7o FTY XA 32—4
(1993 3 18)

SHTHEBIEI I Xk S FH-ESF T oL ==) 2.
DR EE T

i #% — K
FKIAFE BEE
X B =

FHEAY I WHERIEH

S NHECTIE. nHNEEDSL r JMOBEREMYHTHAEDITNTE RIS 5 HREHA
BE anmdonRsgy2nkidlho IHDTNRTERET 2 REEE L HLAXEHWTEL,
SET. ThLORMBHRE _HREZ 57 (A Binary Decision Diagram, BDD) CEi#k
L. “HREY S 7 FEMICNETEBDD NNy 5 —Y 2> T . SHVWXEY TKE
WHAYDEESLSHICERTE LT LEFRT,

Combinatorial Algorithms

by Boolean Processing I

Ichiro Semba

College of General Education
Ibaraki University

Shuzo Yajima

Department of Information Science
Faculty of Engineering
Kyoto University

In this paper, we consider two combinatorial problems. One is the problem
of generating all the r-combinations of the set {1,2,...,n}. The other is the
problem of generating all the balanced parentheses sequences of length 2n.

The Boolean functions representing them are derived by using the recurrence
relation. The Boolean functions are described by a Binary Decision Diagram

(BDD). We have shown that a targe number of r-combinations of the set
{1,2,...,n) (balanced parentheses sequences of length 2n) are expressed with
smaller memory and computed at a high speed by the BDD manipulator.

1. Introduction

It is an important problem to manipulate Boolean functions efficiently in
such applications as forma! design verification, test generation and logic syn-
thesis and so on. Since the efficient manipulation and the representation of
Boolean functions are closely related, various representations of Boolean func-
tions have been proposed.

A Binary Decision Diagram(BDD) is a graph representation of Boolean func-
tions[11[2]. A Shared Binary Decision Diagram(SBDD) is an improvement of BDD[3]
They have excellent properties to realize efficient Boolean functions manipu-
lation. Now, BDD manipulators are implemented on workstations[3][4]{5] and

widely used.

We have considered two problems of generating fundamental combinatorial
objects. One is an r-combination of the set {1,2,...,n} (r-combination of n
for short). The other is a balanced parenteses sequence of length 2n
These generating algorithms are based on the recurrence relation.

An r-combination of n is defined as an unordered selection of r of the set
{1,2,...,n}. The number of all the r-combinations of n is well known as the
binomial coefficient, oCr=nt/(rt(n-r)}!). For example, all the 3-combinations of
5 are 123,124,125, 134,135, 145,234, 235, 245, 345.

A balanced parentheses sequence of length 2n, pipz...pzn, is defined as a
sequence of n right parentheses and n {eft parentheses such that the number of
left parentheses of pipa...px is greater or equal to the number of right paren-
theses of pipz...px for any k (1=k=2n). The number of all the balanced paren-
theses sequences of lfength 2n is shown to be 2nCn/(n+1), the Catalan number[6].
For example, all the balanced parentheses sequences of length 6 are ((())),

(000, 000),000.

In this paper, we propose the algoriothms generating these combinatorial
objects by using Boolean functions. We have implemented the programs. They are
written in C language and are executed efficiently by BDD manipuiator on a Sun
SPARC station 2 workstation(64MByte).

This paper is organized as follows: Section 2 describes BDD and SBDD.
Section 3 describes the algorithm generating all the r-combinations of n.
Section 4 describes the algorithm generating all .the balanced parentheses
sequences of length 2n. Section 5 concludes the paper.

2. A Binary Decision Diagram (BDD) and A Shared Binary Decision Diagram (SBDD)
We assume that a Boolean function with n variables xi1,Xz,...,%n is denoted
by f(xi1,X2,...,%:). When some variables xi of function f with n variables x1,xe,

...,%n is replaced by 0(1), the function f is called a restriction of f.
Using the Shannon expansion[7], a function f around variable x: is given by

if(xa, ..., Xi-1,1,Xi+1, ..., %Xn) +
if(xa, ..., Xi-1,0,Xi+1,...,%n)

Now, we will consider a graphical rcpresentatiqn of a Boolean function
f(X1,X2,...,%Xn).

A Binary Decision Tree (BDT) is a binary tree with two types of nodes,
terminal nodes and nonterminal nodes. Terminal nodes are labeled with 0 or 1.
Nonterminal nodes are labeled with one of the Boolean variables Xi,Xz,..., Xn.
Every nonterminal node has exactly two outgoing edges. They are labeled with 0
or 1 and called 0 edge or 1 edge respectively.

By repeating Shannon expansion to a Boolean function f(Xi,Xz,...,%n)
recursively, a BDT corresponding to f(x:1,X2,....Xa) is derived. We note that a
restriction of f is done according to exactly decreasing order of the index of
the variable. That is Xn,Xn-1,...,X2,X1.

The process of constructing a BDT is as follows.
We assume variables Xi+1,...,Xn have already determined 0 or 1. A node X is
labeled with xi and corresponded to a Boolean function f(Xi,Xz2,...,%i,...).

A child of the node x is labeled with xi-1 and corresponded to a Boolean func-
tion f(x1,x2,...,%Xi-1,0,...). An edge to the child is 0 edge. Another child of
the node x is also labeled with xi-1 and corresponded to a Boolean function f(x:
X2, ..., Xi-1,1,...). An edge to the child is 1 edge. When the variables xi,x2,..
.. Xn have already been determined and the value of f(xi,X2,...,xa) is 0(1), a
child of the node x is a terminal node with labeled 0(1). We note that the root
is labeled with x» and corresponded to a Boolean function f(Xi,X2,...,%n)

f(x1,X2,...,Xi-1,0,...) f(X1,%x2,...,Xi-1,1,...)
By the Shannon expansion, the following equation is obtained.
f(X1,X2,...,%Xi,...) = Xif(X1,X2,...,%i-1,1,...) + Xi f(xi,X2,...,%i-1,0,...)

A Binary Decision Diagram (BDD) is defined as the directed acyclic graph
obtained from the BDT by repeating the foIIownng transformations (1), (2), (3) and
(4) until they are not applicable.

Transformation (1): When both 0 edge and 1 edge point to the same terminal
node, delete the nonterminal node.

Transformation (2): Share isomorphic subgraphs.

Transformation (3): When both 0 edge and 1 edge point to the same
nonterminal node, delete the nonterminal node.

Transformation (4): Leave only one terminal node with labeled 0(1).

A Shared Binary Decision Diagram (SBDD) is an improvement of BDD. While a
BDD represents a single Boolean function, a SBDD represents multiple Boolean
functions by sharing sub-graphs of BDDs representing the same function.

3. The problem of generating all the r-combinations of n '

In this section, we consider to generate all the r-combinations of n.
An r-combination of n is defined as an unordered selection of r of the set {1,2,
...,n}. For example, for n=H and r=3:

All the 3-combinations of 5 are 123,124,125, 134, 135, 145,234, 235, 245, 345.
The number of all the r-combinations of n is well known as the binomial

coefficient, »Cr. It can be shown that »Cr=n!/(r!(n-r)!). We note that all the
r-combination of n are often used to generate other combinatorial objects.

Now we will derive the Boolean function representing all the r-combinations
of n. First, we define Boolean variables xi,Xz,...,Xn as follows.
xi = 1, if the value i is taken out of n values.
0, if the value i is not taken out of n values.

Since the solution satisfying the equation X1X2XaXaXs=1 i$ X1=1,X2=1, Xa=1,
xa=0,%s=0, the equation XiXzXaxsxs=1 corresponds to the 3-combination of 5, 123.

Therefore, we can realize that the following equation represents all the
3-combinations of 5.

XxXsziais + X1X2;3X4§5 + X1X2§3;4X5 + X1§zXaXni5 + X1§2X3i4X5 +

123 124 128 134 135
Xx)—(2;3X4X5 +)—(1X2X3X4)_(5 + ;1X2X3)_(4X5 + ;1X2;3X4X5 + >—(1)—(2X3X4x§ =1
145 234 235 245 345

We will denote a Boolean function representing all the j-combinations of
i+j by fi.;(x1,Xe,...,Xi+;). The Boolean function fi,;(X1,Xz,..., Xi+i) satis-
fies the following recurrence relation.

Theoren 1
fa, (X1, X2,....%5) = XiXa...X; (j=1) (1.1)
fioo(Xi, Xz, .., %) = XiXe...Xi (i=21) . (1.2)
fioi(Xi,Xe, ..., Xi+5) = Fici-1(X1,Xe, ..., Xiei-1)Xi+j
+fw1J(M,M,“”Xﬁjq)L+j(izﬂj§1) (1.3)
Proof. The equations (1.1) and (1.2) are obvious. We will denote the set

including all the j-combinations of i+j, by U. The set U can be divided into two
subset V and W such that VNW=¢8, VUK=U. A combination included in a subset V
surely contains the value i+j. Thus, the Boolean function representing all the
combinations in V is fi.s-1(X1,Xe,...,Xi+i-1)Xi+i. A combination included in a
subset W does not contain the value i+j. Thus, the Boolean function representing

all the combinations in V is fa-l.j(X1,Xz,...,Xa»j-1)is+j. By these facts, the
recurrence relation (1.3) is derived.

Thus, all the j-combinations of i+j can be obtained by the following
algorithm 1.

Algorithm 1

STEP 1: Conétruct a BDD by using the above recurrence relation.
STEP 2: Traverse all the paths of a BDD from the root corresponding to
fi.i(X1,X2,...,Xi+;) to terminal node labeled 1.

If 1(0) edge is going out of a node labeled xi in a path, then 1(0) edge

corresponds to the Boolean variable xi(i;). We note that the number of 1 edges
is j and the number of 0 edges is i.

As an example. we show a SBDD representing Boolean functions fi.;(Xi,Xe,...
Xiei) (1£i+j=3, 0=i,0=j) in Figure 3.1.

X1X2X3 X1X2X3+X1 X2X3+X1X2X3 X1X2Xz+X1Xz2X3+X1X2X3 X1X2X3

Figure 3.1. A SBDD representing Boolean functions
fioi(X,Xe,. ... Xi+;) (1Si+j£3, 0=i,0=)).

Lastly, we will mention two important combinatorial objects. They are often
used to generate other combinatorial objects.

One is the ways of selecting at least r from the set {1,2,...3n}.
The Boolean function representing these ways is -

fn-r.r(Xl,...,Xn) + fn—r-l,r+l(Xl,...,Xn) + .. 1 fa.n(Xl,.;.,Xn) =1

The other is the ways of selecting at most r from the set {1,2,...,n}. The
Boolean function representing these ways is

fn.B(Xl,...,Xn) + fn—l,l(Xl....,Xn) + ..t fn—r.r(Xl,....Xn) =1

Experimental Results

For some n and r, we have computed ~C- and the number of nodes used to con-
struct the BDD representing all the r-combinations of n. We have also measured
the running time required to construct the same BDD, coded in C, on a Sun SPARC
station 2 workstation(64MByte). The results are shown in Table 3.1.

n r nCr number of nodes running time
200 100 0.90549x 1053 10199 1.86
600 300 0.13511x 10188 90599 7.14

1000 500 0.27029x 1(Q3¢@e 250999 23.31
1400 700 0.58991x 1042 491399 45. 86

Table 3.1. oCr and the number of nodes used to construct the BDD
representing all the r-combinations of n and the running
time required to construct the same BDD(times in seconds).

It is interesting that a large number of combinations can be represented by
a small number of nodes contained in the corresponding BDD. It can be shown the
number of nodes contained in the BDD representing all the r-combinations of n
is less than or equal to n(r+1)-r2.

4. The problem of generating all the balanced parentheses sequences

In this section, we consider the sequence consisted of left parenthesis "("

and right parenthesis ")". The sequence of length n is denoted by pipz...pn.
The number of left parentheses in the sequence pipz...p» i$ denoted by left(pipz
...Dpn) and the number of right parentheses in the sequence pipz...pn is denoted

by right(pipz...pn).

When a sequence pipz...pi+; is consisted of i right parentheses and j ieft
parentheses and left(pipz...p«) is greater than or equal to right(pipz...px) for
any k{1=k=i+j), a sequence pipz...pi+; is called Left Parentheses Preceding

Sequence with i right parentheses and j left parentheses and denoted by

(i, j)-LPPS. When i=j, (i,i)-LPPS pipz...p2: is called a Balanced Parentheses
Sequence with i right parentheses and i left parentheses and denoted by
(i,i)-BPS. The number of (n,n)-BPS is shown to be 2aCa/(n+1). This number is
often found in combinatorial problems and well known as the Catalan Number

Now, we will derive the Boofean function representing all (i, j)-LPPS.
First, we define Boolean variables xi1,Xz,...,%~ as follows.

xi =1, if the ith character pi is a left parenthesis
0, if the ith character pi is a right parenthesis.
We will denote a Boolean funcion representing (i,J)-LPPS by gi.i(X1,X2,...,
Xi+i). The Boolean function g:i.;(Xi1,X2,...,Xi+;) satisfies the following

recurrence relation.

Theorem 2

ge. i (X1, X2,...,%) = XiXe...X; (j=1) (2.1)
gi.i-1(X1,%X2,...,Xei-1) =90 (i=1) (2.2)
Gi.i{X1,Xe, ..., Xi+i) = Qi i-1(X1, X2, ..., Xi+i-1)Xi+j
+Qi—l,j(Xl,XZ,...,XHj-l);Hj (i=j) (2.3)
Proof. The equations (2.1) and (2.2) are obvious. Let (i, j)-LPPS be pip

cooPieis IF piws="(", then pipa...pi+i-1 is (i,j-1)-LPPS. If pi+i=")", then pipz
...Pi+s-1 is (i-1,j)-LPPS. Since all the (i,Jj)-LPPSs consist of all the (i,j-1)-
LPPSs and all the (i-1,j)-LPPSs, the equation (2.3) can be obtained.

Thus, all the (i,j)-LPPSs can be obtained by the following Algorithm 2.

Algorithm 2

STEP 1: Construct a BDD by using the above recurrence relation.
STEP 2: Traverse all the paths of a BDD from the root corresponding to
gi.i{X1,X2,...,%i+i) to terminal node labeled 1.

As an example. we show the SBDD representing Boolean functions
gi.i(X1,X2,..., Xi+i) (1=i+j<4, 0<i=]j) in Figure 4.1.

X1 X2X3X4 X1X2X3X4+X1X2X3Xa+X1X2X3X4 X1X2X3Xa+X1X2X3X4

Figure 4.1. A SBDD representing a Boolean functions
gi.i{X1,X2,..., Xi+;) (1Si+j=4, 0gig))

Experimental Results

For some 2n, we have computed 2-Cn/(n+1) and the number of nodes used to
represent the BDD representing all the (n,n)-BPSs and measured the running time
required to construct the same BDD. The results are shown in Table 4.1.

2n z2nCn/(n+1) number of nodes running time

400 0.51220% 10117 20299 T 2.18
800 0.46893% 10237 80599 5.11
1200 0.65975x 10357 180900 10. 05
1600 0.11071x 10478 321200 17.24

2000 0.20461x 10338 501500 32.21

Table 4.1. 2nCn/(n+1) and the number of nodes used to construct the
BDD representing all the (n,n)-BPSs and the running time
required to construct the same BDD { times in seconds)

We also note a large number of balanced parentheses sequences of length 2n can
be represented by a small number of nodes contained in the correspoding BDD.
It can be shown the number of nodes contained in the BDD is less than or equal
to n(n+3)/2. '

5. Conclusion

We have considered the problem of generating all the r-combinations of n
and the problem of generating all the balanced parentheses sequences of length
2n. These generating algorithms are constructed by using Boolean functions and
the recurrence relations. The Boolean functions representing them have been
implemented compactly by a BDD and executed at a high speed.

Acknowledgement

The authors would like to thank Mr.Shin-ichi Minato and Mr.Hiroyuki Ochi
who offered them the Boolean function manipulator. They would also like to
express their sincere appreciation to Professor Naofumi Takagi, Mr.Kiyoharu Hama
guti and Mr.Yasuhiko Takenaga for valuable discussions and comments.

References

[1] S.B.Akers: "Binary Decision Diagrams”, IEEE Trans. Comput., vol.c-27, no.6,
pp.509-516, (June 1978).

[2] R.E.Brvant: "Graph-Based Algorithms for Boolean Function Manipulation”, IEEE
Trans. Comput., vol.c-35, no.8, pp.667-691, (Aug. 1985)

[3] S.Minato, N.Ishiura and S.Yajima: "Shared Binary Decision Diagram with
Attributed Edges for Efficient Boolean Function Manipulation”, Proc. 27th
ACM/IEEE DAC, pp.52-57, (June 1990).

[4] K.S.Brace, R.L.Rudel! and R.E.Brvant: "Efficient Implementation of a BDD
Package”, Proc. 27th ACM/IEEE DAC, pp.40-45, (June 1990).

[5] H.0chi, K.Yasuoka and S.Yajima: "A Breadth-First Algorithm for Efficient
Manipulation of Shared Binary Decision Diagrams in the Secondary Memory",
The 45th General Convention of IPSJ, 6-137, (Oct. 1992).

[6] N.J.A.Sloane: "A Handbook of Integer Sequences”, 1973.

[7] C.E.Shannon: "A symbolic analysis of relay and switching circuits”

Trans. AIEE, vol.57, pp.713-723, (1938).

