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So far, backtrack technique has been used to solve various problems of

generating combinatorial objects.

However, in order to obtain solutions effi-

ciently, we need to make efforts to find out suitable data structures according

to each problenm. In this paper

written briefly by using Boolean functions.

we show many combinatorial problems can be
As an example, we will examine in

detail the problem of generating all the partitions of the set {1,2,...,n}.
The Boolean functions have been represented by a Binary Decision Diagram
( BDD ) and manipulated by an efficient BDD manipulator.



1. Introduction

So far, backtrack technique has been used to solve various problems of
generating combinatorial objects. However, in order to obtain the satisfying
solutions, we need to make efforts to find out suitable data structures accord-
ing to each combinatorial problem. On the other hand, it is relatively easy to
represent many combinatorial problems by using Boolean functions.

Recently, efficient Boolean function manipulators have been developed and
widely used[1][2][3]. Thus, in this paper, we will represent various combina-
torial problems by using Boolean functions. We have solved these problems effi-
ciently by using BDD manipulator on a Sun SPARC station 2 workstation(64MByte).

The following problems have been considered.
The BDDsize is defined as the number of nodes required to construct the BDD
representing combinatorial objects.

(1) The problem of generating all the r-permutations of the set {1,2,...,n}
with unlimited repetitions

An r-permutation of the set {1,2,...,n} ( r-permutation of n for
short ) with unlimited repetitions is defined as an ordered arrangement
of r of the set {1,2,...,n} with unlimited repetitions.

Example: all the 2-permutations of 4 with unlimited repetitions are

11,12,13,14,21,22,23,24,31,32,33,34,41,42, 43, 44.

Experimental results: n=10, r=100, solutions=10t2®, BDDsize=1800.

(2) The problem of generating all the r-permutations of n

Example: all the 2-permutations of 4 are
12:13,14,21,23,24,31, 32,34, 41, 42, 43.
Experimental results: n=10, r=10, solutions=3628800, BDDsize=16398.

(3) The problem of generating all the r-permutations of n with restrictions
on absolute positions

The derangement problem has been considered. An n-permutation of n
is said to be a derangement of n, if the number i does not appear in
ith position for 1=i=n.

Example: all the derangements of 4 are

2143, 4123,2413, 3142, 3412, 4312, 2341, 3421, 4321.

Experimental results: n=10, solutions=1334961, BDDsize=16104.

(4) The problem of generating all the r-permutations of n W|th restrictions
on relative positions

The problem of generating all the stack permutations of n has been
considered. A stack permutation of n is defined as an n-permutation
of n, pipz...pn, such that no subsequence pipipx« (1= i<j<k=n,

p; <pe<lpi) exists. The number of all the stack permutations of n is
2nCn/(n+1). This number is well known as the Catalan number.
Example: all the stack permutations of 4 are 1234,2134,1324,2314, 3214,

1243,2143,1342,1432,2341, 3241, 2431, 3421, 4321.

Experimental results: n=10, solutions=16796, BDDsize=10732.
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The problem of generating all the r-partitions of the set {1,2,...,n}
See Section 2.

The problem of generating all the r—éovers of the set {1,2,...,n}

We denote all subsets of the set {1,2,...,n} by Si=@(1<i<2"-1)
An r-cover of the set {1,2,...,n} ( r-cover of n for short ) is defined
as a collection of r subsets Six’siz’--~’Sir(1§5i1‘<i2<:~--<:i'§§2""1)

r
such that U $;, = {1.2,....n}, Si S, (Ti#=ix).
J=1 i i

Example: n=3,81={1},82=(2},S3={1, 2}, S4=(3}, Ss5={1, 3}, $6={2, 3}, $7={1,2, 3}
All the 1-cover of 3 is {S7}.
All the 2-covers of 3 are {Ss,Ss},{Ss,Ss},{S1, 86}, {Sz, 85}, {82,85},
{S3,S4}.
All the 3-covers of 3 are {Si,S2,S84}, {Sz,Ss5,86).
Experimental results: n=6, r=10, solutions=1067759, BDDsize=103417.

The problem of generating all the increasing k-subsequences

We assume that a sequence of n distinct positive integers 1,2,...,n
is given. An increasing k-subsequence of a sequence, aiaz...an, i$
defined as an increasing subsequence of a sequence of length k.
Experimental results: n=16, k=8, aiaz...an=12...n,

solutions=12870, BDDsize=79.

The problem of generating all the k-common substrings

We assume that a string is any finite sequence of elements from an
alphabet. Let u and v be a string.

A string w is called an k-common substring( k-CS for short ) of u
and v, if wis a substring of length k of both u and v. If k is the
maximum length, an k-CS is called a longest common subsequence( LCS for
short ).

Experimental results: u=abab...ab, |ul=12, v=abcabc...abc, |vi=12,
k=8, solutions=45, BDDsize=168.

The problem of generating all the partitions of an integer n

A partition of an integer is a division of the integer into positive
integral part, in which the order of these parts is not important.
Example: 5 different partitions for n=4, 4=3+1=2+2=2+1+1=1+1+1+1
Experimental results: n=30, solutions=5604, BDDsize=2541Q.

(10) The problem of generating all the r-addition chains of n

An addition chain of an integer n of length r ( r-addition chain
of n for short ) is a sequence of r+1 integers ae,a:,...,ar such that
(1) ae=1,a:=2,ar=n and (2) for each i, ai=a;+ax (1=jsk<i=r).
Experimental results: n=36, r=7, solutions=12, BDDsize=88.

We note that the length of an addition chain of n is equal to the
number of multiplications required to compute xo.



(11) The nxn nonattacking queens problem

This probiem is to find all the ways to place n queens on an nxn
chess board so that no two queens are attacking each other.
Experimental results: n=8, solutions=92, BDDsize=2373.

(12) The problem of generating'all the nXn Latin squares

An nxn Latin square ( Latin square of order n ) is defined as an
nxn arrangement of the numbers 1,2,3,...,n in such a way that no
number appears twice in the same row and in the same column.
Experimental results: n=5, solutions=56, BDDsize=1941.

(13) The probiem of generating all the balanced incomplete block designs

Let A={a1,az,...,av} be a set of v objects. An k-subset of A is a
subset containing k objects of the set A. A balanced incomplete block
design of A is defined as a collection of b k-subsets of A ( denoted by
Bi,Bz,...,B» and called the blocks ).

The b blocks satisfies the following conditions
(1) Each object appears in exactiy r of the b blocks.
(2) Every two objects appear simultaneously in exactly A of the
b blocks.
(3) k<v.
Example: b=10,v=6, r=5k=3, A=2. One solution is

Bi={a1,az,as), B2={a1,az,as}, Ba={a:1,az, as}, Ba={a1,as,as},

Bs={a:1,as,as), Bs={az,as,as}, B7={az,as,as}, Bs={az, a4, as},

Bs={as,as,as}, Bie={as,ds,as}.

Experimental results: b=10,v=6,r=5k=3, A =2, solutions=12, BDDsize=463.

(14) The problem of finding all the shortest paths

let N be a set of nodes-and E be a set of edges. We assume that an
undirected graph G=(N,E) where each edge has a weight 1 is given.
This problem is to find the shortest path length from node S ( a source
node ) to node D ( a destination node ) and obtain the actual paths.
The 4-cube has been considered and all paths from node S to D such that
Hamming distance between S and D is 4 are examined.
* Experimental results: solutions=24, BDDsize=260.

(15) The problem of findingvall Hamilton cycles

We assume that an undirected graph G=(N,E) is given. This problem is
to find all cycles, if the graph G has a cycle which passes through
each node exactly once ( for all nodes of the graph G ).

The 3-cube has been considered.
Experimental results: solutions=6, BDDsize=378.

(16) The problem of finding all the maximal matchings

A graph G=(N,E) is bipartite if there exisls two disjoint subsets
X and Y ( XUY=N,XNnY=¢) such that no node in a subset is adjacent to
nodes in the same subset. A matching in a bipartite graph is a subset
of E such that no two edges in the subset are incident with the same
node. A matching with the maximum number of edges in it is called a



maximal matching.
Experimental results: X={1,2,3,4,5,6}, Y={7,8,9,10,11,12},
E={(x,y)!for any x€X,ye€Y}, solutions=720, BDDsize=522.

(17) The problem of generating all the minimal dominating sets

We assume that an undirected graph G=(N,E) is given.
A set of nodes in an undirected graph G is called to be a dominating
set if every node not in the set is adjacent to one or more nodes in
the set. A minimal dominating set is a dominating set such that no
proper subset of it is also a dominating set
The 4-cube has been examined.
Experimental results: solutions=40, BDDsize=174.

(18) The problem of generating all the maximal independent sets

We assume that an undirected graph G={N,E) is given.
A set of nodes in an undirected graph G is called to be an independent
set of no two nodes in it are adjacent. A set is dependent if at least
two of the nodes in it is adjacent. A maximal independent set is an
independent set which becomes dependent when any node is added to the
set. The 4-cube has been examined.
Experimental results: solutions=2, BDDsize=30.

This paper is organized as follows: Section 2 describes the problem of
generating all the r-partitions of n. Section 3 concludes the paper.
2. The problem of generating all the r-partitions of n

An r-partition of n is defined as a subdivision of all elements in the set

{1,2,...,n} into r disjoint subsets $1,Sz,...,5-. In this section, we consider
the problem of generating all the r-partitions of n.
r
SiNS;=@(i+j), Si=PUsi<r), USi={1,2,...,n}.
i=1

Therefore, for n=4, we havé the following 15 partitions:

All the 1-partition of 4 is {1,2,3,4}.

All the 2-partitions of 4 are {1,2,3}{4},{1,2, 4}{3} {1,2}{3,4},{1,3,4}{2},
{1,33{2,43,(1,43{2,3}, {1}{2,3, 4}.

All the 3-partitions of 4 are {1,23{3}{4},{1,3}{23{4}, (12, 3}{4},
{1,43(23{3), {131{2,43{3}, (1 H{2}{3,4}.

All the 4-partition of 4 is {1}{2}{3}{4}. -

It is well known that the number of all the r-partitions of n is the
Stirling number of the second kind, S(n,r) (1=r<n).

;
S(n,r) = (= (-1)icCi(r-i)}) /1!
i=0



By the way, the (r+1)-partitions of n can be constructed from the
r-partitions of n.
we assume that an r- partltlon of n consists of r subsets Si,S2,..., Sr.

r-partitions of n+1.

Siu{n+1},82,83...,8
S1 SzU{ﬂ‘r‘l} S3, ..., Sr

31 32 Sz...,8-U{n+1}

By adding a singleton {n+1} to an r-partition of n, an (r+1)-partition of n+1 is
obtained.

$1,82,83...,8, {n+1}

Thus, all the r-partitions of n can be represented by a tree.

For example, Figure 2.1 shows a tree corresponding to all the r-partitions of n
( 1=n=4, 1=r=n).

(1.2,3.4)
(1,23 ——_ (12, 3)(a)
(1,2, 8}(3)
(1,2} (1,2)(3) - {1,23(3){4)
(1.3, 42}
é; (1.3}(2,8)
{1,3)(2) {1.3)(2}{4)
(1) (1,4)(2,3)
é (13(2,3.4)
{(1}2,3) (1)(2. 3}(4)
{13{2} {1,43{2}{3}
(1)(2, 43}
(142}3,4)
(1H21(3) (1{2)(3)(4)

Figure 2.1. A tree corresponding to all the r- partltnons of n
(1=n=4,1=51=n ).

Now, we will derive the Boolean function representing all the r-partitions
of n. We define Boolean variables xi.; ( 1<i<n, 1=j=min(i, r’) ) as follows.

Xi.i = 1, if the number i is included Xi,j 81 82 ... &
in the subset S;. s
0, if the number i is not included 1. O
in the subset S;. 2: OO

3: OQOag
We note that there are nr-r(r-1)/2 variables. rr OdOgg
r+1: OO QO4d
n: OOQO3d



For example, for n=4 and r=3, the solution satisfying the equation

X1.,1X2.1,X2,2X3,1X3,2X3.3X4,1Xa.2X4.3=1 |§ X1.1=1,X2,1=0, X2, 2=1,X3.1=1, X3, 2=0,

X3.3=0,Xa, 1=0,Xs,2=0,Xs.3=1. This means that the number 1 and 3 are included in

S1, the number 2 is included in S= and the number 4 is included in Ss. Thus, the
above equation represents the 3-partition of 4, {1,3}{2}{4}.

Generally, the Boolean function representing all the r-partition of n js
obtained as follows.

[Condi tion 1]

In an r-partition of n, the number i is contained in the subset S;, that is
, one of the subsets $1,8z,...,S-. This condition is described by Boolean
variables as follows.

For any row i (1=i=n), one variable ina row i is assigned 1 and other
variables in a row i are assigned 0 among variables xi.; ( 1<j=min(i,r) ).
Thus, the Boolean formulas for this condition, A(i) ( 1=<i<n, m=min(i,r) ), are

A1) = 1.1 = 1

= Xi1Xi,2Xi, 3. .. Xi.m-1Xi.m + Xi,tXi.2Xi.3...Xi.n-1Xi.m + ... +

>

—_—

—
I

Xi.l;i.2;i.3...Xi.m~1Xi.m + Xi.iXi.eXi,3. .. Xi.m-1Xi.m = 1

[Condition 2]

In an r-partition of n, if the number i is included in the subset S;, then
at least one of the numbers 1,2,...,i-1 has to be included in the subset $;-1.
This condition is described by Boolean variables as follows.

If the variable xi.; is assigned 1, then at least one of the variables in a
column j-1, Xk.j-1 (j-1=k=i-1) is assigned 1.
Thus, the Boolean formulas for this condition, B(i,j) ( 2=j<r,j<i=n ), are

B(i,Jj) = ii.j + Xi-1.5-1 * Xj.j-1 + .., + Xi-1,5-1 =1

[Condition 3]

In an r-partition of n, at least one of the numbers r,r+1,...,n has to be
contained in the subset S-. This condition is described by Boolean variables as

follows.
At least one of the variables Xi.r (r<i<n) has to be assigned 1.
Thus, the Boolean formula for this condition, C(r), is

C(P) = Xror F Xe#lor ¥, Xn.r =1

From condition 1, condition 2 and condition 3, we can obtain the Boolean
function representing all the r-partitions of n.

n r n
(IL ACi)) - (@I TI B(i,j)) -C(r) =1
i=1 J=2 i=]
~39_



Experimental Results

For some n and r, we have computed S(n,r) and the number of nodes used to
construct the BDD representing all the r-partitions of n and measured the runn-
ing time required to construct the same BDD. The results are shown in Table 2.1.

n.or S(n,r) the number of nodes running time
20 10 0.59175x1013 1365 3.8
30 15 0.12879x 1023 4585 19.5
40 20 0.16218x 1033 10830 159. 4
50 25 0.74538x1043 21100 482.4

Table 2.1. S(n,r) and the number of nodes used to construct the BDD
representing all the r-partitions of n and the running
time required to construct the same BDD ( times in seconds )

3. Conclusion

We have considered various combinatorial problems represented by Boolean
functions. The problem of generating all the r-partitions of n has been examined
in detail. It is surprising that a large number of combinatorial obJects are

represented by the BDD having a small number of nodes.
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