant word) of the result of the final
addition /subtraction is 0 and be 1 otherwise (i.e., the n-th word is r — 1).

In the function, we determine ¢ from only the most significant two words of P, i.e., P, and P,_;, and the most
significant two words of N, i.e., Np_1 and Ny _o.

The function can be performed by a couple of operations for determining ¢ and an (n+1)-word addition /subtraction.
The operations for determining ¢ at most includes two single-word complementations, two single-word comparisons,
one double-word by single-word division, one single-word multiplication, and two single-word subtractions. An
(n+1)-word addition/subtraction is performed by n+1 single-word addition /subtractions.

Restricting the range of P in [N .7, N-r) and keeping the residue in the range [~ N, N) make the determination
of g very simple and reduce the number of required operations.

We can prove the following lemma.

[Lemma 1]

MOD(P,N)=P (mod N)and —N < MOD(P,N) < N hold.
(Proof) A :

Since MOD(P,N) = P — (=1)?* - q- N for a certain integer ¢, MOD(P,N) = P (mod N) holds.

To prove —N < MOD(P, N) < N, we have to consider the following six cases. Hereafter, P' denotes the part of
P less than +*~! and N' denotes the part of N less than #*~2. Namely, P = —ps-r"+! 4+ P, 1™ 4+ Pry N
and N =N,y - "1 4 Ny_g- " 24+ N'.

Casel: P>0
Case 1-1: P, = Ny
g=7r~1
MOD(P,N)=P~(r—-1)-N
MOD(P,NY> Npoy - 1* = (1 = 1) N > r* 1 (Npey =7+ 1) > =N (1)
MOD(P,N)<N.r—=(r—-1)-N=N ' (2)

From (1) and (2), -N < MOD(P,N) < N holds.
Case 1-2: P, < N,_3
Note that P, -7+ Pu—y — G+ Np—y = rem and 0 < rem < Np_1.

Case 1-2a: (§ - Nu—2)high —7em < [Nn_1/2]

9=9

MOD(P,N)—_-P-—é-N:rem~T“'1+P'—lj-(N -2'1‘”"2+N’)

MOD(P,N) > (rem — (§- Nn—2)high — 2) - 7* 71 > =({Noo1 /2] +2) - 771 > =N (3)
MOD(P,N)<rem-r"" 1 +P' <N (4)

From (3) and (4), ~N < MOD(P,N) < N holds.
Case 1-2b: ((i . N,,,._g)h,‘gh —rem > I_N,._l/z_‘

g=§¢-1
MOD(P,N)=P—(§—1)-N=rem-r"" ' 4+ P' — G- (Ny—g - 7" 2+ N')+ N
MOD(P,N)> —§-(Nuca - ™ 24+ N)+N>—(r-1)- 7" 1 + N> -N (5)
MOD(P,N) < (rem — (§+ Nuwo)nign) ™ 1+ P' + N < (={Np=1/2) +1)- " 1+ N< N (6)
From (5) and (6), —-N < MOD(P,N) < N holds.

Case2: P<O

Case 2-1: P, = N,_,
g=r—-1
MOD(P,N)=P+(r—1)-N
MOD(P,N)y>-N-r+(r—1)-N=-N (7)
MOD(P,N) < =Np_1 1" +(r=1)-N<rm . (r=1=-N,_;)< N (8)

From (7) and (8), ~N < MOD(P, N) < N holds.
Case 2-2: P, < N,
Note that (r2 = P, -7 — Pac1 — 1) = §-Np—g =rem and 0 < rem < N,—1.
Case 2-2a: (§+ Nn—2)high —7em < [Np-1/2]
9=9 '
MOD(P,N)=P+§-N
= (= 4 Py £ Pyt 4 PY) 4G (Naoy -7 4 Ny - =2 4 N')
(=24 Pp-r+Paci+§ - Naoy) r" V4 P4 (Naop - 1724+ N')
=—(rem+1)- "1+ P 4§ (Ny—z- "2+ N')

MOD(P,N)> —(rem +1)- "~} > =N, _; 7"} > =N . (9)
MOD(P, N) = (—-'rem - 14 ((j - Nn_g)h;gh) Lyl + ((j . Nn—Z)low L2 + P!+ q- N’
< ([Nu-1/2]+2)- "1 <N (10)

From (9) and (10), —-N < MOD(P,N) < N holds.
Case 2-2b: (G- Nu—2)high — Tem > [Np—1/2]

g=4¢-1

MOD(P,N) =P+ (§=1)-N=—(rem+1)- 7" 4+ P' 4§+ (Npg- 7" 2+ N') = N

MOD(P,N) > (—rem — 1+ (¢ - Nu—2)high) - 7" "1 = N > ([No-1/2] = 1) -7 = N> -N (11)
MOD(P,N)< ="' 4+ P 4§ (Nolg ™ 24 N')-N<r™ -N<N (12)
From (11) and (12), —-N < MOD(P,N) < N holds.

Thus, in any case, —N < MOD(P,N) < N holds, and the lemma has been proven. m}

4 A Multiple-Precision Modular Multiplication Algorithm

In this section, we propose a novel efficient multiple-precision modular multiplication algorithm. In the algorithm,

we use the function stated in the previous section iteratively.

We first add up the upper half part of the whole partial products, and then calculate the residue of the sum
using Function MOD(P, N) iteratively. Next, we add the sum of the lower half part of the whole partial products
to the residue, and then calculate the residue of the total amount using Function MOD(P, N) again.

The algorithm is as follows.

Algorithm [MODMUL]}
(Inputs)
Modulus: N (= Y725 Ni-7*) (an n-word number, /2 < N < 1)
Multiplicand: 4 (= Y72 4i -7*) (an n-word number, 0 < A < N)
Multiplier: B (= E::ol B;-r') (an n-word number, 0 < B < N)
(Output)
Product: P (an n-word number, 0 < P < N, P=A x B (mod N))
(Algorithm)
Step 1: P:=3, .5, Ai-B;- piti—ntl
Step 2: P := MOD(P,N)
Step 3: for k:=n — 2 down to 0 do P := MOD(P - r,N)
Step 4: P:= P+ Zi+j<n-—l Ai-Bj -t
Step 5: P:= MOD(P,N)
Step 6: if P <0 then P:= P+ N [w}

Fig. 1 illustrates the outline of Algorithm [MODMUL).

ABj (i+j<n-1)-

NN

ABj (i+j3n-1)

Step1 }(Sum)

L

Step 2 l_(ﬁctm)

Step 3 I(MOD)

ﬂ——K\/

I
Step 4 —"'r' (Sum)
I T

Step 5 lil\:?D)
i

Step 6 ¢ (Correction)
I AxB mod N 1

Fig. 1 Outline of Algorithm [MODMUL]

In Step 1, we add up (A4; - 7*) - (B; - 7)'s such that i + 7 > n — 1. Namely, we add up the upper half part of
the whole partial products. Since 0 < E-’+j2n-1 A; - B;j- piti=ntl ¢ N.pr=n+l = N . r the obtained P satisfies
0LKP<N-r.

In Step 2, we calculate P mod N for P obtained in the previous step. The obtained P satisfies -V < P < N.
{Recall [Lemma 1}.)

In Step 3, we calculate P-7*~! mod N for P obtained in the previous step, by iterative calculation of P-r mod .
The obtained P satisfies —N < P < N. (Again, recall {Lemma 1].)

Through Steps 2 and 3, the residue of the sum of the upper half part is calculated. P obtained in Step 3 satisfies
P=Y 51 Ai+Bj- 7" (mod N)and -N < P < N. '

In Step 4, we add (A; - ') - (B; - v)’s such that i +j < n — 1 to the result of the previous step. Namely, we
add the sum of the lower half part of the whole partial products to the result of the previous step. The obtained
P satisfies P =y A; - B - #+i (mod N). Namely, P is equivalent to the product of A and B with respect to
modulo N. Since 0 < 35, ., Ai- Bj- 7+ < (n—1)-7" and we have assumed N > r*/2 and r > 2n, P satisfies
-N<P<N-r.

In Step 5, we calculate P mod N for P obtained in the previous step. The obtained P satisfies P = 3 A;- Bj-r*J
(mod N) and —N < P < N. (Again, recall [Lemma 1].)

In Step 6, we add N to the result of the previous step if it is negative. The obtained P satisfies P =) A;- B; L
(mod N)and 0 < P < N.

Thus, the following theorem holds.

[Theorem 1]

Algorithm [MODMUL] performs n-word modular multiplication. Namely, the obtained P satisfies P = A x B
{mod N)and 0 < P < N. a

Through Algorithm [MODMULYJ, we require only (n+1)-word memory space for storing the intermediate result.
This is about the same as that required by the division-during-multiplication method and is much smaller than
that required by the division-after-multiplication method which is about 2n-word.

In Step 1, we require n(n +1)/2 single-word multiplications for generating double-word partial products, A, - B;’s
fori+j > n ~1, and n? 4 2n — 2 single-word additions for adding up them in an adequate order. (Note that we
may use only (n+1)-words for the intermediate result.) In Step 4, we require (n — 1)n /2 single-word multiplications
for generating double-word partial products, 4; - B;j's for i + j < n — 1, and n2 + 2n — 5 single-word additions for
adding them to the result of Step 3 in an adequate order. The number of operations required in Steps 1 and 4 in
total is about the same as that required for an n-word multiplication.

In Steps 2, 3 and 5, Function MOD(P, N) is evaluated n + 1 times. (Note that we need no computation for
obtaining P-7.) The number of operations in these steps in total is about the same as that required for a 2n-word
by n-word division.

Thus, the number of operations required by Algorithm [MODMUL] is about the same as that required for the

division-after-multiplication method, and is much fewer than that required for the division-during-multiplication

method.

5 Conclusion

We have proposed a new multiple-precision modular multiplication algorithm. It is efficient for implementation

on a very small computer such as a card computer.

In the algorithm, we first add up the upper half part of the whole partial products, and then calculate the residue
of the sum. Next, we add the sum of the lower half part of the whole partial products to the residue, and then
calculate the residue of the total amount. We use a new efficient procedure for residue calculation. For an n-word
modular multiplication, our algorithm requires only (n-+1)-word memory space for storing the intermediate result
and requires about the same number of operations as that required for an n-word multiplication and a 2n-word by n-
word division. The proposed algorithm achieves high-speed computation and small amount of memory requirement

at the same time. The procedure for residue calculation used in the algorithm itself is also very interesting.

References

[1] R.L.Rivest, A.Shamir and L.Adleman: ”A method for obtaining digital signatures and public-key cryptosys-
tems”, Commun. ACM, vol.21, no.2, pp.120-126, Feb. 1978.

[2] T.ElGamal: " A public key cryptosystem and a signature scheme based on discrete logarithms”, IEEE Trans.
Information Theory, vol.IT-31, no.4, pp.469-472, July 1985.

[3] E.F.Brickell: "A fast modular multiplication algorithm with application to two key cryptography”, D.Chaum
et al Eds., Advances in Cryptology, Proceedings of CRYPTO 82', pp.51-60, Plenum Press, New York, 1983.
[4] H-Morita: "A fast modular-multiplication algorithm based on a higher radix”, Lecture Notes in Computer

Science, vol.435, G.Brassard Ed., 'Advances in Cryptology - CRYPTO’89 Proceedings’, pp.387-399, Springer-
Verlag, 1990.

[5] A.Vandemeulebroecke, E.Vanzieleghem, T.Denayer and P.G.A.Jespers: ”A new carry-iree division algorithm
and its application to a single-chip 1024-b RSA processor”, IEEE J. Solid-State Circuits, vol.25, no.3, June
1990.

