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The cost of implementing FIFO queues in a distributed system is studied under a
consistency condition linearizability. The cost is measured by the worst-case response
times: E,., for enqueue operation and D,., for dequeue operation. We show the following
results on the assumption that all message delays are in the range [d — u,d] for some
constants d and u (0 < w < d). (1) There exists a linearizable implementation of FIFO
queues with E,.; and D, are u and 2d respectively. (2) Dies + 2E.; = 2d holds in
the case where u/2 € Eos < u. (3) Erey 2 ul’l;‘l—’- holds in the case where the number of

processes is more than or equal to 2m — L.
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1 Introduction

How to provide a logically shared memory model in a dis-
tributed system is a fundamental problem in concurrent
computing. The shared memory model must allow user
process to have access to memory concurrently, that is,
each access takes some duration and different processes
can have accesses to memory with overlapping their du-
rations. Overlapping of memory accesses introduces the
problems of correctness of the system. It becomes more
complicated in the case where implementations employ
multiple copies of a single memory object to enhance per-
formance. A consistency mechanism guarantees some con-
sistency condition for the system behaivor. Sequential
consistency({1]) and linearizabilily([2]) are proposed as con-
sistency conditions. Sequential consistency guarantees that
the result of any execution is same as that of some sequen-
tial execution. When this sequential order preserves the
global ordering of non-overlapping operations, this consis-
tency condition is called linearizability.

We consider linearizability which is stronger condition
than sequential consistency. Unlike sequential consistency,
linealizability is a local property: a system is linearizable if
each individual object is linearizable. Locality allows con-
current systems to be designed and constructed in a mod-
ular fashion; linearizable ob jects can be implemented, ver-
ified, and executed independently. Linearizability is also a
non-blocking property: a pending call of a totally-defined
operation is never required to wait for another pending
call to complete. Non-blocking implies that linearizability
is an appropriate condition for system for which real-time
response is important.

Several author have investigated a read/write object
as a shared memory object([3],[4],[5],[6]). But read/write
objects are weaker type of object in the sense that many
types of object cannot be implemented using read/write
objects([7]). Many multiprocessor systems now support
more powerful objects, e.g., FIFO queues, stacks, the ob-
jects that support test-and-set, or fetch-and -add({8]).
Attiya({5]) investigated FIFO queues and stacks on the as-
sumption that all message delays are in the range [d—u, d]
for some constants d and u, 0 € u < d. . The cost is
measured by the worst-case response times: Ey., for en-
queue operation and D,., for dequeue operation. In [5],
it is shown for linearizable implementations that D,., is
at least d, and that E,, is at least u/2 in the case where
the number of processes is more than or equal to 3. Attiya
also presents a sequentially consistent implementaion with
E,.s and Dy, are at most 0 and 2d, respectively.

In this paper, we show the following results for lin-
earizable implementations: (1) There exists a linearizable
implementation of FIFO queues with E,., and D;., are
u and 2d respectively. (2) Dyes + 2E,c5 > 2d in the case
where /2 < Epey < u. (3) Erey > =L in the case where
the number of processes is more than or equal to 2m — 1.
The last result generalized Attiya’s result([5]).

In the implementation presented here, each process has
a local copy of every FIFO queue. And the process stop-
ping excecution can be distinguished, since all message

delays are in some range. Therefore, it seems that the im-
plementation is easy to improved to have fault-tolerancy.

2 Model

A distributed system consists of processors. For specify-
ing system behavior, a (system-wide) global clock is used.
Remark that the global clock is introduced only for speci-
fying system behavior and no processor in the system can
have access to the global clock. Each processor has a lo-
cal clock that runs at the same rate as a global clock,
and on each processor multiple processes, each of which
executes some program, run concurrently. That is, a dis-
tributed system D = ({P1, Pa,---, P,},GCK), where P,
is a processor and GCR is a global clock. Each proces-
sor P; = ({pi,+ Pig» - - Pi, },LCK;), where Ppij 1s a process
and LCK; is a local clock of P;. Times defined by GCK
and LCK; are called a global time and a local time of B,
respectively. For any local time defined by any LCK;, if
a global time is T at a local time t, a global time is T + 1
at a local time t + 1.

We consider the following three processes for each pro-
cessor P(Figl): (1)an application process ap that executes
some application program, (2)a timer process tmp that
informs other process in P of current local time T if the
timer is set at the past clock time 7" —t (¢ > 0), and (3)a
memory consisient system{mcs) process mesp (mentioned
later).
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Figl. memory consitent System.

The process communicates with other processes by only
exchanging messages. A message M is exchanged by us-
ing two events, send-event and receive-event. An event
is identified by the process at which the event ocuurs, the
type of the event (send or receive), and the associated mes-
sage. A sender process of M generates a send-event of M

" to send M, and receive—event of M occurs at receiver-

process when M arrives. There are the following two kinds
of messages: (1)internal-messages exchanged between the
processes on the same processor, and (2)ezternal-messages



are exchanged between the processes on the differnt pro-
cessors. A delay of a message is the time elapsed between
sending and the corresponding receipt, that is, if a mes-
sage M is sent at global time T" and is received at global
time 77, the delay of M is T — 7. We assume that delays
of internal-messages are all 0, and the delays of external-
messeges are in the range [d — u, d] for some known con-
stants u and d, such that 0 < u < d.

Consider shared objects, or just object, to which multi-
ple application processes on different prosessors can have
accesses concurrntly. The object is defined by a unique
name and a set of operations that provide the means to ma-
nipulate the object. A set of objects OBJ is provided by a
MCS (memory consistent system) that consists of mcs pro-
cesses(Figl). An application process ap manipulates an
object O in OB/J as follows: (1)ap calls some operation op
of O by sending some internal-message to mesp. (2)mesp
responds the call by sending some internal-message to ap.
An operation is defined by an operation-name, a sequence
of arguments, a response-name and a return-iype. An
application process ap calls an operation by sending an
internal-message op(Q,args), where @ is an object, op is
an operation-name, and args is a sequence of arguments.
A mcs process mcsp responds for a call of an operation
op by sending an internal-message res(Q,v), where Q is
an object, res is a response-name of op, and v is a value
of return-type of op. We say MCS implements a set of ob-
jects OBJ, or the MCS is an implementation of OBJ, if
MCS consists of mesp, ,mesp,,- - -,mesp, , such that, mcsp,
responds for a call of any operation of any object in OB.J
from ap. -

Each mcs process mcsp uses some kinds of external-
messages and the following four kinds of internal-messages:
(1)call-messages sent by ap to call an operation,
(2)response-messages sent by mesp to respond to ap,
(3)timer-sel-messages sent by mesp to tmp to set a timer
for the future local time, and (4)alarm-messages sent by
tmp to inform mesp of current local time for which a
timer is set. Associated with the kinds of messages, a set

process history is a process history. Letting st; = (s;, ie;,
soe;, s7), so is an initial state and s} = s;41. A response
matches a call if processes at which they occure agree and
a response-name of the response and an operation-name
of a call are of same operation. A call is pending if no
matching response follows the call in process history. The
process history hy, of mcs process p is well-formed, if it sat-
isfies the following two conditions: (1)In any prefix of the
process history, at most one call is pending. (2)An alarm
is occured at local time t iff the corresponding timer-set
is generated before t, that is, ((so,7€,50€0,s5),t) appears in
hy such that ie is an alarm iff ((s1,ie;,50ey,5]),t’) appears
in h, such that soe; includes the timer-set for ¢ and ¢/ < 1.

A system history, or just history, H consists of two sets.
One is a set of difference times 6,(H) of all process p in
the system. The difference time 8,(H) is p’s local time mi-
nus a global time. Another is a set of well-formed process
histories of all processes in the system. The process histo-
ries satisfy the following condition: An external-message
M from g¢ is received at global time T in p’s process his-
tory iff the corresponding send-event occures before global
time 7" in ¢’s process history. A history is admissible if the
delay of every external-message is in the range [d — u, d].

In this paper, we consider FIFO queues over some do-
main V' as objects. There are two kinds of operations
of FIFO queue @: (1)Eng(v)/Ack() where Eng, v, Ack
are an operation-naine, an argument, a response-name, re-
spectively, and v € V. It has no return value. Eng means
to insert v to Q. (2)Deq()/Ret(V') where Degq, Ret, V'
are an operation-name, a response-name, a return-type,
respectively, and V/ = VU {1} where 1 is a special value
and L ¢ V. It has no argument. Deq means to return
the value inserted to @ first, and remove the value from
Q. A special value "1’ is returned if @ is empty. Denote
by Eng,(Q,v), Ackp(Q), Deqp(Q), and Rei,n(Q,v), a call
and a response of Eng of Q and a call and a response of
Deg of Q, respectively, such that they occures at the mes
process p.

An object history is a finite sequence of events consist-

of event occured at the mcs process is classified the fol- ¥ing of calls and responses. For the object Q, a one-object

lowing six kinds: (1)calls which are receive-events of call-
messages, (2)responses which are send-events of response-
messages, (3)timer-sels which are send-events of timer-
set-messages, (4)alarms which are receive-events of alarm-

history hg is an object history consisting of events of Q.
A one-object history Aq is sequentialif:
(1)1t is an alternating sequence of calls and responses.
(2)Its first event is a call, and its last event is a re-

messages, (5)ezternal-sends which are send-events of external- sponse.

messages, and (8) ezternal-receives which are receive-events
of external-messages.

The mes process is modeled as a finite state machine
(@,1,0,s). where,

o Q is a set of finite states, including an initial state gq.
o I is a set of receive-events occured at the mcs process.
e O is a set of send-events generated by the mcs process.
e s is a transition function given by a set of 4-tuples

(s,ie,s0e,s') where s and s’ are states, ie is a receive-

event, and soe is a (possibly empty) sequence of send-

events. Such a 4-tuple is called a step.
A step (s,ie,so0e,s’) means that when a receive-event de
is occured at the process in state s, the process generates
send-events in soe and becomes state s'.

For the mcs process p, a process history h, is a fi-
nite sequence of pairs of a step and a local time {stg, tg),
(st1,t1), - -, (8ta,t,), where st; is a step and {; is a local
time at which step st; is done. Note that any prefix of a

(2)Each call is immediately followed by a matching re-

sponse.
Note that the length of any sequential history is even.

For any sequential one-object history hg, a queue-state
of hg is a list of values in V. Denote by S, a queue-
state for a sequential one-object history 7. We use the
following three functions for a queue-state q and a value
v: (1)ins(q,v) returns a queue-state made by inserting v
to the end of g. (2)rest(q) returns a queue-state made by
removing the first element of ¢ if q is not empty, othe-
wise returns g. (3)first(q) returns the value of the first
element of ¢ if ¢ is not empty, otherwise returns ’L’. A
sequendial specification defines a behaivor of an object,
that is, it defines a set of possible sequential one-object
histories. The queue-state and the sequential specifica-
tion are defined recurcively as follows. For an empty
one-object history 7y, Sy, is empty and 7 is in the se-
quential specification. Let m; be a sequential one-object



history of length 2i in the sequential specification. For
the one-object history Tai42=72i0<Engp(Q, v),Ack, (Q)>,
Sr2i42=i18(8yr,,, v) and 7a;45 is in the sequential specifi-
cation, where o is a concatenation operator on sequences
and <---> represents a sequence of events. For the one-
object history mi42=T2;0<Deqy(Q),Ret,(Q,v)>, Sy, 1=
rest(Sr,;) and T2 is in the sequential specification iff
v=first(Ss,;).

For a set of processes and a set of objects, the object
history 7 is legal, if, for each object Q, the subsequence of
7 consisting of events of @ is in the Q’s sequential specifi-
cation.

For object history 7 and process p, 7|p is the subse-
quence of T consisting events occured at p. For history H
and process p, ops,(H) is the subsequence of I consisting
of only call and response events occured at p.

Definition 1 An admissible history H is linearizable if
there ezist some admissible history H' and some legal ob-
ject history v, such that H is extended 1o H' by adding
some (possibly zero) response events, opsp(H') = rip for
each process p, and if the response of operation op; occured
before the call of operation opa in H', then the response of
opy precedes the call of ops in 7.

An mcs is a linearizable implementaion of a set of ob-
jects if any admissible history of the mcs is linearizable.

A response time of operation op is the time elapsed
between the call and the corresponding response event of
op. For convenience, the response time of op is 0 if the call
op is pending. The efficiency of an implementation can be
measured by the worst-case response times for operations
on the object. Given a particular MCS and a FIFO queue
Q implemented by it, we dencte by E,.,(Q) the maximum
response time of Eng operations on @ and by Dy (Q)
the maximum response time of Deq operations on @, over
all admissible history. Denote by E,., the maximum of
Eres(Q), and by Dy, the maximum of Dys(Q), over all
objects @ implemented by the mcs.

3 TUpper Bounds

In this chapter, we show that there exists a linearizable im-
plementation of FIFO queues with Eyre, = u and Dy, =
2d. Linearizability is a local property, that is a system
is linearizable if and only if each individual object is lin-
earizable. Therefore, it suffices to present a linearizable
implementation of one FIFO queue @ with Erey = v and
Dyes =2d. :

In this implementation, each process p keeps a local
copy of @ and updates (either enqueues or dequeues) the
copy in the common order to all processes. For simplicity,
we assume FIFO channels, that is , messages sent along
the same channel are deliverd in the FIFO order. Note
that FIFO channels are easily implemented by using serial
numbers.

To explain the idea of this implementation, consider
the case where the response times for all operations are u.
Let H be a linearizable and admissible history. And, let
op; be any operation called by any process p; at global
time 11, and op, be an any operation called by any pro-
cess pp at global time t; such that ¢, >t +u. There exist
some history H’ to which H is extended, and some legal

object history 7, such that, ops,(H') = 7|p for each pro-
cess p, and if the response of operation op occured earlier
than the call of operation op’ in H’, then the response of
op precedes the call of op’ in 7. In 7, the response of op;
precedes the call of ops. If every process sends some kind
of messages to all processes at calling, such a message of
op; is received at p; ealier than {3 +d —u (> ) + d),
and such a message of op; is received at p; later than
t, +d—u (<t +d - u). Each process, called an oper-
ation at ¢, checks the messeges that were received ealier
than ¢ + d — u, and regard corresponding operations as
the preceding operations to its own operation. Because
operations regarded as preceding are called at least ealier
than d — u after its receipt (< t), this ordering includes no
cycle. By gathering such ordering information for every
operation, the partial order on operations is obtained. In
our implementaion, every process handles local copies of
FIFO queues in some total order that includes this partial
order. This total order suffices for linearizability in the
case where every response time is at least u.

To decide this total order, each process p uses two di-
rected acyclic graphs, a partial order graph POG,, and
a total order graph TOG,. Each respects a partial order
on call events. That is, its node set consists of call events
and each order graph G induces a partial order <¢ on call
events: e; <g es if e; is reachable from €3 on G. Events
unrelated by <¢ are said to be concurrent. Particularly,
Gp.. denotes a partial graph G, at global time t. Each
process p also uses a serial number for its call event.

A graph POG,, presents a partial order that is re-
garded by p at global time . Initially, POG, has no
events, that is, POG, is an empty graph. When a call
event e; occurs at ¢, ¢ sends an updaie message to all
processes (including ¢) with the serial number of the call
event. Let ¢ be a global time at which e, occures. At
1-+d—u, q checks updaie messages that were arrived earlier
than t +d — u, and sends repor message to all processes in
order to inform them that the events contained in this mes-
sage precede e; (it suffices to inform the maximum serial
numbers received from each process). We call this message
the report message of e;. When p receives a report mes-
sage of e; from g, p extends POG),, by (1)adding the events
contained in the message, if necessary, and (2)adding the
edges from e, to the events contained in this message and
the edge from e; to ¢’s immediately privious event. Let
m be a report message of an event e. Denote by C(m),
F(m) and rm(e) a set of events contained in m, a set of
events (*(m) U {e}, and a report message of e, and de-
note by R,(t) a set of message arrived at p at global time
(< t), A graph POG,, , consists of the following two com-
pornents: (1) a set of nodes {ele € E(m), and m € Ry(t)}
and (2) a set of directed edge {(e,e’)| ¢’ € C(rm(e)}, and
rm(e) € R,(1)}.

Let t' be a global time at 2d after the call of p’s own
event e,. At t', TOGp v is created from POG,,. Its
node set consists of the events whose report messages have
arrived at p, and, for any two events in this set, if the edge
between them exists on POG, 1, TOGp .+ has same egde.
Aund, any two concurrent events on <pog, . are orderd

using process id'. Denote by Id(e) an id of process which

Tevery process has process a unique id, and there exists some
tolal order on ids.



calls a event e. A graph TOG, 1+ consists of the following

two compornents: (1) a set of nodes N = {e|lrm(e) €

Rp(t)} and (2) a set of directed edge {(e,e")] e,e’ € N,

and ¢/ € C(rm(e))} U {(e,e')| e,¢’ € N, Id(e) < Id(¢'),

and e, ¢’ are concurrent on <poG"‘, }. Then, p applies
associated operations that have not applied yet to copy of
Q in the order of TOG, .+ until the operation associated
with ey is applied.

In the fo]lowmg two examples, denote every call event
as an orderd pair (process id, serial number).

Example 1 Figure2(a) shows POGy consists of (p,1), (4, 1),
(9,2), and (r,1). When p receives repori(2, {1,1,1})
from p, event (p,2) and edges from (p,2) to (p, 1),
{(g,1), and (r,1) are added(Fig2(b)).

process process
P
! O event
q 1 i serial number
r ? directed edge
(a) before report message  (b) after report message
of (p,2) is received. of (p,2) is received.

Fig2. Update of POG.

The details of implementaion are shown in Fig.3. A
response for Enq is generated at u after its call. A response
for Deq is generated when the Deg is applied to a copy of
a FIFO queue.

To show that the implementation is correct, fix any ad-
missible history H, and let H’ be some admissibe history,
to which H is extended, such that the responses for all
pending calls are returned and no new call occurs. Such
history exists because the response for every call is re-
turned at most 2d after its call.

Lemma 1 In H', let t be a global time at 2d afler a call
of any event e. For every process p and V' > t, TOG, v/
induces a same total order as TOGy, on a set of evenls
that precede e on <rog,,- And this order 1s common 1o
all processes.

proof: By implementaion, POG of all processes are cre-
ated from common information. Since H' consists of the
process histories each of which is finite, after sufficiently
long time, for every process p, <pog, and <roG, is com-
mon to all processes. So, it suffices to show that, for every
P, <roG, on a set of events that precede ¢ on <rog,,
does not change after t.

Suppose opposite. Let ey, €z, ..., and e, = € be the
events such that e; <rog,,, €it+1. At some time t' > t, at
least one of three cases occures: (1) for some ¢;(0 < i < n),
€ 270G, v € (2) for some eg(not e;), eo <T06, , € (3)
€ <T0G, ;1 € (1<j<i<n).

T pt!

(1) for some e;(0 < i< n), e <106, » €i-

The data types:

update : record with fields

sn : integer;

op : name of operation;
obj : name of an object;
val : value;

id : process id;

time : time;

The components of state of process p

val : value; sn : integer, initially O(serial number);
update-buf fer : set of update, initially empty;
receipt(] : array of integer (array of serial number);
POG, : partial order graph;

TOG, : total order graph;

copy of every objest Q, initially empty queue;

The transition function of process p:

Eng,(Q,v)

send updale(sn, “Enq”,Q, v) to all processes
val = v

sni=sn 41

generate timer-set(u, “generate-Ack™)
generate timer-set(d — u, “check-update(sn)”)

Deqy(Q)

send update(sn, “Deq”, @, L) to all processes
sn:=sn+1

generate timer-set(d — u, “check-update(sn)”)
generate limer-set(2d, “generate-Ret”)

receive update(sn,op, Q,v) from ¢ at local time t
add (sn,0p,Q, 1,q.1) to update-buf fer
receive repori(sn, receipt) from ¢
update POG, using the information of report
alarm(“generate-Ack”)
generate Ackp(val)
alarm(“check-update(n)”) at local time ¢

for all process p do

receipt[p] := max(sn | (sn,o0p,Q,v,q,1')
€ update-buf fer, ' < t)
send report(n, receipt) to all processes

alarm(“generate-Ret™)

generate TOG, from POG,
repeat

take next unhandled £ =(sn,op,Q,v,q,t) in the order TOG,

handle E to local copy of Q
if E.op =“Deq” then get return value v

if E.op ="Deq” and E.id = p then generate Rety(sn,v)

until E.op ="Deg"” and E.id=p
Fig.3 An Iimplementation of FIFO queues.



Since e is not reachable from e; on POG, ¢, report
message of e; that was received by p earlier than ¢
informed that e’s update message was not received
earlier than d — u after a call of e; This implies that
call of e; occured earlier than u after a call of e, that
is, it occured before t — 2d + u. Since e is reachable
from e; on POG, v, some e exists such that its re-
port message arrives at p after ¢, makes eg reachable
from e;, and makes e reachable from ey. A call of
eg occured hefore a call of e; because ¢p is reach-
able from e; on POG, v, that is, it occured before
t — 2d + u. This imples that p received the repoprt
message of ep before t. A contradiction.

@

for some event eg(not €;),e0 ~<T0G, o €-

(a)Case where p received eg’s repor! message later
than t : Letting ¢ be the process that called ep, ¢
called eg later than ¢ —2d+u, and received e’s update
message not later than ¢t — d. That is, ¢ received
the update message earlier than d — u after eg’s call.
Thus, report message of eg informed that the update
message of e was received ealier than d — u after its
call. Once eg belongs to TOG),, it always holds that
e <T0G, 0. A contradiction.

(b)Case where p received egp’s report message not
later than {: eg is not reachable from e on TOG, ,
and eg is reachable from e on TOG, . There ex-
ists some ¢’ such that its repori message arrives at
p after ¢, makes eo reachable from e’, and makes
¢’ reachable from e on POG,. Because ¢’ is reach-
able from e on POG), 1, €'’s call occured earlier than
t—2d+u, and e’’s report message arrives at p before
t. A contradiction.

€ <T0G, € (1<j<i<n).

On POG, ,, ¢; is not reachable from e; while reach-
able on POGp . On the path from e; to e; on
POG, 1+, if some event ¢’ (# ex(1 < k < n)) exists,
e <706, o €j- But e =T0G, ¢’ and € <T0G, . €
by (1) and (2), therefore e; <rog,, €, a con-
tradiction. Thus, all events on this path are e
(1 € k < n). Since every ep’s report messages have
arrived at p not later than £, no edge between e;s’
are added to POG,, after t. Therefore, ¢; can not be
reachable from e; on POG),, aftert. A contradiction.
]

By lemmal, after sufficiently long time, for every pro-
cess p, TOG, induces common total order to all processes.
In the followings, we denote by < this total order.

Lemma 2 For any two ¢all evenis ey and ex in H', if the
response for e; occuerd before the call of es, then e; < eq
holds.

proof: Let ¢, 1’ and t” be global times at which ey’s call,
e1’s response and ej’s call occured. By implementation,
t' >t + u, and e;’s updale message arrived at the process
that called ey not later than ¢t + d. It follows from ¢ +
d < 1" + d — u that e;’s updaie message arrived earlier
than d — u after es’s call. Each process that receives ea’s
report message adds the edge from ey to e; to its POG.
Therefore, e; < €2 holds. | ]

Theorem 1 There exists a linearizabe implementation of
FIFQ queues with Eyes = u and Dyos = 2d.

We show the implementaion of Fig.3 is a linearizable
implementation of FIFO queue @ with E,..; = u and
Dyes = 2d. It is clear that E,.; = u and Dy., = 2d.

To show that the implementaion is linearizable, it suf-
fices H is linearizable. Let 7 be an object history in which
all call events appear in the total order < on call events
in H'.

For a call e; of any operation op; of @Q, all operations
whose calls precede ¢; in 7 are applied to @ before apply-
ing op;. Therefore, the response of op; can be created so
that sequence up to the response of ¢; is in the sequential
specification of FIFO queue. Therefore, T is legal.

For every process p, opsp(H') = 7|p holds, since p up-
dates @ in the same order 7. By lemma2, for any two call
events e; and e» in H', if the response of e; occuerd before
the call of es, then e; < e3 holds, that is, e; precedes e
inT.

By the above, there exist some history H' to which
H is extended and some legal object history 7, such thal,
ops,(H') = r|p for each process p, and if the response
of operation op; occuerd before the call of operation ops
in H’, then the response of op; precedes the call of op,
in 7. Any admissible history H of the implementaion is
linearizable. o

4 Lower Bounds

We show the following two lower bounds on the worst-case
response time: (1) Dy + 2Erey > 2d in the case where
/2 < Epee < u. (2)Epes > u'",;’_in the case where the
number of processes is more than or equal to 2m - 1.

Theorem 2 For the memory-consistency system that is a
linearizable implementation of FIFO queues, Dyes+2E, . >
2d in the case where uf2 < E,.o < u.

proof: Assume opposite. Let E..s =T and Dyey = 2d —
2T — ¢g for some €5 > 0. There exist some €;, €3 and €3
such that ¢; > 0, €2 > 0, €3 > 0, €; + €2 < €3 < € and
€3 < u—T. Let p and ¢ be two processes that can execute
Enq operations to some FIFO queue @ and r be a process
that can execute Deg operations to ). Consider following
two histories. In both histories, mcs starts with empty
queue @ at global time 0.

historyl There exists some admissible history such that
Engy(Q,1) and Enge(Q,2) occur at global time 0,
and ‘Deq,(Q) occurs at global time T+ ¢; (Figd(a)).
The difference times of both processes are 0. The
message delays are d. Since, both responsses for
Eng,(Q,1) and £nq,(Q, 2) occur earlier than T'+¢,
the response for Deq, (@) has the return value 1 or
2. Without loss of generality, we can assume that
Ret(@,2) occures.

history2 Eng,(Q,1)occurs at global time are 0, Enq (Q, 2)
occurs at global time T" + €2, and Degq,(Q) occurs
al global time 2T — u + €3 (Figd(b)). The differ-
ence times are 0 for p, Ty = —(T + €2) for ¢, and
T, = u—T +¢; —¢3 for . That is, all call events
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Fig4. history1 and history2 in proof of theorem?2

occure at the same clock times at each process as
historyl. The message delays are d — T, from p to
r, d+ T, — T, from q to =, and d for all other orderd
pairs. That is, message-receive events for messages
to r occur at the same local times at r as historyl.
Since d — T and d + T; — T, are both in the range
{d — u, d], history2 is admissible.

In history?2, Ack,(Q) occurs earlier than Enq,(Q,2),
and Deg,(Q) is the only dequeue operation for Q.
The returned value of Degq,.(Q) is either 1 or L.

In the both histories, p and g receive no message not
later than global time d. The messages sent earlier than
global time d from p or q are same as hitoryl, and are re-
ceived at the same local time to ». During receiving these
messages, r has done same steps as historyl. If r generates
the response for Degq,(Q), its return value must be 2, that
is a contaradiction. r must generate the response after this
interval, that is after d+d—T, = 2d—u+T—¢ 4¢3 > 2d—u
and after d+d + T, — T, = 2d —u + €3 — (€, + €2) >
2d — u. By assumption, r generates the response until
2T —u + €3 + Dpes=2d — u + €3 — €p <2d — u, that is a
contradiction. n

We then show the second result for lower bounds. The
case where the number of processes is more than or equal
to 3 is proved in [5] . Our result generalizes this result.

‘We prove the second result using the technique of shift-
ing [5] , that is used to change the timing and the ordering
of events in the system while preserving the local views of
the processes.

H' is the shifting history of the history H by timing
t for process p, if the only difference of H and H” is that
6,(H') = 8,(H) +t. In the shifting history, the global
times at which the events occure at p are changed while
p’s process history isn’t changed. The shifting changes
the message delays so that the delay of any message to
p decreases by t, and the delay of any message from p
increases by t. For any integer n, if H; is the shifting
history of H by t; for p;, and H; is the shifting history of
H;_q by t; for p; for 1 < i < n, we briefly say that H,, is
shifting history of H by 1; for p; for 1 < i< n.

Theorem 3 In the case where the number of processes is
more than or equalto 2m —~ 1, E,., > u-"lnfl holds.

proof: Let po,p1,...,Pm-1 and go,¢1, .- ., qm~2 be 2m—1
processes that access to some FIFO queue Q. Initially, Q
is empty. Assume E,., =T < u"‘,;l. Consider following
two histories.

historyl Eng,, (Q,v;) occurs at global time u;‘;- for 0 <
i <m—1, and Deq,,(Q) occurs later than u"‘T-" +T
for0<j<m=-2 (}gigﬁ( a)). The message delays are
d from p; to p; (i < j), d—- u from p; to p; (i > j),
d - u;f; from p; to ¢;, and d — u"‘n—:‘ from ¢; to p;.
Since all message delays are in the range [d — v, d],
this history is admissible.

In historyl, every Ack occures not later than u"’n‘f +
T, that is, every Ack occurs earlier than any Degq.
Thus, m — 1 Degs return m — 1 values of m values
that are enqueued by previous Engs. Let vg be a
value that is not dequeued. It is not vy, that is
1 <k € m=1, because Ack,, occured not later

than T and Engy,,_, occurs at a2l (> T).

history2 It is the shifting history of historyl by u'"n—j" for
Po.P1, - Pe—1 and by —uk for py.pryr, ... Pmoy
(Figh(b)). The message delays become d —u from p;
to pj‘(i< k,j > k), dfromp; top; (1> k,j<k),
d — uB22E from p; to g; (i < k), and d— ui=k from
pi to gj (¢ > k), and all other delays are unchanged.
All message delays are in the range [d — u,d], so
history2 is admissible.

In history2, Eng,, occurs at global time 0, its Ack,,
occurs not later than T', and Engp,_, occurs at real time
u"—‘j‘- (> T). As historyl, m —1 Degs return m—1 values
of m values that are enqueued by m Engs in history2.
Since Acky, occured not later than T and Eng,, _, occurs
at =L (> T), v must be included these m — 1 values.
But no Ret returns v because every process histories are
same as historyl. A contradiction.



5 conclusion

We show three result for the cost of linearizable implemen-
tation of virtual shared FIFO queues in the distributed
multiprocessor system. Attiya shows that the result for
FIFO queues can be extended to apply for stacks([5]). Our
results apply for stacks with replacing Eng and Deq by
Push and Pop respectively.

Moreover, the implementation of FIFO queues pre-
sented here can be extended to apply any object that
have only total operations that are defined for any object
states in its sequential specification. In the implementa-
tion, when the response for Deq is returned, the operation
sequence up to the Deq is fixed. In the same manner, at
2d after call of any operation, the operation sequence up
to the operation can be fixed. Each process can generate
the response for own call at 2d after the call, by updating
local copies of objects in the order of this fixed operation
sequence. Therefore, there exists a linearizable implemen-
tation of any object that have only total operations, such
that the worst-case response time of any operation is 2d.
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