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Abstract: The paper proposes an approximation algorithm YWLFS for the legal firing sequence problem, LFS
for short, of Petri nets: " Given a Petri net, an initial marking M and a firing count vector X (with each component

X(t) denoting the prescribed total firing number of a transition t), find a firing sequence § which is legal on M with
respect to X, where & is a sequence of transitions and is called legal on M with respect to X if and only if the
first transition of  is firable on M, the rest can be fired one by one subsequently and each transition t appears

exactly X(t) times in 3." Experimental results show that YWLFS is a promising algorithm: when it is applied to
2181 total test problems for each of which existence of a solution is guaranteed, it finds solutions to 2050

problems (94%), and, for each of 131 problems to which YWLFS failed to get solutions, average length of &
found by YWLFS is 72% of the total length of a corresponding solution.



1. Introduction
An approximation algorithm YWLFS for the legal firing
sequence problem (LFS for short) of Petri nets is proposed
and experimental evaluation is given. LFS is defined as
follows:

(LFS) Given a Petri net PN=(P,T,E,a,B), an initial

marking M and a firing count vector X, with each

component X(t) denoting the prescribed total firing number
of a transition t, find a firing sequence & which is legal on

M with respect to X, where 8 is a sequence of transitions

and is called legal on M with respect to X if and only if

the first transition of § is firable on M, the rest can be fired
one by one subsequently and each transition t appears

exactly X(t) times in 8.

LFS is fundamental in the sense that it is included, as a
subproblem, in various basic problems of Petri net theory. For
example,

(1) classical scheduling problems [1,4,5] or cyclic scheduling
problems that can be formulated as LFS for timed Petri nets (
Petri nets in which transitions have delays that is
integers){16,18];

(2) the minimum initial resource allocation problem (called the
minimum initial marking problem, MIM for short) for Petri
nets PN (see [12,13,14,17,19] for the definition and
approximation algorithms with experimental results);

(3) the well-known marking reachability problem, asking for a
firing sequence 8 whose firing changes a given initial marking
10 a specified target marking [8,9].

In [12,13,15], LFS is introduced and its time complexity
is formally analyzed. Unfortunately the recognition version
(that is, asking "yes" or “no” on the existence of solutions ) of
LFS is shown 1o be intractable (NP-complete) for a restricted
class of problems. Polynomial or pseudo-polynomial time
solvability of LFS for some classes of Petri nets having simple
structure is also given. The details will be explained in Section
3. Even though intractability of LFS has been shown, it does
not seem that any approximation algorithm for LFS has ever

been proposed. A firing sequence 8 which is legal on M with
respect to X is called a solution to LFS, and let § denote the
firing count vector such that &t) is equal to-the total occurrence
of tin 8. We consider a firing sequence 3 as an approximate
solution to LFS in the following sense:

(i) 8islegalonM;

(ii) 3(1)<X(1) for any transition te T of PN;

(iii)the total length 18} of & is as large as possible among

those firing sequences &' satisfying (i) and (ii).

The paper proposes an approximation algorithm YWLFS
for LFS. Time complexity of YWLFS is O (XIXIZATIIE,
where X=max{X(t)te T) and IX] denotes the total sum of X(1),

Vte T. Note that YWLFS is a pseudo-polynomial time
algorithm. Experimental results show that YWLFS is a
promising algorithm: when it is applied to 2181 test problems
for each of which existence of a solution is guaranteed by the
results given in [16-19], it finds solutions to 2050 problems
(94%) of them, and, for each of 131 problems to which

YWLFS failed 10 get solutions, average length of & found by

YWLFS is 72% of the total length of a corresponding
solution. More precisely, YWLFS finds solutions to 1765
problems (98%) of 1800 test problems with Petri nets having
5<IPI<90, 9<IT1<99, 34<IEls554, 9<IXI<297 and state machines
as underlying Petri nets (see Section 2 for the definition); to
285 problems (75%) of 381 problems with those having
15<IPI<97, 13<ITI<97, 67sIEI<536, 13<IX1<291 and general
Petri nets as underlying ones, where IP|, IT! and [El are the
numbers of places, transitions and edges, respectively. For
each of 35 problems having state machines (96 problems
having general Petri nets, respectively) as underlying Petri nets
such that YWLFS failed to get solutions, average length of §
found by YWLFS is 94% (64%) of the total length of a
corresponding solution.

2. Preliminaries )

Technical terms or notations whose definitions are not given in
this paper can be identified in [10,11]. We assume that the
readers are familiar with graph theory terminologies (see {2] for
example). A Petri net is a bipartite digraph PN=(P,T.E,a.B),
where P is the set of places, T is that of transitions such that
PNT=¢, and E=E;;;UEy,, is an edge set such that E;;;=(edges
from T to P} and E,;=(edges from P to T} with weight
functions u:EouL—>Z+ (non-negative integers) and B:E;—Z*.
We always consider PN to be a simple directed digraph unless
otherwise stated. PN is a marked graph if any pe P has P*pi<1
and Ip*I<1. PN is a state machine if any te T has 1*1I<1 and
It*I<1. PN is a free choice net if, for each arc (p,)e E ;.
either p*=(t} or *t=(p) holds. PN is a marked graph if any
pe P has I*pl<1 and Ip*IS1. PN is a state machine if (VteT)
I*, *I<1. PN is a free choice net if, for each arc (p,)e Eq,;,
either p*=(t} or *t=(p} holds. PN is a forward or backward
conflict-free Petri net if Ip*l=1 or Ip*l=1 for VpeP,
respectively. PN with an initial marking M is called persistent
if, for any marking M’ that is reachable from M, 1y is firable on
M'[tp> whenever both t} and t) are firable on M. It is shown
in [7] that conflict -free Petri nets are persistent. (See [6] for the
related results.)

Let A=A*-A"=[a;;*]-{2;;] denote a IPIXIT! matrix, called the
place-transition incidence matrix of PN, which is defined by

,_|BGGp) if Gpde B, Jalpit) if (Puy)eE,
o otherwise, o otherwise.

A marking M for PN is a function M:P—Z*, and IMI denotes
the total sum of M(p) over all pe P. A transition t is firable on
a marking M if M(p)2 a(p,t) for Vpe *1. Firing suchton M is
to define a marking M' such that, for Vpe P, we have
M'(p)=M(p)+B(1,p) if pe t*-*t, M'(p)=M(p)-a(p.1) if pe *1-t*%,
M'(p)=M(p)-a(p,)+B(p) if pe *tnt* and M'(p)=M(p)
otherwise. We denote as M'=M[t>. If no transition is firable on
a marking M then M is called a dead marking. Let 8=t;]...tig

be a sequence of transitions, called a firing sequence, and &)
be the total number of occurrences of t in 8. 3=[8(ty).. 51

(n=IT1) is called the firing count vector of 8. Let [§l denote the



sum of §(t) over all 1€ T. § is called single-round if each
transition t in § occurs §(t) times consecutively, and is called
multi-round otherwise. For a marking M and an n-dimensional
vector X=[x;.. xn]“' 8 is legal on M if and only if "1 is firable

on M .1 for j=1,...,s, where Mg=M and MJ M) 1[(u> We

denote M[8>=My. 8 is legal on M with respect to X if and
only if § is legal on M and 3=X. An n-dimensional vector X
with each component being a nonnegative integer is catled a T-
invariant of PN if and only if X# 0 and AX=0. Let m=IPI, An
m-dimensional vector Y with each component being a
nonnegative integer is called a P-invariant of PN if and only if
Y#0 and YTA=0. (A T-invariant or a P-invariant plays an
important role in Peiri net theory. See [10, 111.) Let IX| denotes
the total sum of X(1), Vte T, and let X=max{X(t)te T}. The
support Xl of a vector X is the set of transitions whose X
components are nonzero. PN is consistent if PN has a T-
invariant X with IIXli=T. A T-invariant X of PN is elementary
if there is no T-invariant X' of PN such that IX'N S liXIl ( a
proper inclusion ). See [3] for the details of NP-completeness
or NP-hardness. For any nonnegative real number x, let LxJ
denote the maximum integer not greater than x.

Given a Petri net PN=(P,T,E,a,B), we may add a set L of
places, called processor pools, and associate each peL with a
set N(p)cT by adding two edges (p,1),(,p) for any te N(p).
where N(p)~N(p") may be nonempty even if p=p'. This is
often the case with timed Petri nets, where such a transition
te N(p) represents a task to be processed by a processor
denoted by a place p. (See [16-19] for timed Petri nets and
related discussions concerning scheduling problems.) In this
case the original Petri net PN is often called the underlying
Petri net of the resulting one.

3. The Legal Firing Sequence Problem LFS
We explain intractability of LFS and the basic idea of the
approximation algorithm YWLFS, by using an example. Also
summarized are known results on LFS.
First a simple example of LFS is given.

Example 1. Consider the Petri net PN shown in Fig.1, and
suppose that we are given a firing count vector X and an initial
marking Mg as
X=[X(t1).X(12),X(13), X(14)1'=[1,1,1,1]1,
Mp=IMp(p1).Mo(p2).Mp(p3).Mp(p4)1¥=(1,0,0,0]'r.
There is a firing sequence §=t;tpt3tq which is legal on My with
respect to X. There also exist a firing sequence 8'=tt4 which
is legal on this marking M. Clearly & is not equal to X. If we
unfortunately select &' then backtracking is required. For
example, if we choose §' then we reach
Mp'=M[5'>=[0,0,0,1]%,
which is a dead marking. Let M and Xyeg; denote the current
marking and the current firing count vector, and initially we set
MM and XpegeX. We also consider a set of transitions:
F=(te T[Xpesi()>0 and (Ype *)M(p)2a(p,t)).
If F=(t} then the only possible choice is the transitin t, and we
concatenate t at the end of the current firing sequence § as

8¢38-t. The point is how we handle the case where IFi>2, In
this example consider the marking M=[0,1,0,0]r=Mp[t;>.
Then we have F=(t2,t4), and the one avoiding reachability to
dead markings is to be selected. What we are requiring here is a
certain measure showing that t7 is the one to be fired next. The
approximation algorithm YWLFS to be proposed in this paper
computes a value effect(t) for every transition t in F, and
choose a transition tf with effect(tf)=max{effect(t)iteF) as the
one to be fired next. The details of computing effect(t) will be
given later in Section 4. Here we give only the values effect(t),
te {ty,14):

effect(t2)=3 and effect(i4)=0.
Hence 12 is selected as desired. Intuitively speaking, these
values in this example mean the following: if ty is fired once
then the produced token is used in making three transitions
firable, while firing t4 has no such transition. In fact, t3 is
made firable by firing 13, and then both t3 and t4 become
firable after firing t3. (It should be noted that effect(t) does not
always denote the number of such transitions but shows
possibility of their existence.) YWLFS repeats the three
processes in this order: computing effect(t) for all te T, finding
tf with effect(if)=max (effect(t)lte T} and then fire i e

The known results conceming LFS are summarized in the
following theorems.

Theorem 1 [12,13,15]. LFS is NP-complete even if PN is a
consistent free choice net with 1*pi>0, O<Ip*I<2 for Vpe P and
*>0, t*I>0 for Vie T, IMl=1 and X=1 is a T-invariant with
IXI=T.

Theorem 2 {12,13,15]. LFS is NP-complete even if PN, X
and M are restricted to a consistent free choice net, an
elementary T-invariant with IXII=T and a marking with IMi=1,
respectively, satisfying one of (i) through (iii) for ¥pe P and
VieT:

(i) Fpl>0, O<lp*Is2, *1>0, It*] >0 and X=1.

(ii) All edge weights are equal to 1, *pl>0, Ip*1>0, %1150,
It*l >0-and X=1.

(iii) All edge weights are equal to 1, I*pi>0, Ip*l>0
PFplHp*I<3, %1150, t*>0. ¢

Theorem 3 [12,13,15). LFS is NP-complete even if PN, X
and M are restricted to a consistent state machine, T-invariant
and a marking with IMl=1, respectively, satisfying either (i) or
(ii) for VpeP: )

(i) *pl>0, Ip*i>0, some edge weights are greater than 1 and
X=1;

(i) I*pl>0, Ip*I>0, Ip*I+1*pi<3 and all edge weights are
equalto 1.e
For polynomial or pseudo-polynomial time solvability of LFS,
we have the following theorems. The results on persistent nets
by [6] is essentially used.

Theorem 4 [12,13,15]. LFS for a persistent Petri net in the
multi-round firing (for a conflict-free PN in the single-round
firing, respectively) can be solved in O(IPIIX]) (O(IPIITY) time,
where X is a T-invariant of PN if PN is backward conflict-
free.e



Theorem 5 [15]. Given a state machine PN with all edge
weights equal to 1, an initial marking M and a firing vector X,
the recognition version of LFS can be answered in O(IX1)
time, and if the answer is "yes" then there is an O(IXIZ)
algorithm for finding a solutin to LFS.

Remark 1. It should be noted that, with the above notations
of time complexities using (X! in Theorems 4 and 5, they
appear to be bounded by a polynomial function of IXI.
However this is not the case. Since each X(t) takes size
proportional to log2X(t) bits in the input, IXI has size
proportional 10 A=Y, log,X(1) bits. We have
eT
XVA 2 XV(ITllogX) 2 IXV(ITlog!XD),

and the last term is not bounded by any polynomial function of
ITllog!X. That is, IX! is not polynomially bounded by the size
A of input. Nevertheless we use such representation as above
for notational simplicity. Clearly if Xl is bounded by [P, ITI, [El
or a constant then IXV/A is bounded by a polynomial function of
such one of them.

4. Approximation Algorithm YWLFS
The algorithm YWLFS consists of three procedures,
SEARCH_LFS(1f,My,visit,max),
COMP_EFFECTM Xyeg F effect),
FIREM, Xpest)-

YWLFS constructs a firing sequence & such that 3 is as close
10 Xrest (Which is initially set to X) as possible by repeating
procedure FIRE(M,Xesy): the procedure finds a transition tf
such that firing tf once has possibility of making many other
transitions firable (that is, making occurrence of subsequent
dead markings less possible).

The value effeci(t) is a measure to be used in
FIRE(M,Xyegy). that is, a transition t with the maximum
effect(t) is selected as the one to be fired next. Intuitively
speaking, if effeci(t) is large then the tokens produced by firing
t once will necessarily be used in making many other
transitions firable (that is, these transitions cannot fire without
them). Hence we may expect that firing such t will avoid
occurrence of subsequent dead markings. For each te T, the
value effect(t) is computed in
COMP_EFFECT(M,Xeg.Feffect). The procedure first
computes two values max(p) for each pe P and visit(t) for the
transition t in SEARCH_LFS((,MV,visil,max). where
My=MIt> and SEARCH_LFS(1,My,visit,max) is a depth-first
search tracing edges in their direction. It also gives a maximal
set of transitions t such that tokens produced by firing tf and
subsequent firing of other transitions are used in making t
firable. The value visit(t) denotes maximum possible number of
firing of t starting from My if tatf or from M if 1=tr. The value
max(p) denotes maximum possible number of tokens that can
be brought into p after firing of tf starting from M. Computing
effect(t) requires two more values supply(p) for pe P and
rate(t’) for t'e T. The value supply(p) is given by

supply(@)=( Y, B.p)visit®)/ (Y, BB Xres(V)),

€*p €*p
where both the numerator and the denominator denote the

number of tokens brought into p through firing each te *p with
Xrest(t)>0 by visit(t) times (which is maximum possible from
My) in the former and Xpeg(t') times in the latter. The other
value rate(t’) for t'e T with Xreg(t)>0 is given by

rate(t)=( Y, a(p.t)-count’supply(p))/( 2, o(p.t)),
pe*r pe*t
where count'=min{l(max(p)+My(p))/olp,t’)Jvisit(t)}, both
the numerator and the denominator are the total number of
tokens to be deleted by firing t' count' times in the former and
once in the latter, and the numerator is expected to represent the
number of tokens deleted among those brought into places
pe *t after created by firing t' count' times. Now the value
effect(t) is defined by
effect(t)= Y, rate(t).
veT
We can expect that if t has large effect(t) then firing t creates
tokens that will be necessary in making many other transitions
firable subsequently. Hence FIRE(M,Xyegt) selects t having
maximum effect(t) as the one to be fired next.
We give Example 2 showing compution of these values in
the problem of Example 1.

Example 2. If M=Mp and X;eg=X then F={1;} and we
immediately obtain
M=[0,1,0,0]F and &=t;.
In the next step,
F=[12,14), Xrest=[0,1,1,1}tF, My=[0,0,0,01%f
and we get the following values as given below. If ty=ty then

Pi1 P2 P3 P4 1213 4
max 0 1 1 1 |visit 0111
Beum 0 1 1 1 agm O 1 11
B 0111 o 0111
supply 0 1 1 1 rae 0111
count' O 1 1 1
and
effect(tp)=3.
On the other hand if tg=tq then
P1 P2 P3 P4 B3y
max 0 0 0 1 visit 0001
Bsum 0 1 1 1 ogym O 1 1 1
g’ 00 01 o' 0 00O
supply 0 0 0 1 e 00 00
count' 0 0 0 O
and
effect(14)=0.

Hence 13 is fired next and we obtain §=tqtp. Similarly the
desired firing sequence 8=t]t21314 is obtained. ¢

The formal description of YWLFS is as follows.

procedure SEARCH__LFS(tf,MV,visit,max);



/* computes max(p) for each p and visit(ty): max(p) denotes
maximum possible number of tokens that can be brought into p
after firing of ty on M; visit(t) does maximum possible number
of firing of t starting from My if t=tf or from M if 1=tf */
begin

1. for each p'etf* do

begin
2. tempe—visit(te)-B(f,p’);:

/* computing the value max(p’) */
3. if (max(p') < temp) then max(p’)«temp;

/* #iokens brought into p' */

4. for each t'ep'* do

begin
5. temp'«o(p',t')-visit(t');

[* #tokens deleted from p' */
6. counteXrag(t') - visit(t');

/* count>0 if and only if X;eg(1)>0 and
visit(1)<Xrag(t) */
7. if (count>0)A
(My(p)<temp'+a(p’.t)Smax(p")+M, (")
/* tokens produced by firing tf visit(tf) times are
required in making t' firable */
then
begin /*updating visit(t') and repeat
SEARCH_LFS starting from ¥/

8. keL(max(p’) + My(p)) - temp’) / a(p',t)J;
9. if (count > k) then countek;
10. visit(t)e—visit(t) + count;
11. if (count > 0) then
SEARCH_LFS(' My,visit,max)
end
end
end
end;

procedure COMP_EFFECT(M,X g F.effect);
/* computes effect(t) */
begin
1. for each treF do
begin
2. for each pe P do
begin
max(p)«~0; supply(p)«=0; Bsum(p)«-0; B'(p)«0
end;
3. for each te T do
begin
visit(t)e-0; rate(t)«-0;
Otsum(t)«0; o'(t)«0
end;
4. counu--xresl(tf);
5. for each pe *tf do
if (count > [M(p)/a(p,ip))) then
counteL M(p)a(p.ip).;
6. visit(tf)«—count; /* maximum possible number
of firing of t starting from M */
7. for each pe P do /* defining M{, */
if pe *1f then My(p)<M'(p)-a(p,tf)
else M, (p)«—M'(p);
SEARCH_LFS(if,My,visit,max);
9. for each pe P do /* computing supply(p) */

o

begin
10. for each te *p with Xpeq()>0 do
begin
11. Bsum(P)‘—Bsmn(P)‘*‘B(QP)‘Xres[(l);
12. B'(p)ePB'(p)+B(L.p)-visit(t)
end;
13. supply(p)«B'(P)/Bsum(p)
end;
14.  for each te T with Xpag(t)>0 do
/* computing rate(t) */
begin
15. for each pe *1 do
begin
16. ) coum'(-—max[L(max(p)+Mv(p))/0.(p,t)J.
visit(t)};
17. Ogum(DeOgum®)+a(p,t);
18. o'(t)e—o/'(t)+a(p,t)-count'-supply(p)
end;
19. rate(t)ye—a'(t) / agum(t)
end;
20.  for each te T do effect(tp)e—effect(if)+rate(t)
end
end;
procedure FIRE(M, X egt):

/* repeats finding a transition t with
effect(t)=max (effect(t')lt'« T}, and executes firing
of t on a current marking M */
begin
. Fe{te T[Xe5(1)>0 and (Vpe *)M(p)2a(p,t)};
2. while (IFl # 0) do

—

begin
if [Fl = 1 then next_te-te F;
3. else
begin
4. for each te T do effect(t)e0;
5. COMP_EFFECT(M,Xeg F.effect);
/* computes effect(t) for all te T ¥/
6. -~ effect_max«0;
/* finding max {effexct(t)lte T} */
7. for each te T do
8. if (effect_max < effect(t)) then
9. begin cffect_maxe—effect(t); next_te—t

end
end;

/* next_t has effect_max=max (effect(t)teT) */
10.  Xpeginext_t)eXpeg(next_t) - 1;
11.  MeMinext_t>; Sednext_t; /*concatenation®/
12, Fe-{te TiX oq()>0 and (Vpe *)M(p)2a(p,t)}

end

end;

algorithm YWLFS;
/* input: PN, Mg and X */
/* output: § and Xreg" */
begin
. 2,
. for each pe P do M(p)«M(p);
. for each te T do Xpeg()e—X(1);
. while (Xpegi(t) = 0 for some te T) do

BN e



5. FIRE(M,XresD:

6. Output § and Xpegp

* if Xpeg(t)#0 for some t then finding a solution is failed */
end.

It is clear that YWLFS finds a firing sequence & that is legal on
My, since procedure FIRE(M, X es) chooses a transition
next_t that is firable on a current marking M with
Xrest(next_t)>0. Time complexity of the procedures are
summarized as follows:

SEARCH_LFS OX-ED,
COMP_EFFECT OX-IX\El),
FIRE OX-IX12-IEl),

where X=max {X(t)le T} and X! denotes the total sum of X(t),
Vte T. Hence time complexity of YWLFS is

OCXIXI2ATHE.
Note that YWLFS is a pseudo-polynomial time algorithm.

5. Experimental Results

We have implemented YWLFS on a workstation SUN
SPARC station by using the C programming code. All the test
problems are taken from those which are constructed and have
been used in our research such as [16-19], where it is
described how they are generated. The underlying Petri nets are
either state machines or general Petri nets. It should be noted
that existence of a solution to each of these problems is
guaranteed. Hence capability of YWLFS can be shown by
means of results obtained by aplying YWLFS to these
problems. Experimental results show that YWLFS is a
promising algorithm.

We first summarize the number and sizes of test problems
as well as some statistical data.

(1) The number of test problems:

underlying Petri nets(upn) #test problems

state machines(sm) 1800
general Petri nets(gn) 381
total 2181

(2) Sizes of Petri nets:
upn 1P| IT| |E| X -
sm 5<IPl90  9<ITi<99 34<IEI<554  9<IX1<297
gn  15<IPi<97 13sITI97 67sIEIS536 13<1X1<291

(3) Firing count vectors X:
=kX' for k=1,2,3, and X'=1 (X'(t)=1 for vteT).

(4) Successful cases (where YWLFS finds solutions):
upn #cases ratio (= #cases / 2181)

sm 1765 98%
gn 285 75%
total 2050 87%

(5) Unsuccessful cases:

upn #cases average of ratio 181/1X

sm 35 94%
gn 9% 64%
total 131 2%

A part of other experimental results are shown in Table 1.
Other statistical data are given in Figs. 2 through 5, and in
Table 2. shows in the column "Success" the total number of
successful cases out of 600 (out of 127, respectively) test
problems, each having statc machines (general Petri nets) as
underlying Petri nets, for each value of k, k=1,2,3. The

column "Ave. ratio” denotes average ratios (=I5/IX]) over all
600 (127) test problems. The column "Success" is
schematically shown in Figs. 2 and 3. Fig. 4 (Fig. §,

respectively) shows average ratios (=I5/1XI) as well as the total
number of unsuccessful cases out of 600 (out of 127) test
problems, each having state machines (general Petri nets) as
underlying Petri nets, for values of IXI.

6. Concluding Remarks
Experimental results show that YWLFS is a very promising
approximation algorithm: it finds solutions to 2050 problems
(94%) of 2181 test problems for which existence of solutions
are guaranteed. Theoretical estimate of worst approximation by
YWLFS, as well as providing more experimental results, is
left for future research.
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Fig. 2. A bar-graph representation of the
column "Success" of Table 2 for the cases
having state machines as underlying Petri
nets.
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Fig. 3. A bar-graph representation of the column "Success” of
Table 2 for the cases having general Petri nets as underlying
ones. )
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Fig. 4. Average ratios (=[8/1Xl) as well as the total
number of unsuccessful cases out of 600 test
problems, each having state machines as underlying
Petri nets, for values of 1XI.
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Fig. 5. Average ratios (=I8)/1XI) as well as the total
number of unsuccessful cases out of 127 test
problems, each having general Petri nets as
underlying ones, for values of IXI. ’



Table 1. A part of our experimental results. The
columns "#DATA", "I", “Ratio” and "Time"

denote data identification, the length (3! of firing
sequences 8 found by YWLFS, the ratio 18/1X] and

CPU time in 1/60 second, respectively, and the
other columns are self-explanatory.

Table 2. Other statistical data. The column
"Success” shows the total number (and its ratio in
parenthesis) of successful cases out of 600 (out of
127, respectively) test problems, each having state
machines (general Petri nets) as underlying Petri
nets, for each value of k, k=1,2,3. The column

"Ave. ratio” denotes average ratios (=I8XID) over all
600 (127) test problems.

Ratio

0.962

1.000

0.633

1.000;

1.000)

0.865

1.000

1.000|

1.000

0.961

1.000|

1.000|

1,000

1.000

0.385|

1.000

1.000

1.000

0.775

0.813

1.000

1.000|

1.000)

1.000

1.000

1.000|

1.0001

1.000

0.703

1.000|

1.000

1.000

sm1.105.pn 1.000/
sm1.142.pn 1.000
sm1.144.pn 1.000|
sm1.156.pn 1.000|
sm1.175.pn 1.000
sm1.180.pn 1.000
sm1.193.pn 1.000
sm1.199.pn 1.000
fsm1.23.pn 1.000
sm1.35.pn 1.000
'sm1.36.pn 1.000|
lsm1.52.pn 1.000!
lsm1.67.pn 1.000f
sm1:68.pn 1.000
sm1.84.pn 1.000]
sm1.97.pn 1.000]
sm2.108.pn 1.000]
sm2.110.pn 0.875
sm2.142.pn 1.000
sm2.147.pn 0.800|
sm2.175.pn 1.000
sm2.180.pn 1.000
sm2.19.pn 0.971
sm2.26.pn 1.000;
sm2.36.pn 1.000
sm2.55.pn 0.957
sm2.59.pn 0.957]
sm3.43.pn 1.000
sm3.43.pn 1.000
sm3.49.pn 1.000
sm3.86.pn 1.000/

State machine (600data)

General net (127data)

k Success Ave. ratig Success Ave, ratid
1 587 (97.8%) 0.998| 113 (89.0%) 0.970
2 590 (98.3%) 0.999 94 (74.0%) 0.911
3 588 (98.0%) 0.999| 78 (61.4%) 0.846




