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This paper considers the following problem: Given a set of point sets, find the largest point set
which is a subset of each point set where each point set may be transformed by any isometric
transformation. It is proved that approximating the largest common point set is at least as
hard as approximating the maximum clique if the number of input point sets is not bounded. A

similar result holds for the problem of approximating the largest common connected subgraph
in space, too. '



1 Introduction

In genome information processing and chemical information processing, it is important to
extract a common part of data from multiple data [4, 8, 13]. In particular, extracting a common
patterns from multiple amino acid sequences automatically has been studied extensively [4, 12].
However, a few works have been done for extracting a common patterns from multiple three
dimensional protein structures while three dimensional patterns of proteins are considered to
have very important information [8]. Motivated by these situations, this paper considers the
following problem:

INSTANCE: A collection of D-dimensional point sets S = {S1,52,-+,Sh}.
PROBLEM: Find a set of point C in D-dimensions such that

¢ |C| is the maximum,

o there is a set of isometric transformations T'= {T1,T2,---,Tx} such that

C = Ti(S1)NT2(S2) N - NTu(Sh)-

We call this problem as the largest common point set problem (LCP, in short). Relating to
LCP, we consider another problem. Instead of point sets, we consider graphs such that a
vertex corresponds to a point in D-dimensions and an edge corresponds to a line segment
which connects its endpoints. Chemical structures with fixed three dimensional structures
and solid models in mechanical CAD can be considered as such graphs. Then, the problem is,
given a set of such graphs {G1, Ga,- - -, Gr}, to find the connected graph G which is congruent
with a subgraph of G; for every G; and the number of edges of G, is the maximum, where
each G; is allowed to be transformed by an isometric transformation. We call this problem as
the largest common geometric subgraph problem (LCGS, in short).

This paper shows that approximating LCP as well as approximating LCGS is at least as
hard as approximating the maximum clique. It is also shown that LCP (resp. LCGS) can be
solved in polynomial time if the number of input sets (resp. graphs) is bounded by a constant.

Relating to LCP and LCGS, several studies have been done. The congruity of point sets
and graphs in three dimensions was studied by Atkinson [6] and Alt, Mehlhorn, Wagener
and Welzl [3]. Moreover, Alt et al. studied the congruity of point sets and graphs in higher
dimensions [3]. We also studied a parallel algorithm for the congruity in three dimensions [1].
Sugihara studied the congruity and the partial congruity of polyhedra {15]. While these works
are concerned with exact matchings, approximate matchings of point sets in two dimensions
have been studied extensively {3, 10, 11].

2 ,Hardnéss of Appfoximating the Largest Cbmmon Point Set

In this section, we show that approximating LCP is at least as hard as approximating the max-
imum clique. Before describing details, we briefly overview recent results about approximation
algorithms.

An approximation algorithm for a maximization or minimization problem is said to approx-
imate the optimal value opt(X) within a factor of f(n) if, for all instances X of the problem of
size n, —-(1;5 < %%%Y < f(n) holds where g(X) is the value found by the approximation algo-
rithm. An optimization problem is said to have a polynomial-time approximation scheme if,
for any ¢ > 1, there exists a polynomial-time algorithm that approximates the optimal solution
within a factor of ¢ [9]. Recently, the following two results were proved [5]: MAXSNP-hard



problems [14] do not have polynomial time approximation schemes unless P = N P; For some
€ > 0, the size of the maximum clique in a graph can not be approximated within a factor of
n€ in polynomial time unless P = N P.

Note that the maximum clique problem (MAX-CLIQUE, in short) is defined as follows:
given an undirected graph G(V, E), find the maximum subgraph G'(V', E') of G such that G’
- is a complete graph (i.e. (Yv,w € V')({v,w} € E’) ). A complete subgraph of G is called as
a clique of G. Let optcrrque(G) be the size (the number of vertices) of the maximum clique
of a graph G. We assume without loss of generality (w.l.o.g.) that each graph G has at least
one edge. ‘

Here, we consider the original problem. For simplicity, we consider the case of 1-dimensional
space. The discussions can be trivially generalized to any dimensions. Since we consider the
1-dimensional space, we identify each point with its coordinate value. Moreover, each isometric
transformation is specified by a pair (s,!) where s is either 4+’ or =’ and ! is a real number.
If 5 is ’4+’, it denotes the transformation such that each point 2 is transformed to z + 1. If s
is ’—’, it denotes the transformation such that each point z is transformed to —z + /. TFor an
instance S of LCP, optrcp(S) denotes the size (the number of elements) of the largest common
point set. For LCP, k denotes max|S;|. Theorem 1 describes the main result of this paper
by reducing MAX-CLIQUE to LbP. Similar reductions were used to prove the hardness of

computing the largest common subtree of bounded vertex degree [2] and the longest common
subsequence [12].

[Theorem 1] If optr.cp(S) is approximated within a factor of O(f(k,h)) in O(T(k,h)) time,
then opterrQue(G) can be approximated within a factor of O(f(2n,n + 1)) in o(T(2n,n +
1) + n?) time where n is the number of vertices of G.
(Proof) We reduce MAX-CLIQUE to LCP as follows.

Let G(V, E) be the input for MAX-CLIQUE where V = {vy,--+,v,}. For v € V, I'(v)
denotes the set of adjacent vertices of v (i.e. I'(v) = {w|{v,w} € E}). We construct a point set
Q ={P, -, P} in 1-dimensional space as follows (see Fig.1). Let L; and Lj be sufficiently
large numbers such that L; > n? and Ly >» nL; hold, respectively. For example, L; = 100n?
and L, = 100nL, are all right. Then, P; is defined as follows:

0, 1=1
P; = .P,‘_1+L1+1:—-2, 1<i<n
L2+1)i—'n, i>n

Each of P; and P,4; corresponds to a vertex v;.

L,
p, B, Py P By Bz Py By,
O O [e) O <+« O O o] O oo
N N — N
L; L;+1 L,+2 Ly Li+1 L,+2

Figure 1: An example of a point set Q.

An instance of LCP is a collection of point sets § = {51, -, Sn, Sny1}, Where Snt1 =



{P1,--+,Pn} and, for i < n+ 1, S; is defined as follows (see Fig.2).
Si={P|G<n)AG=iV oy eTw)}J{Pli>nAj#n+i}.

For i < n+1, S; corresponds to a vertex v;. Note that this construction can be done in O(n?)
time.

G S
v, v, S; ~0--0---0--=-=-==-==-—== O---0---0-
S; ~0--0---0-------- O--—--- o---0-
S;3-0-=-0=-=-=-0=~=-=-0O=-===0=-=0===m==~=- O -
Sy-------- o--0----0~--0---0~-=-=~~-
V, Vs

Figure 2: Reduction from MAX-CLIQUE to LCP.

First, we show that, if there is an m-clique (a clique with m vertices), there is a common
point set C of size m. Let W = {v;,,---,v;,} be the point set of the clique. Then, C is defined
as {P;,, -+, P, }. ForeachS;, C coincides with a subset of S; by the following transformations.
For Sy41, C is trivially a subset of Sp41 and then Th41 is specified by (+,0). If i < n 4 1 and
v; € W, C is a subset of §; and then T; is specified by (+,0), too. If i < n+1 and v; ¢ W,
C coincides with a subset of §; by translating C with length L, and then T} is specified by
(+, L2).

Next, we show that, if there is a common point set C of size m, an m-clique can be con-
structed in O(n?) time. We assume m > 2 since G is assumed to have at least one edge. We
can assume w.l.o.g. that C = {P;,---,P;,} is a subset of Sp41. Let {I3,:--,T,,} be the set
of transformations such that 73(S1) -+ - NTn(Sa) N Sn41 = C.

Claim 1: Fori < n+1,if P, € C, T is specified by (+,0) and, if P; ¢ C, T; is speci-
fied by (4, L2).
(Proof) 1t is sufficient to prove that each transformation is specxﬁed by either (+,0) or (+, Lz).

First, we assume that, for some T}, T; is specified by (+,!) such that ! # 0 and I # Ls.
Then, it is easy to see that |T3(S;) N C| < 2 holds since Ly > n? and Ly > nL, are assumed.
Thus, T; should not be specified by (+,!) such that I # 0 and | # La.

Next, we assume that, for some T3, T; is specified by (—,1). Then, |T3(5:)NC| < 3. It
is proved as follows. We assume w.l.o.g. that P and P: (n > s > t) in S; correspond to Py
and Py (¢ <t' <n)in C by T3, respectxvely That is, T;(Ps) = Py and T3(P;) = Py hold.
Note that s — ¢ =t/ — s’ holds since Ly 3> n? is assumed. Then, any other point P, € S; can
not coincides with P, € C by T; since |Ti(Pi—j) — Ti( Pe—j-1)| < |Py4j = Pyyj4a| holds for all
n—t'>j >0 and |Ti(Pst;) — Ti(Psj+1)l > |Por—j — Por_j_1| holds for all n —s > j > 0 (see
Fig.3). Therefore, T; should not be specified by (—,/) and the claim is proved.

We select V' C V as follows. If T; is specified by (+,0) (i.e. P; € C), then v; € V'.
Otherwise, v; ¢ V'. It is easy to see that the subgraph of G induced by V” is a clique.
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Figure 3: Correspondence of point sets in a case of (—,1).

From the above discussions, it is shown that opterQue(G) = optrcp(S) holds and an
m-clique can be constructed from a common point set C of size m in O(n?) time. Therefore,
the theorem is proved. a

It follows from Theorem 1 and Ref.[5] that, for some £ > 0, the largest common point
set can not be approximated within a factor of n° in polynomial time unless P = NP where
n = min({k,h}). Note that NP-hardness of LCP follows from the NP-hardness of MAX-
CLIQUE, too.

It is easy to see that the same results holds for LCGS in D-dimensions (D > 1) considering
such graphs as in Fig.4-(a). By the way, vertex degree is bounded by a constant in chemical
structures. In such a case, the transformation of Fig.4-(a) is not adequate. In this case, we
consider such graphs as in Fig.4-(b) and then we can show that the problem is MAXSNP-hard.
It is proved by reducing the independent set problem with bounded vertex degree, which is
one of the well-known MAXSNP-hard problems [14]. Since the reduction is similar to one
described in Ref.[2], we omit the proof here. '

Point Set Graph

(a) o o© o o—»A
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Figure 4: Graphs for the largest common geometric subgraph problem.

3 The Case where the Number of Input Sets is Bounded

While LCP is proved to be NP-hard in Section 2, this section showé that LCP can be solved
in polynomial time if the number of input sets is bounded by a constant. The algorithm is
very simple and is based on exhaustive search. While we consider the three dimensional case,



it seems that the discussion can be extended to any fixed higher dimensions.

Let § = {S1,+--,Sk} be an instance of LCP where h is a constant. For simplicity, we
assume that the largest common point set is not on a plane. For each point set S;, (P}, P?, P?)
denotes an arbitrary triplet such that each P,-j belongs to S; and they do not lie on the same
plane. From each of S;, such a triplet is selected and they are ordered as a sequence. For each
sequence ((Pf, P2, P3),---,(P}, PE, P?)), the following procedure is executed: First, each S;
(i > 1) is moved by isometric transformation so that P}, P? and P? coincide with P}, P}
and P?, respectively. Next, C = S11S5N 55N --N S}, is computed where S} denotes the
transformed set of S;. Finally, the largest C is the largest common point set.

Since the correctness of the algorithm is almost obvious, we consider the time complexity.
The number of sequences is O(k3") since the number of triplets is O(k3) for each §;. The
time required for testing each sequence is O(kh). Thus, the total time required is O(hk3h+1),
Since h is a constant, the algorithm works in polynomial time. Note that the algorithm can
be modified for LCGS.

4 Concluding Remarks

This paper shows that approximating the largest common point set is at least as hard as
approximating the maximum clique. It is also shown that the largest common point set
problem can be solved in polynomial time if the number of input sets is bounded by a constant.

While the hardness result for approximating the maximum clique was known, a polynomial
time algorithm which approximates the maximum clique within a factor of O(n/log?n) [7) is
known. However, we did not find an approximation algorithm for LCP even within a factor of
O(n/logn). Thus, it is interesting to study whether or not such an approximation algorithm
exists. '

Although this paper shows a negative result for finding the largest common point set, it
does not mean that common substructures of multiple protein structures can not computed
efficiently. Since atoms in the backbone chain of a protein can be regarded as a sequence of
points, a consecutive portion of the sequence might be regarded as a substructure. In such a
case, techniques in approximate point or string matching seem to be useful. We are developing
practical pattern matching algorithms for three dimensional protein structures based on such
techniques. Details will be presented elsewhere.
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