7 A = ¥y X & 37—3
(1994. 1. 25)

B/ B EE AR ICS T 3 FHLE T =Y X 4

o gty T omm e

T(Bk) ST BIVERT HBERIER
= 350-03 EEI HABHUSLLRTHRE 2520

{atsuko,nakano}@harl.hitachi.co.jp

bR A R DT R
T 812 1R R4S 6-10-1

miyano@rifis:sci.kyushu-u.ac.jp

R/ EEEAR (Minimum Common Supertree) FE X5 2 b 7 <At

R EOROEECH L. TOLTOAREHIKRKE LCELAEE D
DARERDBEETCH 5, COMER NP BtAMETHZ C L HAREINAT
b, ARETH. CofBECT 2 LEAREIUT A=) Xa%54 5,
Ehic, ZOTATY XA Ko THRERDOL + 1/(2k - 2) B TOKRE &
DIFZRDDLCENTEDLLLERRT . Ty TOFPUT AT Y X4 %A F
EL, WFREEIT A=Y X4k LCORERS M T %,

A Parallel Approximation Algoritlm1
for the Minimum Common Supertree Problem

Atsuko Yama.guchiJf Koji Nakano! Satoru Miyaunoi

t Advanced Research Laboratory, Hitachi, Ltd.
Hatoyama, Saitama 350-03, Japan

, iResearch Institute of Fundamental Information Science
Kyushu University 33, Fukuoka, 812, Japan

The minimum common supertree problem is a problem to find a minimum

. k-ary common supertree for a given set of labeled complete k-ary trees.

This problem was shown to be NP-hard. This paper gives a polynomial-

- time approximation algorithm for the problem. The algorithm constructs a

common supertree of size at most 1+1/(2k—2) times as large as a minimum

one. Furthermore, a parallel version of this algorithm, an NC approximation
algorithm for the problem, is shown.

1 Introduction

The shortest common superstring problem is to find
the shortest string u that contains all strings in a
given set S as substrings. This problem is known to
be NP-complete [2, 3]. There have been some studies
on approximation algorithms for the shortest com-
mon superstring problem [1, 5, 7, 8]. In particular,
it is shown in [1] that a simple greedy algorithm pro-
duces a common superstring of length at most three
time as large as the length of shortest common su-
perstring.

This paper deals with the minimum common su-
pertree problem, a generalization of the shortest com-
mon superstring problem. Let a iree over L be a di-

rected tree whose edges are labeled with symbols in .

an alphabet T. A k-ary tree is a tree such that each
vertex has at most k children. A complete k-ary tree
is a tree such that every internal vertex has exactly
k children and the leaves are of the same depth. For
a set T of complete k-ary trees, a common superiree
for T is a k-ary tree such that each tree in T is a sub-
tree of it. The minimum common superiree problem
for complete k-ary trees (abbreviated as MCSP(k)) is
defined as follows:

INSTANCE A finite set T of complete k-ary trees
over some alphabet £,

PROBLEM Find a k-ary tree S with the minimum
number of edges such that each tree in T is a
subtree of S.

The problem MCSP(1) is essentially the same as
the shortest common superstring problem. Hence,
MCSP(k) is a generalization of the shortest common
superstring problem.

We can consider two cases: given trees are ordered
or unordered. An ordered tree and an unordered tree
are trees so that children of every internal vertex
in it are ordered and unordered, respectively. It is
easy to determine whether or not two ordered trees
over T are identical: Each edge of one tree corre-
sponds to an edge of the other tree in accordance
with the order of children. Then, the two trees are
identical iff they have the same label for every cor-
responding edges. But, it is not particularly easy
to determine it for two unordered trees, because the
order of children is undefined. However, we can con-

vert an unordered tree to an ordered one such that’

two unordered tree are identical iff the converted or-
dered trees are identical. The conversion, that shall
be shown in Section 2, runs in polynomial sequen-
tial time and in poly-logarithmic parallel time using
a polynomial numbers of processors. Therefore, by

converting the unordered trees into ordered trees be-
forehand, the unordered version of the problem can
be converted to the ordered version. Therefore, we
do not have to pay heed of whether the children are
ordered or unordered.

This paper deals with MCSP(k) for k > 2. It was
shown that MCSP(k) is a NP-hard problem for every
k > 2 [9]. If P#NP that is a widely accepted conjec-
ture, there exists no polynomial-time algorithm for
MCSP(k). Thus, it is interesting to find an approxi-
mation algorithm that computes a small common su-
pertree for an MCSP(k) instance: The common su-
pertree computed by the algorithm is not always the
minimum one, but the number of edges of it is not
particularly large compared with the minimum one.

Section 2 is a preliminary for a polynomial-time al-
gorithm for MCSP(k). We show a polynomial-time
approximation algorithm in Section 3 and evaluate
the error bound of it in Section 4. The common su-
pertree computed by the algorithm is at most 1+ 2—‘71_—2
times as large as the minimum common supertree.
Section 5 shows a parallel version of the algorithm
with running time O(log® n) using n® processors. The
error bound of the algorithm is the same as the serial
one.

2 Preliminary

This section prepares some definitions for an approx-
imation algorithm. For a k-ary tree s, |s| denotes the
number of edges in s. Let label(e) denote a label of
an edge e. For any alphabet X, we can fix an order
of elements in ¥ easily. Then, we suppose an order
of elements in an alphabet.

Difinition 1. Let s,t be ordered complete k-ary
trees over an alphabet £ with height 4, and r, and »,
be the roots of s and t respectively. We denote s <1
if s and ¢ satisfy the following conditions:

1.If ¢ = 1: let ay,...,ar and by,..., b
denote edges sorted according to their la-
bels in the order of £ in s and t respec-
tively. Then label(a;)---label(ar) is less than
label(by) - - - label(b;) in lexicographic order.

2. If i > 1: it is supposed that < is well-defined for
complete k-ary trees over T with height ¢ — 1.
We consider a subtree p. of a complete k-ary
tree p over T with height ¢ composed by an edge
e = (r,v) where » is the root of p and a subtree
ge rooted at v. Then we denote e <ree € if
label(e) < label(e') or label(e) = label(e’) and
ge < qer. Let a1,...,a; and by, ..., by be edges

Figure 1: Sorting of unordered tree over {a, b, ¢, d}.

sorted in order of <;.. in s and ¢ with depth 1,
respectively. Then ay ---ay is less than by - .. by,
in the lexicographic order of <;,..

Difinition 2. An ordered tree { over ¥ is called
sorted if ay <yrge G2 Siree .. <tree @y for the edges
ay,...,a; starting from the root of £.

As shown in Fig. 1, an unordered tree t can be con-
verted to the sorted ordered tree sort(t). The con-
version can be done in O(Jt|) time. Moreover, the
conversion can be also performed in O(log|t]) time
using |t| processors on the PRAM by sorting in the
bottom-up way.

Lemma 1. Let T be a set of unordered complete k-
ary trees over an alphabet ¥ and 7" the set of sorted
trees in T. That is, 7" = {sort(t) |t € T}. Then, the
number of edges in a minimum common supertree for
T is equal to that for T”.

Therefore, we assume that every tree is converted
beforehand in the unordered version of MCSP(k).

Difinition 3. A set T of trees is called reduced if no
tree in 7" is a subtree of another tree in 7".

Let T be a set of complete k-ary trees. Then
T"=T~{t|tis a subtree of some s € T" with s # ¢}
is obviously reduced. The minimum common su-
pertree for T is also that for 7¥. Furthermore, T"

Figure 2: The tree s = ¢. ouv(s LR t) =2

is computable from 7" in polynomial-time as well as
in poly-logarithmic time using a polynomial number
of processors. Therefore, without loss of generality,
we assume that T"is a reduced set of complete k-ary
trees. ‘

For complete k-ary trees s and ¢, we introduce the
following notations: ‘

1. s % t denotes a common supertree for s and ¢
so that the root of ¢ is identified with a vertex v
of s, provided that every pair of corresponding
edges of the two trees has the same label(Fig. 2).
If there is a pair of corresponding edges whose
labels are different, s - t is undefined.

2. For defined s > ¢, ou(s - t) denotes |s| + [t] —
[s % t|, the number of pairs of corresponding
edges in s = t. ou(s >) is called the overlap
of t on s at v.

A complete k-ary tree over:¥ is denoted by t =
(v(t), e(t)) where v(t) is a set of vertices, e(t) is a set
of labeled edges (u,',!) (u,u' € w(t),l €) con-
necting two vertices v and v’ in v(t) with label I. For
a set T of complete k-ary trees, let Vp = User v(8).
Without loss of generality, for any ¢,¢/ in T, we as-
sume v(t) N v(t') = 0. Now we define the over
lap graph Gs that expresses a common supertree S
for T as follows: Gs = (T,Es) is a directed la-
beled graph such that Es is a subset of the edge set

{(t,t',u) | t,¢' € T,u € v(t)} satisfying the following
conditions:

(1) For all (t,t’; u) in Eg, t = t' is defined.
(2) Gs = (T, Es) is a directed spanning tree,

(3) For any t,t' € T, if both (s,¢,u) and (s,t’,u’)
are in Ey, the two vertices u and u’ is not on a
single directed path of s.

For every € = (t,t',u) € Es, the-edge e express that
t is put in ¢’ such that the root of ¢’ is identified with
the vertex u of t.

It is clear that an overlap graph Gs can be deter-
mined uniquely from a common supertree S. Con-
versely, for a labeled directed tree G = (T, E), we
shall prove that we can construct a common supertree
for T corresponding to G if G satisfies the conditions
(1), (2), and (3). The proof is based on the induc-
tion on the size of the graph. That is, we assume
that a common supertree can be constructed from
every labeled directed spanning tree satisfying the
three conditions whose size is less than that of G,
and shall show that a common supertree can be con-
structed from G. Suppose that G is separated into
some subtrees by removing the root from G. Then,
each of them satisfies the three conditions. Hence,
from the inductive assumption, we can construct a
common supertree for each subgraph. For each sub-
graph, there is an edge between the root of it and
that of G. Since G satisfies the three conditions, the
common supertree for each subgraph can be placed
on the tree corresponding the root of G in accordance
with the edge. The tree thus obtained is the common
supertree for G. ‘

For an overlap graph Gs = (V, E), let SIZE(Gs)
be the number of edges in a common supertree S and
IGsll = Z ov(s = 1), the sum of the overlap.

(s.t,u)€E :
Let n = 3., [t], the total numbers of edges in T.
Then we have,

Lemma 2. For an overlap graph Gs = (T, Es) of a
(reduced)-set T' of complete k-ary trees, SIZE(Gs) =
n — ||Gs]| holds.

Therefore, the problem MCSP(k) corresponds to
the following problem:

INSTANCE A finite set T of complete k-ary trees
over some alphabet I.

PROBLEM Find an overlap graph Gs = (T, Es)
with maximum [|Gsl|. i

3 Approximation algorithm

This section shows a polynomial-time approxima-
tion algorithm that computes an overlap graph G =
(T, E) for a given set T of complete k-ary trees.

The algorithm determines the overlap graph based
on the greedy technique. It has |T'| — 1 phases. In
each phase, it select (s,t,u) such that ov(s St} is
the maximum value on the condition that

(a) s =1 is defined,
(b) G = (T,EU{(s,t,u)}) is a directed forest,

(c) For any (s,t,u') € E, the two vertices u and v’
is not on a single directed path of s.

Then, (s,t,u) is added to E. After |T| — 1 iterations
of this phase, an overlap graph can be ‘obtained.

The algorithm GreedyOverlap is formally written
as follows: The algorithm uses a table of (s,t,u)
where s,t € T and u € V. Each element of the table
has the capability of storing the value of ov(s. = t)
and keeping one of two status candidate and defeated.
Initially, every element is candidate.

Step 1 Let £ = 0. For each element (s,t,u) of the

table, compute ov(s — t) and store it to the
table.

Step 2 Repeat the following substeps |7 —1 tilﬁ,es:

Step 2.1 For every element (s,t,u) in the table,
determine it satisfies conditions (a), (b),
and (¢). If it does not satisfy every con-
ditions, its element becomes defeated.

Step 2.2 Select (s,t,u) such that ov(s L) is
the maximum over all candidate elements.

Step 2.3 Add (s,t,u) to E.

For each s, 1,1, ou(s — 1) can be computed in O(n)
time. Since u is a vertex in s, the size of table (s, u)
is less than n. Then, Step 1 takes O(|T|n?) = O(n®)
time. For each s,t,u, it takes constant time to de-
termine whether or not the condition (a) is satisfied
by looking.up the table. By using the depth-first
search technique, O(n) time is sufficient for the con-
dition (b). Since the number of the ancestors of u
is at most logn, O(|T|?logn) = O(n?logn) is suf-
ficient for the condition (c¢) by looking up the table
for each ancestors. Hence, for each s, ¢, v, O(n?logn)
is sufficient for the three conditions and Step 2 takes
O(|T|n*log n) = O(n®log n). Therefore, we have

Lemma 3. GreedyOverlap runs in O(n® log n) time.

4 FError bound

We prove the upper bound of the size of the solu-
tion obtained by using the approximation algorlthm
GreedyQverlap.

For a glven set T' of complete k-ary trees, let S,
be a minimum common supertree for T, and G's,,, =
(T, Es,,,) the overlap gr aph of Sopt- Furthermore, let
Sand Gs = (T, Es) be a common supertree for T and
the overlap graph of S computed by the algorithm
GreedyOverlap. The main theorem of this section is
the following:

Theorem 4. For Gs and G, , defined above,

opt

SIZE(Gs) < (1+ S‘IZE(GSO,,)
In other words, the size of the common supertree
computed by the algorithm GreedyOverlap is at most
1+1/(2k - 2) times as large as that of the minimum
common supertree.

Theorem 4 can be proved by using the followmg
Lemmas 5 and 6:

Lemma 5. For any overlap graph Gs = (T, Es) of
a set T of complete k-ary trees, the relation ||Gs|| <
n/k holds. .

Proof. Let A(t) denote the height of a k-ary tree
t. Then, [t] = k' + k2 + ... 4 kM) = (kB4 _
k)/(k — 1). For any (s,t,u) € E, we have ou(s —
t) < ("™ — k)/(k — 1) < |t|/k. Furthermore, for
any t € T, there is at most one tree s that satisfies
(s,t,u) € E. Therefore, we have

61 = 30 ous &ty <3 sk
(s,t,u)eE (s,t,u)eE
< Dok < njk
teT

=}

Lemma 6. For Gg and Gg,,, mentxoned above,
lGs., |l < 2liGs]| holds.

Proof. Toevaluate the overlap of G5 relative to that
of Gs,,,, let us trace the algorithm GreedyOverlap.
Let e; = (84,2, u;) (1 4 < |T|—1) be the edge added
to E such that the root of ¢; is identified with the ver-
tex u; of s; at the i-th iteration of Step 2.3. Suppose
that the algorithm transforms Gs,,, into G as fol«
lows: Let Gy = GSO,,HGl;G') .. GIT("”GITI 1 =
Gs be the sequence of .graphs such that G;_; is
transformed into G;. To transform G;_; to Gy, the

edge e; = (si,i,-,ui) is added into Gj_;. Further-
more, some edges are removed from G;_; and some
edges are added to G;_; so that the graph G; ob-
tained may satisfy the conditions (a), (b), and (c)
and [|Gil| > ||Gi-1]] — ov(e;) may hold.

We shall show how to transform from Gi_1 into
G;. If ¢; is an element in E;_;, let G; = G;_,. Then,
G; satisfies obviously the conditions (a), (b), (c), and
IGill 2 ||Gi-1]| — ov(e;) hold. Hence, from now on,
we assume that E;_, does not have e;. Next, let us
focus on the two cases whether or not F;_; has an
edge e} = (s',t;, u').

Fust‘. we consider the case that F;_, does not have

: To begin with, e; = (s;,%;,w) is added to E;_;
and e; is removed from E;_; to satisfy (b). Let F;
be the set consists of every edge (si,t',u') in E:_;
satisfying the condition that v’ is a descendant of u;.
To satisfy (¢), remove all edges in F; from E;_,. Note
that there is no edge (s;,t';v') in E;_; such that ’
is an ancestor of u;. Otherwise, the algorithm must
select (s;,1',u’) to add E;_; in stead of e; because
ov((si,1',u")) > ov(e1). G; thus obtained may have a
cycle. Hence, we select an edge ¢; in £;_; such that ¢;
is on the cycle and for all j (1 < j <i), c; #¢;. For
such an ¢;, weremove ¢; from E;_;, and E;_ satisfies
(b). Note that ov{e;) < ov(e;) holds. Otherwise the
algorithm must select ¢; in stead of e; to add E;_;.
Then, let E; be E;_; thus obtained; and we have

IGill = |IGicil] + ov(es) — ov(F) — ov(cy)
2 |Gzl = ov(es), ’

where ov(F;) denotes 3, . ou(t).

Secondly, we consider the case that E;_; has e}
Similarly to the first case, e; is added to E;_;, and
F; and ¢; are removed from E;_;. Then, e} is removed
from E;_;. Furthermore, we add every H; to E;_4
where H; is determined as follows: For each removed
edge (s;,t',¢') in F;, we can find the vertex u” of &'

such that s ’—‘—L,t’ is defined if corresponding vertex
of u exists in s’ and otherwise «’ is an arbitrary leaf
of s'. Let H; be the.set of all corresponding edge
(s",¢',u") to (s;,t',u'). Then we have the following
Fact:

Fact 1. ov(e;) + ov(H;) > ov(el) + ov(Fy).

Proof. Let H; = {fi,...,fi}, and F; =
{fis--, f{}(Fig. 3). Let h(e;) and h(f}) .be the
heights of the subtrees of s corresponding to the edges
e; and f;, and h(e!) and h(f;) the hexghts of the sub-
trees oft corresponding to the edges e} and f;, respec-
tively. Then, we see L(f;) > h(e!) + h{f}) — h(es).
Moreover, since the subtree of s cmrespoudmg to

Figure 3: The trees expressed by the edges el =

(5,0), ff = ("), ei = (s.1), fi = (s,1) .

the edge e; includes the subtrees corresponding to
the edges f/ as they do not overlap each other,

Z kU5 < k¢ holds. Therefore,

155<1 ,
ov(e;) + ov(H;) — ov(e}) — ov(Fy)
Cphed g ERUD — k
k-1 e k-1
kh(e';) —k kh(f}) -k
k-1 l'stI k-1
JLICH N Eh(eDFR(I)=hed) _
. 2 -
k-1 Ve k-1
EhCeD) — & KU _k
TE-1 e TR
Ehe) — BA(eD) 4 (kMeD=heD — 1) 3 kAU
_ 1gig!
- k-1
Eh(ed) _ Eh(ed) 4 (kh(e’i)-h(ef) — 1)kh(e)
- ‘ k-1 .
= 0
(m]

Then, we have,
NGl Gi-1ll + ov(es) — ov(e:)
: ~ov(F;) + ov(H;) — ov(ci),
1Gi-all = ov(es),
NGi-all = ov(es)-

Il

vV IV

bl/:\b 57\a a’/\a
AN AN SN
d Y 4 d %y 4 %4 v 40D

Figure 4: The set T of complete k-ary trees.

t
b/\b !

d % 4
Figure 5: The minimum supertree for T
b b
Tty
aAa k>¥ l
Ao N :
a/ \d a/ \a
d % 4D

VAN 7\
Figure 6: The worst case using GreedyOverlap.

From this relation, we have,

IT|-1
1Gs.. I < lGslt+ > ov(e:)
i=1
< 2|iGsll.

a

Now we shall give the following example showing
that the result of Lemma 6 is best possible for the
algorithm GreedyOverlap.

Example 1. Let T be a set of complete k-ary trees
over & = {a,b,¢,d} shown as Fig. 4. The overlap of
the minimum common supertree for 7" is 4 (Fig. 5).
However, the algorithm GreedyOverlap may select
the edge at first as Fig. 6. Then, the overlap of this
common supertree is 2, the half of minimum one.

Theorem 4 can be proved as follows:

Proof of Theorem 4.

Step 2 Repeat the following substeps until |E| =
|7 - 1.

Step 2.1 For every element (s,7,u) in the table,
determine whether or not it satisfies condi-

“tions (a), (b), (c).

Step 2.2 Compute the maximum overlap of all
edges satisfying the three conditions and se-

SIZE(Gs) n — l|Gs|]
rom Lemma 2
SIZE(Gs,,.) n—||Gs,,.l v :
' i '
< 2 entl] from Lemma 6
n —||Gs,,.|l (:
1 .
< 1+ T (from Lemma 5)
0

5 Parallelization of Greedy-
Overlap

This section shows the ParallelGreedyOverlap, a
parallel version of the GreedyOverlap, that solves
MCSP(k) in poly-logarithmic time using polynomial
numbers.of processors on the CRCW-PRAM.

Before showing the ParallelGreedyQOverlap, we re-
view the GreedyOverlap. The GreedyOuerlap has |T|—
1 phases. In each phase, a single edge of the overlap
graph is determined as follows: The largest overlap of
all edges satisfying the three conditions is computed,
and one arbitrary edge is selected among the edges
whose overlaps are equal to the largest overlap.

The ParallelGreedyQuverlap simulates the Greedy-
Overlap. Let Vi be the set of edges whose overlap
is the largest of all edges satisfying the three con-
ditions. The edges in Viy must be selected simulta-
neously to attain the poly-logarithmic time. Let E
be the set of the previously selected edges. For the
simultaneous selection, a graph U = (Vu, Ey) such
that By = {{(s,¢,u),(s",¢,v)) |t =t or u = w'} is
constructed and a maximal independent set I of U/ is
computed, i.e., I is a maximal subset of Vi such that
no two vertices in I are not joined by an edge in Ey.
If all edges of an overlap graph corresponding to ver-
tices in I would be selected, the selected edges may
make cycles. This violates the condition (b). Hence,
to break the cycles, the weighted graph is constructed
such that the edge set is £U T and the weight of each
(s,t,u) in I is 2 and that in E is 1. For the graph,
the minimum spanning forest is computed. From the
assignment of the weight, every edge in E is included
in the minimum spanning tree, and some edges in [
are removed. Then, every edge of I in the spanning
forest is added to E. This selection is repeated until
IT| — 1 edges are selected.

The ParallelGreedyOuverlap is written as follows:

Step 1 Let E = (. For each element (s,%,u) of the
table, compute ov(s = t) and store it to the
table.

lect edges with the maximum overlap. Let
Vu be a set of the selected edges.

Step 2.3 Construct a graph U = (V, Ey) such
that Ey is a set {((s,t,u), (s, t, W)t =
t' or u = u'} of edges.

Step 2.4 Compute the independent set I of U/.

Step 2.5 Construct the weighted graph such

that the edge set is £ U I and the weight
of each (s,2,u) in I is 2 and that in Eis 1.

Step 2.6 Compute the minimum spanning for-
est of the weighted graph. Then, let E be
“the set of edges in the spanning forest.

In the ParallelGreedyOverlap, previously known al-
gorithms are used:

MSF(Minimum Spanning Forest) For a graph
G = (V,E), the minimum spanning forest of
G can be computed in O(log® [V]) time using
O(JVI*/1og? |V|) processors [4]. Using this algo-
rithm, it can be also determined whether or not
‘the graph has cycles.

MF (Maximum Finding) For given n integers, the
maximum of them can be computed in Ologn)
time using n processors [4).

MIS(Maximal Independent Set) For a graph
G = (V,E), the maximal independent set of
G can be computed in O(log?|V|) time using
O(IV|El) processors [6]. :

Using the algorithms above, we shall evaluate the
computing time of the ParallelGreedyOverlap. Since
the equivalence of two trees can be determined in
constant time by assigning a processor to each edge,
the values of ov(s — t) for each element (s,t,u) of
the table can be computed in constant time using
[s| + [t] = O(n) processors. Since the size of tables
(s,u) is O(n), Step 1 takes constant time using at
most O(n) x [T|n = O(n?) processors. For each ele-
ment (s,t,u), the decision of the condition (b) can
be performed in constant time using a single pro-
cessor by referring the table. The decision of the
condition (b) can be done in O(log® n) time using

O(n?/ log® n) processors. The decision of the cond1-
tion (c) can be done in constant time using n? pro-
cessors by refelrmg to E and s. Thus, Step 2.1 can
be done in O(log® n) time using O(n?) x n? (125)
processors. Step 2.2 takes O(log n) time using n® pro-
Cessors. Smce IVU| < n3, Step 2.3 takes constant
time using n® x n? = n® processors. Step 2.4 takes
O(log® n) time using n® processors. Since elements
in I are distributed in n® space, Step 2.5 can be
done in O(logn) time using n® processors. Since
the wexghted glaph has at most n nodes, Step 2.6
can be done in O(log®n) time using O(n’/ log?n)
processors. Therefore, each iteration of Step 2 takes
O(log® n) time using n6 processors.

It remains to- show. that Step 2 is repeated at
most poly-logarithmic times. Let m; and U; be the
maximum overlap and U computed at the i-th it-
eration, respectively. Let E; denote E just before
the i-th iteration. Each m; takes one of the values
of £(0), f(1),..., f({logn]) where f(h) is the num-
ber of edges of a complete k-ary tree with height h,
(k" &)/ (k—1) for each h (0'< h < {logn|). Further-
more, my > Mg > - -+ > my holds where ¢ is the num-
ber of the iteration. Let us consider the subsequence
mj, mjq1,---,my of m’s such that mj_y > m; =
mjqy = -0+ = my > myigr. Then, observe the con-
nected components of Ej, Ej41, ..., Ejr41. Fix a con-
nected component of £j-;1. The component may be
separated into two or more connected components on
E;. As computing Ejy1, Ejg2, .., Ejry1, these con-
nected components are merged, and finally, they are
merged into one component. Furthermore, in each
iteration, every connected component is merged with
the other connected components if it is not alone.
Hence, the number of the components decreases by
half in each iteration. Thus, j' — j < logn holds. As
aresult, t < log2 n holds. Therefore, we have

Theorem 7. ParallelGreedyOverlap solves the
MCSP(k) in O(log® n) time using n® processors with
the error bound 1+ 1/(2k — 2).

6 Conclusions

This paper has presented the approximation algo-
rithm GreedyOverlap for MCSP(k) that approxi-
mates the number of edges of the minimum common
supertree by 14-1/(2k—2) for every k > 2. Though we
have shown the worst case for the overlap graph, we
do not know whether or not there exists an algorithm
whose error bound is less than'1+1/(2k—2). In this
paper we have restricted our attention to complete
k-ary trees. Then, it remains to show. an approxi-

mation algorithm for more general problem, i.e., the
problem of finding a minimum common supertree for
a finite set T of trees, where no restriction is put on
the trees such as arity, etc.

References

[1] A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yan-

nakakis. Linear approximation of shortest su-
perstrings. In 23rd ACM STOC, pages 328-336,
1991.

[2) I. Gallant, D. Maier, and J. Storer. On finding
minimal length superstrings. J. Compul. System

Sci., 20:50-58, 1980.

(3] M.R. Garey and D.S. Johnson. Computers and
“Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Company, 1979.

[4] A. Gibbons and W. Rytter. Efficient Parallel Al
gorithms. Cambridge University Press, 1988.

[5] M. Li. Towards a DNA sequencing theory. In 31st
IEEE FOCS, pages 125-134, 1990.

[6] M. Luby. A simple paralle] algorithm for the max-
imal independent set problem. SIAM J. Compul-
ing, 15:1036-1053, 1986.

[7} J. Tarhio and E. Ukkonen. A greedy approxima-
tion algorithm for constructing shortest common
superstrings. Theoret. Comput. Sci., 57:131- 145
1988.

[8] J. Turner. Approximation algorithms for the
shortest common superstring problem. Inf. Com-
put., 83:1-20, 1989.

[9] A. Yamaguchi and S. Miyano. Approximating
minimum common supertrees for complete k-ary
trees. Tech. rep. no. 66, 1993.

