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- This paper considers the following problem: given two point sets A and B (|A| = |B| = n) in d-
dimensional Euclidean space, determine whether or not A is congruent to B. First, this paper
presents a randomized algorithm which works in O(n(*~1/2(log n)?) time. This improves the
previous result (an O(n?"2logn) time deterministic algorithm). The birthday paradox, which
is a well-known property in combinatorics, is used effectively in our algorithm. Next, this pa-
per shows that if d is not bounded, the problem is at least as hard as the graph isomorphism
problem in the sense of the polynomiality. Several related results are described too.



1 Introduction

Recently, geometric pattern matching problems have been studied extensively in computational
geometry [3, 4, 10]. Most of such studies have been done for approximate matchings in two or
three dimensions. Few studies for exact matchings in higher dimensions have been done. This
paper studies the problem of determining the exact congruity in higher dimensions.

Several studies have been done for exact matchings. O(nlogn) time algorithms for deter-
mining the congruity of various objects in two dimensions were developed by Manacher [12],
Atallah (5] and Highnam [11]. Sugihara developed an O(nlogn) time algorithm for determin-
ing the congruity of two polyhedra in three-dimensions [13]. Atkinson developed an O(n log n)
time algorithm for determining the congruity of two point sets in three-dimensions. Alt et al.
developed an O(n?~?logn) time algorithm for determining the congruity of two point sets in
d-dimensions [4 ] However, to my knowledge no improvement on their result has been done.

In this paper, we present an O(n 7 (log n)?) time randomized algorithm for determining
the congruity of two point sets A and B (JA| = |B| = n) in d-dimensional Euclidean space.
This improves the previous result [4] considerably while our algorithm is a randomized one.
Moreover, we show that if d is not bounded, the congruity problem is at least as hard as
the graph isomorphism problem in the sense of the polynomiality. Several related results are
described too.

2 Preliminaries

Let E¢ denotes the d-dimensional Euclidean space. For a point p, p(i) denotes the i’th
coordinate value of p. For a point set P = {p;,---,p,}, the centroid of P is the point given

by = E P;, and dim(P) denotes the number of dimensions of the affine hull of P.
1_1

A mapping T of E? onto itself is said to be isometric if g = T(p)I(q) for all two points
pand q. Let A = {a;,---,a,} and B = {by,---, b, } denote point sets in E? respectively. For
A, we define T(A) = {T'(a;)|a; € A}. I there exists an isomorphic mapping which satisfies
B = T(A), A and B are said to be congruent. If A and B are congruent, we write A & B.
a; € A and b; € B are called equivalent if b; = T'(a;) holds for some isometric mapping T
such that B = T(A). An isometric mapping T can be written in the form T : p— Mp +a
where M is a d x d orthonormal real matrix, i.e., M7 = M~!, and a is any d-vector. T is
called the first (resp. second) kind if det(M) = +1 (resp. —1). Since any T of the second kind
can be written as p — MJp+ a where J(z1,--,2q4) = (—21,%2, - -,Z4) and det(A) = +1 [4],
we only consider isometric mappings of the first kind.

In this paper, points may be labeled with integers. In such cases, equivalent points must
have the same label. A data structure C'(A) representing a point set A is called a canonical
form of A if the size of C(A) is O(n) and it satisfies the following condition: C(A) = C(B)
if and only if A = B. Note that, once canonical forms are computed, the congrmty can be
determined by comparing them.

3 A randomized algorithm for congruity

In this section, we present a randomized algorithm for determining the congruity of point sets
in d-dimensions, where we assume that d (d < 3) is a fixed constant.



3.1 Birthday paradox

The birthday paradox is a well-known property in combinatorics [8]. It states that on the
average, 24 persons are needed for at least two of them having the same birthday, assuming
all birth dates to be equally distributed over the days in the year. If there were n days in
a year, ©(y/n) persons would be needed. The birthday paradox has been applied to several
algorithms [8, 9]. For applying the birthday paradox to the congruity problem, the following
observation is useful: if A 2 B and a set of O(/n) points A’ (resp. B’) is chosen randomly
from A (resp. B), there is at least a pair of equivalent points (ai,bj) € A’ x B’ with high
probability. Once an equivalent point pair is given, the congruity problem in d-dimensions
can be reduced to the congruity problem in (d — 1)-dimensions using a similar reduction as in
Ref.[4]. Thus, reducing the problem recursively, we can solve the congruity problem.

3.2 Algorithm

The following procedure CheckCongruity({Ai,---, Ap}, {By,--- ,Bx}) determines whether or
not their is at least a pair (A;, B;) such that A; = B;, where A;’s and B;’s are point sets.

Procedure CheckCongruity({Ay,---,An},{B1, -+, Bx})
begin
if there is a pair (4;, B;) such that dim(4;) = dim(B;) < 3 and A; B; then  -(#1)
begin output *YES’; stop end;
Remove A;’s (resp. B;’s) such that dim(A;) < 3 (resp. dim(B;) < 3);
(Let the remaining set be AA = {41,---,Aw} (resp. BB = {By,--- »Bir}))
if AA={} or BB = {} then begin output 'NO’; stop end; -(#2)
for all 4; € AA do
Choose a point set A} C A; randomly such that |4} = min(|A;| — 1, [K Vvrl)
and A does not contain the centroid of A;;
for all B; € BB do :
Choose a point set B} randomly in the same way;

for all A; € AA do for all a; € Al do A;; «— proj(A;, a;); -(#3)
for all B; € BB do for all b; € B, do B;; « proj(B;, b;); -(#4)
CheckCongruity({A11, A1z, -, A21, -}, {B11, Biz2, -, Ba1, -+ +})

end

Note that K is a constant to be determined later. In the above procedure, a d-dimensional
point set A; (resp. B;) is reduced to the (d — 1)-dimensional point set proj(A;,p) (resp.
proj(B;,p)) where p is not the centroid of A; (resp. B;). proj(Ai,p) is computed by the
following procedure (see Fig.1). Note that a similar procedure is used in Ref. [4].

Procedure Project(A;,p)
begin
Let ¢ be the centroid of A;;
Let H be the hyperplane such that ¢ € H holds and Pc is perpendicular to H;
Let H' be the hyperplane such that p € H’ holds and H' is parallel to H;
for alla € A;N H' do
Replace a with a + § pé where § is a sufficiently small constant;
proj(Ai,p) —{q|(3a € A:)(Pg||Pa) A ge H};
Label each point q € proj(A;, p); -(®
return proj(Ai, p)
end
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Figure 1: Projection from d-dimensions to (d — 1)-dimensions

In step ($), each point is labeled so that g and r are labeled with the same integer number
if and only if Q U {p,c} & R U {p,c} holds by an isometric mapping not moving p or c,
where Q = {a € A;|a is projected to g} and R = {a € A;|a is projected to r}. This labeling
procedure is done simultaneously for all projected points in the same depth of the recursion.
Note that it can be done in O(Lnlog(Ln)) time using an appropriate sorting algorithm, where
L is the total number of A;;’s and Bj;’s.

3.3 Analysis

First, we analyze the time complexity and the space complexity of procedure CheckC ongruity.
Note that CheckCongruity({A},{B}) is executed for determining the congruity of A and B.

[Lemma 2.1] CheckCongruity({A},{B}) works in O('n%l logn) time using O(n%_l) space.
(Proof) CheckCongruity is executed at most d — 2 times recursively. Note that the number of
point sets contained in the arguments of the recursive execution of k’th depth is O((vn)s-1) =
O(ns’?‘)

Next, we analyze the time complexity for each recursive step where we assume that m is
the number of point sets contained in the arguments. To analyze the time complexity, we only
consider the parts (#1) (#3) (#4) since these parts are crucial.

To execute (#1), we do not directly compare every pair (Ai, Bj). Instead, we first compute
the canonical form of each A; (resp. B;) such that dim(A4;) < 3 (resp. dim(B;) < 3), and then
we sort all the canonical forms. Once the sorted sequence of canonical forms is computed, it
is easy to test whether or not there is a pair (A;, B;) such that A; & Bj, since the test can
be done by comparison of strings. The canonical form of a (labeled) point set of size N in
three-dimensions can be computed in O(N log N) time [1]. Thus, the canonical forms can be
computed in (mnlogn) time. Since the size of each canonical form is O(n), sorting can be
done in O(mnlogm) time. Thus, part (#1) can be executed in O(mnlog(mn)) time.

The time required for (#3) and (#4) is O(mn%log(mn%)) since O(m+/n) point sets are
projected. However, note that the parts after (#2) are not executed in the last step ((d—2)’th
step) of the recursion.



Thus, the total computation time for (#1) is
0((d-2) x T x n xlog(n“T x 7)) = O(n"F logn),
since d is assumed to be a constant. The computation time for (#3) and (#4) is
O((d-3)x n*F x n¥ x log(nd2;‘ X n%)) = O(n%-l logn) .

Thus, the time comple)uty is O(n 7 log n) in total.
Since O((d — 2)n 7 ) sets are constructed in total, the space complexﬂ;y is O(n 7 ) a

* Next, we analyze the probability that the procedure succeeds. The following proposition
is proved in a straight-forward way.

- [Lemma 2.2] If CheckCongruity({A},{B}) outputs °YES’, then A = B.
The following lemma is a variant of the birthday paradox.

[Lemma 2.3] If two subsets S; C S and Sy C S, each of which consists of at least ,/ln(l—lq-) n
elements, are chosen randomly from S (|§5] = n), then |S; N S;| # {} holds with probability
at least q.

(Proof) Let P(n,m) be the probability that |S; N S| # {} holds if §; and S, such that
|S1]| = |S2] = m are chosen randomly from §. Then, the following inequality holds:

)

n-m ,n—m-1_n-m-—2 n—2m+41
1-( n )( n—1 X n—2 )“'(n—m-l-l
n—m)m

- .

Thus, it is sufficient that 1 — (222)™ > ¢ holds. Using the following inequalities:

P(n,m)

> 1-(

n—m

m In( ) £ In(l-gq),
m(1-2) ¢ -9
n m
2 < D+ G@r+GEr+
2 3
(from In(1-z) = ~z — %— %--)
it is sufficient that 2 > -}-111( ) holds. Thus, the lemma holds. |

[Theorem 2. 4] The congruity of two point sets in d-dlmensmns can be tested in O(n 7 (log n)?)
time and O(n 7 ) space with probability at least 1 — -—,,- where A (h > 1) is any fixed constant.

1
(Proof) Let K = ln(-———_j:) in procedure CheckCongruity. Then, if there is at least

()

a pair (A;, B;) such that A; = B;, CheckCongruity({Ay,---},{Bi,---}) finds at least a pair
of equivalent points (a,b) C A} x B} (and produces at least a pair (A4;j, By;7) such that A;; &
Byj1) with probability at least (1 )3'1_ (from Lemma 2.3). Thus, CheckCongruity({4}, {B})
outputs *YES’ with probability at least + ;s if A= B.

If CheckCongruity is executed hlog n times, it will output "YES’ at least once with prob-
ability at least 1 — ;}h— if A= B. Thus, the theorem holds. |



Note that CheckCongruity can be modified for determining the congruity of such objects
as polyhedra. Moreover, we can make a parallel version (an NC algorithm) of CheckCongruity
using a parallel sorting algorithm {7] and a parallel algorithm for computing canonical forms
of three-dimensional point sets [2]. However, details are omitted here.

3.4 Application to subset matching

The birthday paradox can be applied to the following exact matching problem: given point
sets P = {py, *-,pm} and @ = {qy, - -,q,} such that m < n in E!, determine whether
or not there is a subset § C @ such that P 2 §. Of course, this problem can be solved
in O(mn) time using a simple algorithm, where we assume that P and @ are given as sorted
sequences. However, it seems very difficult to develop an o(mn) time algorithm. Here, we show
a randomized algorithm which works in o(mn) time in a very special case. For P, we define
m(P) = mcaxl{(pi,pj)li < j A |Pp;| = c}|. We consider the special case where m(P) < M
holds for some constant M. Then, the following procedure determines whether or not there is
sucl; a subset S in O((Z‘"—f— + m?)polylog(m)) time with high probability. Note that it is o(mn)
if n3+* < m < n'~* holds for any small constant ¢ > 0.

Procedure CheckSubCongruity(P, Q)
begin
Choose randomly U C @ such that |U| = !-f-n’—‘-;
for all g € U do
begin
for all 1 <1 < m do A[i] « 0;
foralll1<j<ndo

for all i such that (3k)(px — p; + g = g;) do A[i] — A[i]+ 1; -($)
if (37)(A[i] = m) then begin output "YES’; stop end
end;
output 'NO’

end

In this procedure, the following variant of the birthday paradox is used. Let S be a subset
of @ such that |S| = m. Then, if we choose randomly a point set U C Q such that |U| = %,
(3q € U)(q € S) holds with high probability, where K is an appropriate constant. ‘

Here, we briefly discuss on the time complexity while details are omitted here. Part (§)
is the crucial part for analyzing the time complexity. Since we assume that m(P) < M holds
for some constant M, part ($) can be done in O(logm + M) time per execution if O(m?)
points constructed from P are preprocessed appropriately and the binary search technique is
used. Thus, the above procedure solves the problem in O((%:: + m?)polylog(m)) time with
high probability if m(P) < M holds for some constant M.

4 Hardness results

Although we have presented an improved algorithm for the congruity problem, it is not a
polynomial time one if d is not bounded. Thus, it is natural to ask whether or not there is a
polynomial time algorithm for the congruity problem even if d is not bounded. The following
theorem suggests that the answeris 'NO’ since no polynomial time deterministic or randomized
algorithm has been developed for the graph isomorphism problem.



[Theorem 4.1] Assume that there exists a polynomial time deterministic (resp. randomized)

algorithm for the congruity problem even if d is not bounded. Then, there exists a polynomial

time deterministic (resp. randomized) algorithm for the graph isomorphism problem.

(Proof) We prove it showing a polynomial time reduction from the graph isomorphism problem
to the congruity problem.

Let a pair of undirected graphs G1(V, E) and G3(W, F) be an instance of the graph iso-
morphism problem. We can assume without loss of generality that |V| = |[W| = n. Let
V = {v,"--,9.} and W = {wy, -, w,}. From Gy, we construct a point set A in E" as
follows. First, a point set A; such that:

Ap = {ai|vi €V A ai(i) =1 A (Vj #1)(ai(j) =0)}
is constructed. Next, a point set A, such that:
Ay = {a|{vi,;} EEAa= ﬂz”-“_f}

is constructed. Then, A is defined by A = A; U A; U {o} where o denotes the origin. B is
constructed from G, in the same way.

Then, it is easy to see that A is congruent to B if and only if G is isomorphic to G5. Since
the construction of A and B can be done in polynomial time, the theorem holds. W]

Conversely, the congruity problem may be reduced to the graph isomorphism problem in
the following way, while we have not yet proved the correctness of the reduction. From a point
set A, we construct an undirected complete graph G1(V, E) such that V = {v;la; € A}. From
a point set B, we construct G(W, F) in the same way. Then, each edge e € E U F is labeled
with an integer number so that the following condition is satisfied:

(Ve, f € E U F)(label(e) = label(f) == dist(e) = dist(f)),

where dist({v;,v;}) = [@a;| and dist({wi,w;}) = |b;b;|. This reduction can be done in
polynomial time. Thus, if the following statement is correct (we believe that it is a known
result), the congruity problem can be reduced to the graph isomorphism problem in polynomial
time: A 2 B if and only if there is a permutation 7 such that (Y4, j)([a@5as] = |bxgs) br(j)l)-

Note that, using a similar reduction (a reduction to the subgraph isomorphism problem) as
in Theorem 4.1, we can show that the following problem is NP-complete if d is not bounded:
given point sets P = {p;,---,p,.} and Q = {q;,-,q,} such that m < n, determine whether
or not there is a subset § C @ such that P~ §.

5 Conclusion

In this paper, we have presented a randomized algorithm for determining the congruity of
point sets in d-dimensions, which improves the previous result. However, our algorithm is not
necessarily optimal. Thus, it would be interesting to develop more efficient algorithms. In our
algorithm, the birthday paradox is used effectively. It would be also interesting to apply the
birthday paradox to other pattern matching problems.

On the other hands, we have shown that the congruity problem is hard if the number of
dimensions is not bounded. This hardness result suggests that approximate matching problems
in higher dimensions are hard since they seem to be harder than exact matching problems.
However, it does not mean that we can not develop practical pattern matching algorithms



in higher dimensions. It seems that the congruity problem can be solved efficiently in most
cases, since the d-dimensional congruity problem can be reduced to the (d — 1)-dimensional
problem efficiently by computing a special point {except the centroid) invariant with isometric
mappings, and such a special point seems to be computed efficiently in most cases. For the
graph isomorphism problem, several algorithms which work in polynomial time in most cases
have been developed [6]. Thus, it would be intersting to develop pattern matching algorithms
in higher dimensions which work in polynomial time in most cases.
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