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Abstract .
The k-edg tivity augmentation problem for a specified set of vertice (KECA-SV for short) is defined by “Given a graph G = (V,E), a
cost function ¢: V x V = Z* (nonnegative integers) with V x ¥V = {{u,vHu,v € V,u # v} and a subset I" C V, find a minimum-cost set E’
of edges, each connecting distinct. vertices of V, such that G’ = (V, E U E') has at least k edge-disjoint paths between any pair of vertices in
T.” The unweighted version of the problem is denoted by UW-kECA-SV.

‘We propose an O(AZIV](IVI + |T|log A) + [E]) algorithn for UW-(A + 1)ECA-SV with T' C V, where A is edge-connectivity of I' (the

cardinality of a minimum cut separating two vertices of I'). In a special case, we also propose an O({V]log|V] + |El) algorithm when X is
equal to the edge-connectivity of G.
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1 Introduction

The k-edge-connectivity augmentation problem for o specified set of
vertices (KECA-SV for short) is defined by “Given a graph G = (V, E),
a cost function ¢ : V x V = Z* (nonnegative integers) with V x
V = {{u,v}|u,v € V,u # v} and a subset ' C V, find a minimum-
cost set E' of edges, each connecting distinct vertices of V, such that
G' = (V,EU E') has at least k edge-disjoint paths between any pair
of vertices in I.” Such an edge set E' is called a minimum solution to
the problem, and we may assume |T'| > 2. G’ is also written as G+ E'.
Costs c({u,v}) for {u,v} € V x V is denoted as c(u,v) for simplicity.
The problem is called the weighted version, denoted by W-EECA-SV,
if there may exist some distinct edge costs and the unweighted one,
denoted by UW-KECA-SV, otherwise.

Let kECA-SV(*,**) denote KECA-SV with the following restriction
(i) and (ii) on G and A’, respectively: (i) * is sct to S if G is required
to be simple, and * means G may be a multiple graph; (i) ** is set to
MA if increase in edge multiplicity in constructing G’ is allowed, and
is set to SA otherwise.

If [ = V then the problem is called the k-edge-connectivity aug-
mentation problem (denoted as KECA). UW-LECA(*,MA) have been
mainly discussed in literature: see [1] for UW-2ECA(*,MA) and (26,
24] for UW-3ECA(* MA) and (3, 4, 12, 17, 22] for UW-KECA(* MA)
with k > 4. Concerning UW-AECA, only UW-KECA(*,MA) has been
discussed so far. The fastest algorithm for UW-KECA(*,MA) is the one
proposed in [12}, and its time complexity is O(82|V||E|+|V|e(|V|, | E]))
time, where § is the increase of edge-connectivity of G and ¢(|V|,|E|)
is the time-complexity to find local edge-connectivity between some
two vertices of V.

[20, 21] ([14, 23}, respectively) show that there is an O([V] + |E])
algorithm for solving UW-KECA-SV(* MA) with k = 2 (k = 3). These
results show that UW-KECA-SV(* MA) with k& = 2 (k = 3) can be
equivalently transformed into UW-2ECA(* MA) (UW-3ECA(*,MA))
in O(JV] + |El) time. Since it is known that UW-2ECA(*,MA) has
an O(}V] + |E|) algorithm in [1] and UW-3ECA(*MA) has an an
O(JV} + |E}) algorithm (by combining results {5, 9, 16] and [24, 26};
see also [25]), UW-KECA-SV(* MA) with k = 2 (k = 3) can be solved
in linear time. It should be mentioned that UW-KECA-SV(*,SA) with
k = 2 (k = 3) can be solved similarly to the paper: the former is
optimally solved since UW-KECA(*,SA) and UW-KECA(* MA) with
k =2 (k = 3) have the same minimun solution if {V| > 4 (sce [25]).

The subject of the paper is UW-(A + 1)ECA-SV(* MA) for a gen-
eral nonnegative integer k, where A(T’; G) is edge-conncectivity of T,
and M} G) is denoted as X for simplicity, where A(T'; G) is defined in
Section 2.1. The paper shows that there is an O(A2}V|(|V]+|T| log A)+
|E}) (O(|V|log|V| + |E|), respectively) algorithm for solving UW-
(A + 1)ECA-SV(* MA) if M(T';G) > A(V;G) (if (I G) = AMV;G)).
For UW-KECA(*,MA), the algorithm proposed in [12] utilizes a struc-
tural graph, proposed in [6], which simply represents all minimum
cuts of G, and an extreme set trec is used to find a minimum solu-
tion. For UW-KECA-SV(*,MA), we do not use a structural graph or
an extreme set tree from the following reasons. A structural graph
represents all minimum cuts of G, so, if ' C V and A(V; G) < MI; G)
then a structural graph fails to represent some minimum cuts that
have to be checked when we (A + 1)-edge-connect I' of G. The edge
(n1,n2) of F(G) in Fig. 2 represents a minimum cut ({1},V - {1})
in G of Fig. 1. However it is other A-cuts, say ({1,2},V — {1,2}),
that is required to be checked to (A + 1)-edge-connected I'. [12] in-
troduced a k-extreme set such that U C V is a k-extreme set if and
only if d(U) = k and d(W) > k for any W C U. In Fig. 1, {1} is
a l-extreme set and {2} is a 3-extreme sct. In UW-3ECA for G of
Fig. 1, two new edges have to be incident upon a vertex 1, while a
vertex 2 required no new edges to be incident upon it. On the ather
hand, in UW-3ECA-SV, we have only to add one edge whoes endver-
tex is cither 1 or 2 in G of Fig. 1. Due to lack of such information,
we do not use an extreme set for UW-(A + 1)ECA-SV. Instead of us-
ing F(G), we adopt an operation called edge-interchange proposed in
[18, 19] a vertex set called k-palm is introduced: the definition will
be given in Section 2.2. A structural graph, however, can be used
for UW-KECA in case MI;G) = A(V;G). So, by using a structural
graph, we propose in Section 5 an O(|V|log|V| + |E|) algorithm for
UW-() + 1)ECA-SV(* MA) with A(I; G) = A(V; G).

The result of this papre is the first step for UW-KECA-SV(*,MA)
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Figure 1: G is a given graph with A(V;G) = 1 and MT;G) = 2. Each
of black dots {2,4,6, 10,12} is a specified vertex. {(2,6), (10,12)} is a
solution of G for UW-3ECA-SV and {(1,7), (10,12)} is also a solution.

F(G)

e

Figure 2: F(G) is a structural graph of G. nq (ng, respectively) cor-
responds a vertex set {1} ({2,...,12}). A edge (n;,n2) of F(G) rep-
resents a minimum cut ({1}, V — {1}) of G of Fig. 1.

with & = A+ 6 and § < 1. In the rest of the paper UW-KECA-
SV(*,MA) is simply denoted as UW-KECA-SV,

2 Preliminaries

2.1 Basic Definitions

An undirected graph G = (V(G), E(G)) consists of a finite and
nonempty set of vertices V(G) and a finite set of undirected edges
E(G); an edge e incident upon two vertices u,v is denoted by (u,v);
u and v are the endvertices of an edge e; e is called a loop if u = v.
V(G) and E(G) are often denoted as V and E, respectively. If there
are two edges both of which have the same pair of endvertices then G
is called a multigraph. Such cdges are called multiple edges; otherwise
G is called a simple graph. In this paper, only graphs without loops are
considered, and the term “a graph” mecans an undirected multigraph
unless otherwise stated.

For a set E’ of cdges such that E' N E(G) = @, let G + E' denote
the graph (V(G), E(G) U E'). If E' = {e} then we denote G +e.

A path between u and v, or a (u,v)-path, is an alternating sequence
of vertices and edges v = vg,e1,v1,...,Vn_1, 85,0, = v (n 2 0) such
that if n > 1 then vo,..., v, are all distinct and e; = (v;—, ;) for each
i, 1 € i < n. The length of this path is n. Vertices vy,...,7,.; are
called inner vertices of this path if n > 2. A cycle is a (vg, v )-path
together with an edge (vo,vn). The length of this cycle is n + 1. A
pair of multiple edges arc considered as a cycle of length two.

Two paths P, P’ are said to be edge-disjoint (internally disjoint,
respectively) if E(P) 0 E(P’) = @ (P and P’ have no inner ver-
tex in common). Let AMu,v;G) (s(u,v; G), respectively) denote the
maximum number of edge-disjoint (internally disjoint) (u, v)- pnths of
G. For a subset T' C V, edy tivity of T' (vertes: ty),
denoted by MT';G) (x(T'; G)), is the mmunum number of A(v, w; G)
(s(u,v; G)) for v,w € I. The edge-c tivity (vert,
respectively) of a graph G, denoted by ).(G) (x(G)), is MV, G)
(x(V;G)). A graph G is k-edge ted (k-vertez-co ted) if and
only if A(G) > &k (x(G) 2 k). A k-edy ted ponent (vertez-
connected component, respectively) of G is a maximal subset of ver-
tices such that A(u,v; G) (k(u,v; G)) for any two vertices in the set.
A k-edge-connected component. is often denoted as a k-component in
this paper unless any confusion arises. It is known that AMG) > k
(x(G) > k, respectively) if and only if V(G) is a k-edge-connected
component (a k-vertex-connected component). Note that distinct k-
edge-connected component are disjoint sets. Each 1-edge-connected
component is often called a component. A set K C E(G) is called a
(u, v)-separator if and only if u and v belong to distinct components
of G’ = (V,E — K). A (u,v)-separator k' C E is called a (u,v)-cut if
and only if |7 = Mu, v; G). For noncmpty disjoint sets S, 8’ € V(G),
let (5,5;G) = {(u,v) € E(G)|u € § and v € §'}, where it is often
written as (5, 8") if G is clear from the context. If §' = V(G) — S then




D,=XnY

Figure 3: The four disjoint sets D; (1 < i < 4) in Lemma 2.2.

we denote d(S,G) = |(S,V — $;G)|. dg(S) is called the degree of a
vertex set §in G. If § = {v} then we denote dg(v) for simplicity and
dg(v) is call the degree of a vertex v in G. For a cutpoint v of G, let
Xi,..., Xk (k < 2) be 1-components of G — v. Each subset X; U {v}
is called a v-block of G.

2.2 )-palms with respect to I’

A class of k-components of G is denoted by EC(k; G) or EC(k), and
a class of k-components containing some vertices of I' is denoted by
ECr(k; G) or ECp(k). Let A = A(T; G) in the rest of the paper.

Definition 2.1 X C V is a A-palm of G with respect to I" if and only
if the following (1) and (2) hold,

() UX,X) =2 XNT#Pand XNT #8;
(2) anyY CV withYNT # 0 and Y NI C X NT has (Y, 7)| > A.
o

“In the following “with respect to I'” is often omitted. A vertex set
X NT of a A-palm X is called a core of this A-palm.

Lemma 2.1 [3] For distinct two sets X,Y C V, we have d(X) +
d(Y) 2 d(X-Y)+d(Y = X) and d(X)+d(Y) 2 d(XNY)+d(XUY).

Lemma 2.2 Suppose that X and Y are distinct A-palms with respect
toT. If P or Q is a core of X or Y, respectively, then cither Q = P
or PNQ = § holds.

(Proof) By supposing P N Q # 0, we will show P = Q. We have
(P=Qor(P-Q#0and Q— P # §) since if P C @ (Q C P,
respectively) then X (1) is not a A-palm. Assume that P # Q. Then
we have two cases XUY =V and XUY C V.

V can be partitioned into four sets D; = XNY, D, = XNT,
D3 =X NY and Dy = X NY, where Dy = § may hold (see Fig. 3).
Wehave D;NT#0,i=1,2,4.

d(D2) > A (d(D4) > A, respectively) since X (Y) is a palm so
we have d(Dz) + d(D;) > 2X. From Lemma 2.1, we have d(D; U
D;) + d(Dy U Dy) > d(D3) + d(Dy). This contradicts the fact that
d(Ds) +d(Dy) > 2\ and d(Dy U Dy) + d(D; U Dy) = 2A. o

From Lemma 2.2, there is a unique maximal class of subsets C; C T'
with 1 <1 < ¢ such that each C; is a core of a A-palm and CinC;=0
if i # j. Let D; be a maximal class of A-palms containing C;, X; € D;
be a representative of D;, and PEr(G) = {X;|1 < i < ¢}. For G of
Fig. 1, PEr(G) = {{1,2}, {6,7,8},{10}, {12}}.

We consider how to find PEr(G) in the rest of this section. A
network N = (V, E,c) of G = (V, E) is defined by the following,

E= {{v,w), (w,v)|(v,w) € B},
c:E {1},

where (v, w) is a directed edge from v to w. For N, a flow f : £ —
{0,1} of z,y € V is defined by the following:

=0 ifveV-{zy}
z f({v,w)) — Z f{w,v)){ 20 fv=a=z,
V(v,w)eE V(w,v)eE <0 ifv=y,

Figure 4: The four disjoint sets D; (1 < i < 4) in Proposition 2.2.

and
f(e) < cle) for all e € E.

A value of a flow f is defined by

o= 3 fEww)- 3 f(we))
Y(zw)eR V{wz)EE

= 3 fmw)- Y f(lwy)
Y(y.w)ek V(wy)el

A flow of # and y, whose value is maximum, is called a mazimum
flow. Let f be a maximum flow of x,y in the following. E,fy is a set
of directed edges each of which is either (w,v) € Eéfy if f({v,w)) =1
for (v,w) € E or (v,w) € E{,‘ if f((v,w)) = 0 for (v,w) € E. Let
é{x, = (V, E.J{y), Let Rzy € V be a maximal set of vertices each of
which is reachable from z in G£y. Then (Ray. Rzy) is a A, y: G)-cut
[13]). (R.y, Rzy) is called a nearest Az, y; G)-cut of X with respect to
z,y, and denoted by NC_,. Note that NC,, is not uniquely. We obtain
the following proposition by the definition of A-palms and (A + 1)-
components.

Proposition 2.1 A4 set S C V is a A-paim if and only if d(S) = A, §
is 6 union of some (A + 1)-components and has ezactly one (X + 1)-
component containing & vertez of T'. u]

Proposition 2.2 Suppose x € X NI and y € Y NT for distinct two
(A + 1)-components X,Y. Then (I;y — X)NT =0 for G if and only
if(Rz: — X)NT =@ forVzel' - X.

(Proof) We will only show nccessity since sufficiency clearly holds.
We will show a contradiction by assuming that (R, —X)NT = @, while
thereis 2 € I'—(XUY) such that (R;:~X)NI # 0. Let Z bea (A+1)-°
component with = € Z. First we will show that D; # 0 (1 <i < 4),
z € Dy and y € Dy if we set Dy = R,y N Ry, Dy = nynR_”.,
D3 =Ry NR,; and Dy = Ry N R, (see Fig 4). Eachof X, Y and Z
cannot be partitioned into more two distinct sets D; since X, ¥ and
Z are (A + 1)-components, and (Rey, Rzy) and (Rg., Rz.) are A-cuts.
Clearly 2 € Dy, 2 € DUD3 andy € D3uDs. D,Nl = XNT
and 2 € Ds, since (Ry: — X)NT # 8. We have D4 NT # @ from
(Re: ~X)NT # @ and D;NT = X NT. If we assume D, = @ then
we obtain a contradiction that (R,y.ﬁ:;) is NC,. with R,, C R...
Hence D, # 0.

We set dyz = [(D1, D2)|, dis = |(D1, Ds)| dis = |(Dy, Dy}l das =
(D2, D3)|, d24 = [(D3; D4)| and dsq = [(D3, Dy)| (see Fig. 4). Then,
for (R,y,ﬁ;;) and (R, Rz.), we obtain

dig+dog +dys +diz = A, diz +dag tdyg Fdiy = A, (2.1)
and
dia +das = dyg +dga. (2.2)
Since z € D; and (Dy, D) is neither NC., nor NC,,
dig +dis +dyg > A (2.3)
Since A = AMI';G) and D3 NI # 0,
dag + dgq +dys > A (2.4)



Hence

dig +dig+dag +dyg +2diz > 2, (by (2.3) and (2.4))
dig+day+diz > A (by (2.2)
A—dyy > A, (by(21)
0 > dag,
a contradiction. ]

Remark 2.1 [10] introduced a sparse graph G = (V,EyUE; --- E;)
for a given graph G = (V, E) such that the following (1) through (3)
hold for any u,v € V:

(1) Mu,v; G®) =i if Mu,v;G) > i;
(2) Mu,v; GD) = AMu,v; G) if Mu,v; G) <i;
(8) E; CE and |Ei{ < |V,

where let (V, E;) be recursively a mazimal forest of (V,E — Ey UE; U
<+ U Eiy). [10] showed that E; (1 < i < |E|) can be obtained in
O(|V| + |E|) time. By utilizing the result in [2], checking whether
A < A(v,w; G) or not can be done in O(AX|V]) time for each pair
vweV.

Proposition 2.3 All \-palms of G can be found in O(X?|T||V]) time
if A and all (A + 1)-components are available.

(Proof) For each (A+1)-component X with XNI'# @ and z € XNT,
we obtain a nearest A-cut (Rzy, Rzy) by a maximum flow of value A
from z to somey € I'—X. Then, by Proposition 2.2, if (R, ~X)NT =
@ then R, is a A-palm, otherwise it is not. So we can find PEr(G) in
O(A?[T}|V}) time by Remark 2.1, since at most |['| nearest A-cuts may
be found. a

3 Augmentation by Edge-Interchange

We explain an operation called edge-interchange which was originally
introduced in [18, 19} for an efficient augmentation. It is also used
in [15]. Let PEr(G) = {}1,...,Y;} and choose y; € ¥;NT as a
representative of ¥Y; NT. Let

Y = {g: €TY; € PE(G)}, ¢22, -
and let 7 = [¢/2]. We denote V(e) = {u,v} for an edge ¢ = (u,v) and

V(F) = U,ep V(e) for an edge set F.
We can easily prove the next proposition.

Proposition 3.1 If there is an attachment E' for G such that
V(E') =Y C S for some (A+ 1):component S in G+ E' then ' C S.
[n}

3.1 Attachments

In G, we have dg(Y;) > X and A(yi,y;;G) = X for Vi, j (i # j). We
call F an attachment (for G) if and only if the following (1) through
(4) hold:

L vp ey,

(2) FNE(G) =0,

(3) V(e) # V(¢') (Ve,e’' € Fie# ¢'), and

(4) F has at most one pair f, f’ such that [V(f)NV(f)|=1.

Let F be any attachment for G. For each e = (u,v) € F, G+ F has

a new (A 4 1)-component, denoted by a(e, G + F), containing V(e).
We will show that we can find a minimum attachment Z(A + 1) =

{e1,...,er} such that A(T;G + Z(A+ 1)) = A + 1. Although there

are two cases: r = 1 and r > 2, we discuss only the latter case in the

following. (Note that if r = 1 then we immediately obtain the desired
attachment F.)

Uit Ug1 = U2

)

Figure 5: Theedgese,¢’ and fi, 1 <i < 4. (1) vy # vaz; (2) vag = vga.

3.2 Finding a minimum attachment

Suppose that there are an attachment F' for G and vertices v;; €
Y —~V(F), 1 €1i,j €2, where vy, 2, vz; are distinct, and if vyy is
equal to one of the other thiree then we assume that vyz = vz (see
Fig. 5). °

We use the following notations:

if vy # v

= - N ;o (v, v22)
L=G+F, e=(v,v12), € —{ if gy = g

(v12,v21)
ale)=ale, L+ {e,e'}), a(e')=ale,L+{e,€'}),
fi=(non) f2=(na,ve), fi=(v,ve), fu=(vi2,vm),

where we set fi = f3 and ¢/ = fo = fi if v = vga.

Cl(f.'):{ ﬂ’(fi;L*l'{fl,fz}) figig2

alfi, L+ {fs. f1}) if3<i<4

(Note that e, ¢’, fi € E(L),1 £ i < 4.) We have two cases

Case I: a(e) N a(e’) = B Case II: a(e) Na(e’) # @ (that is, a(e) =
a(e’)). :
In Case I, we will show that there are two edges f, f' with V(f) U
V(f') = V(e) U V(e') such that

V(eyuV(e) Salf, L+ {f. fN=alf'\ L+{f.f'}.

That is, we can add two edges so that the resulting (A + 1)-component
contains V(e)UV{e'). Finding and adding such a pair of edges f, f’ is
called edge-interchange (with respect to V{e1) UV (e2)). On the other
hand Case II considers a(e, L + €).

3.2.1 Case L: a(e)Nafe) = 0.

Note that vy # vy in this case. Let I be any fixed (a(e), a(€'))-cut
of L+ {e,e'}, and let B;, 1 <i < 2, denote the two sets of L + {e,c'}
such that ByUB; =V, By = V~B,, K = (By;;L+{e,€'}), ale) C B
and a(e') € By. |K| = X = Muvi,ve; L") for Vo; € Bi, 1 <i < 2, where
L" denotes L, L+e, L+¢' or L+ {c,e’}. K is a (v;,vp)-cut of L.
Suppose that f and f satisfy cither (i) or (ii):

O f=fi,f'=foor (i) f=Fif=fu
where {f, f'}NE(L)=0. S

The next proposition shows a property of edge-interchange.

Proposition 3.2 If a(e) Nale’) = a(fi) Na(fz) = 8 then o(fz) N
a(fr) #0 , that is, a(f3) = afy)-

(Proof) It is easy to see that A = |K] > 2. Let K’ be any fixed
(a(f1),a(fz))-cut of L+ {f1, f2}, where |K'| = X and K’ # K. Let
B! be the K’-block of L + {fi,f2} such that V(f;) C B}, i = 1,2.
Then [A”| = A = (v}, vy; L") for Vo € Bl, i = 1,2, where L" = L,
L+ fyor L+ f2. K'is a (v],vy)-cut of L. L has four disjoint sets
B;; = BiN B}, 1<4,j <2, such that v;; € Bj; (see Fig. 6 ).

First we show that the proposition follows if we can prove the following
(1) and (2): '

(1) Aiseven, K N A’ = @ and there are partitions of K and A such
that

K = K)U Ky, K' = K, UK} with || = |R3| = |K| = |K3),



Figure 6: The four disjoint sets Byj, 1 <i,j < 2.

where
K;={e; € K|V(e;) € Bj}, Ki={ej e K'|V(ef) CB:}, i=1,2.

(2) L has X edge-disjoint (vyy,vz1)-paths P, i=1,...,
WO IBEP)NEK | =111<i <M\

(ii) |B(P) N K| = |E(P) N K} =1 (j = 1,2) and {v12,v22} €
V(B)iA2+1<i<A

A such that

Consider Py which consists of three subpaths: (vi1,v;2)-subpath
Py1, (v12,v2z)-subpath Py and (vzq,vg)-subpath Pys. L+ {fs, fa}
has two (v1,vs;)-paths P and P’, where P (P/, respectively) consists
of Py; and fy (of f3 and Pa3). It follows that L+ {f3, fs} has (A +1)
edge-disjoint (v11,vs1)-paths Py,..., Px_;, P, P’, and we have a(f3) N
a(fe) # 0. )

Now we show that (1) and (2) hold. The similar idea is used in the
proof of Lemma 3.2 of [22]. We partition K and A’ as follows (see
Fig. 6):

K = (Bu1, B2y) U(By, Ba2) U (Byy, By2) U(Byz2, Byy),
K' = (Bu1, B12) U (Ba1, B22) U (B11, B22) U (B1a, B2y).

Put
my = |(Bu1, Ba1)ls mz = |(Bi, Baz)l,
my = |(Bi2, Ba2)l, ma = |(Bas, B)},
ms = |(Biz, Ba1)], me = |(Bi1, Baz)l.
Then

my + mg + ms + mg = | K| = Xand my + myg +ms +mg = |K’| = A.
Since A(u,v; L) = A for any u,v € {vyy, V12, V21, V22 } (¥ % v), we have
my+me+mg 2 A, mo+my+ms > A

my+mg+mg 2 A and my +mg+ms > A
It follows that
my=my=mg=my = A/2 (>1)and m is even.
Set
K = (BllvBi!l)a K> = (By3,B2), K| =

and (1) follows. Let P,...,
L, where we assume that

(B11,B12), K3 = (Ba1, Ba2),
Py, be ) edge-disjoint (v, vy, )-paths of

[E(P)NK;|=1 if 1<i<A/2,and
|[E(P)NK]| = |B(B)NIK|=|EP)NK) =1 if 1+1/2<i<A.
L has X edge-disjoint (v2,vqz)-paths P;, 1 < i € A, and each of them
has one (vjz,v)-subpath with v € (V(K3) U V(&7])) N By, and one

(veq,v')-subpath with v/ € (V(K3) UV(K})) N Byz. Hence L has A
edge-disjoint (v11,vq1)-paths P;, 1 <i < A, as mentioned in (2). O

Corollary 3.1 Let f3, f4 be the two edges of Proposition 3.2, L' = L+
{f3,fs} and f be either f3 or fy. Then L’ — f has no A-cut separating
V(fs) from V(fs). That is, if L' — f has a A-cut K separating a
vertez of V(fa) from another one of V(fs) then K separates {u} from
{v}UV(f') and V(§') is not separated by K, where V(f) = {u,v} (md
{f'y={fs. fa} - {f}.

%

Figure 7: A situation for edges e,e’,e”, f’ and " in the case where

= (vl,wl/) and f” = ('U”,w').

3.2.2 Case II: ale) = ale').
Put
c=(v,w), ¢ = (@, uw'), L' =L +e,

and suppose that there are distinct vertices v, w"” € ¥ —

V(e) UV{e')) such that

(V(F)u

a(e', L' + {c',e"})na(e",L' + {c',e"}) =

where e” = (v, w") ¢ E(L' +¢
f', f" such that

a(leLl + {fl»f”}) - C:(f"‘L' + {f’,f“])y

VYUV =V{)uV(e") and V(f)NV(f)=0.

We assume that f' = (¢/,w”) and f’ = (v",w') (see Fig. 7). Then
the next proposition follows from Corollary 3.1.

). By Proposition 3.2, there are edges

Proposition 3.3 a(e, L' +¢') C a(f,L' + {f, f'}). a

Propositions 3.2 and 3.3 show that if A > 0 then repeating edge-
interchange finds a sequence of edges ey,..., e, (r = [¢/2] > 1) such
that

aei, Hi) C afeiyss

V(ej-1) NV (ej)

Hiyy), 1<i<r—1,
=0, 2<j<r-1, and

; - _Jo if q is even,
Vier-)nV(er) ‘{ {y} ifqis odd,

where Hy = H,and Hiy = Hi+eiy1,0 <i <r—1. Since a(e,, H,) =
V(H) by Proposition 3.1, we obtain the following proposition.

Proposition 3.4 Zy = {e),...,e.} is o minimum attachment such
that \(H + Zg)=A+1. ]

Another important property of edge-interchange is given as follows.

Proposition 3.5 For q # 3, a(e;, H;) is a leaf of H; if and only if q
isodd and i =7 — 1.

Remark 3.1 Even if e;,...,e, are selected so that H; may be simple
for each i, i = 1,...,r, Proposition 3.5 also holds. [m}

Remark 3.2 Let f, f' be the two new edges such that
V(Hnv(f)=

as in Proposition 3.2. Suppose that we are going to check whether
a(f,GO+{f, F'DNa(f,GP +{f, f'}) = 0 or not. A mazimum flow

0, and V(f) UV (') = {u1, iz, ua1, u2}



algorithm can be used. Note that we have only to apply the algorithm
to G+ {f,f'} (not to G + {f, f'}) or to G + {g, ¢}, where

V{g)NV(g") = 8,and V(g) UV(g') = {ur1, w12, 1, 22}

with u;; € L(ui;), 1,7 = 1,2. Thus this can be done in O(¢p(n', m'+2))
time, where n' and m' are the number of vertices and of edges of G
and we assume that a mazimum flow algorithm for G can be done
in ¢(n',m') time. [10] introduced a sparse graph G = (N,E; U
E;--- E;) defined in Remark 2.1. By utilizing the results in Remark
2.1 and in [8], above checking operation can be done in O(N2|N|) time.
o

4 UW-(\I;G)+1)ECA-SV

Let PEr(G) be abbreviated as PEr in the rest of the paper. Clearly
we have Proposition 4.1.

Proposition 4.1 Let SOL be a solution for G. We have

P2ty < json,
o

We consider how to compute A(I';G). If T' = V then [8] proposes
an algerithm which computes MV;G) in O(A|V|?) time. However
if I' € V then we cannot use this algorithm. Hence, for the case
with I' C V, we propose an algorithm which computes A(I; G) in
O(N?|V|IT"|log A) time by merging an algorithm proposed in [8] and
the one proposed in Section 6.3 (page 131) of [2] for finding edge-
connectivity of G. The algorithm is shown in the following.

Procedure Compute_\
1. find E; (1 < i < |E]) by an algorithm in [10];

2. i &1, L + 0, choose v € T" and repeat the following Steps 3 and
4

3. find ,\(u,w;Gf"’) for each w € I — v and set L ¢
min{A(v, w; G?)|w € T — {v}}, where G = (V,E, U--- U E;);

4. if L < i then terminate the algorithm, otherwise set i ¢ i x 2 and
goto Step 3. ]
Next proposition was shown in Section 6.3 (page 131) of [2].

Proposition 4.2 (2] Let v € V.
min{A(v,v; G)|v' € V - {v}}.

Then we have A(V;G)

Corollary 4.1 Let §$ C V and v € S. Then we have A(S;G)
min{A(v,v'; G)|v’ € § — {v}}.

Proposition 4.3 We can compute X in O(N?|V||T|log A + |E|) time
by Algorithm compute ), where A = A(T; G).

(Proof) A value L of Step 3 satisfies L = MT; G?) from Corollary 4.1
by setting S « T, and L = A(T;G¥) = A(T}G) hold from definition
of G and A when the algorithm is terminated.

Step 1 is done in O(|V] + |E}) time by [10]. Step 3 is done in
O(i#[T||V]) time by Remark 2.1. Steps 3 and 4 are iterated [logA]
times until A < i = 2M°8A] holds. Hence A(T;G) is computed in
O(MT; GYV|IT| log M(T'; G) + | E]) time o

Next we propose Algorithm aug.sv-1 finding a solution for UW-
(MI;G) + 1)ECA-SV.

Algorithm aug.sv-1

1. find A by Algorithm compute_); all (A + 1)-components of G and
PEr; set P + PEr;

2. set E' + §; choose V;,V; € P, set P + P — {V},V;}; iterate the
following Steps 3-5;

3.if P = 0 then E' + E'U {(u;,u)}, where u; € V;, i = 1,2;
terminate the algorithm;

Figure 8: The cactus Gy = (11, E1) and I’y C V;, where vertices of I'y
are denoted as black spots.

4. if |P] 2 2 then choose distinct V3,V € P, otherwise set V3 =
Vie P
P + P — {1}, V2}; find two edges e, e by cdge-interchange op-
erations such that G + {e;, ¢z} has (A + 1)-component containing
ViU--UV; and V({ey,e2}) = {v1,...,tu}, where v; € ¥;NT
(1<i<4), and v3 = vy may hold if |P| = 1;

5. B'« E'U{e1}; Vi + Viand V; « V] for Vi,V; € {Vi,....Vy} to
W, V2, where V; (1}, respectively) contains v; (v;) which is one of
endvertices of e2; goto Step 3; o

‘We obtain next proposition from Section 3.

Proposition 4.4 E’ that is found by Algorithm aug_sv-1 satisfies that
G + E' has (A + 1)-component S with T' C S and [|PEy|/2] = |E'|
holds. o

Theorem 4.1 Algorithm aug_sv-1 finds an edge set E' of minimum
cardinarity such that G + E' has a (A+ 1)-component X with ' C X
in O(A|V|([V| + |T|log A) + |E|) time.

(Proof) By Proposition 4.1 and 4.4, Algorithm aug_sv-1 correctly
finds a minimum solution E’ such that G' + E' has () + 1)-component.
XwithTCX.

We consider time complexity of Algorithm augsv-1. By Proposi-
tion 4.3, A is computed in O(N?|V||['|log A + |E|) time. All (A + 1)-
components of G is found in O(A?|[V|? + |E|) time by [11]. PEr is
found in O(A*|V||T'| + |E|) time by Proposition 2.3. Hence Step 1 is
done in O(A?|V|(|V] + [T| log A) + | E|) time. Executing of Step 4 once
contains at most two edge-interchange operations, and by Remark 3.2,
it is done in O(A?[V]) time if GP**1) is obtained. The number of it-
erations of Steps 3-5 is bounded by [T}, and Steps 3-5 are done in
O(A?|D|V}) time. Thus the theorem follows. o

5 UW-(AI';G)+1)ECA-SV when
M G) = A(V;6G)

We will propose an algorithm for this problem in the special case
AT G) = MV;G). The algorithin utilizes a structural graph and a
reduction which transforms UW-(A+1)ECA-SV into UW-(A+1)ECA.
The algorithm runs in linear time. In the rest of this section let A =
ML G) = MG).

‘We consider checking whether A(I'; G) = A(G) or not. We obtain a
structural graph of G in O(|V{log V] + |E|} time by [4]. If I is parti-
tioned into at least two (A+1)-components corresponding to vertices of
the structural graph then A(I'; G) = A(G), otherwise A(T'; G) > A(G).
Hence the checking is done in O(|V|log|V| + | E]) time.

We obtain the algorithm by using the following results.

(1) [20, 21] ([14, 23], respectively) show that there is an O(|V]+ |E])
algorithm for solving UW-AECA-SV(* MA) with k = 2 (k = 3).
These results show that UW-KECA-SV(* MA) with k = 2 (k =
3) can be equivalently transformed into UW-2ECA(* MA) (UW-
3ECA(*MA)) in O(|V] + | E}) time.

(2

=

A structural graph of G is a tree if A is odd and is a cactus
otherwise. A graph of G’ obtained from G is a tree (a cactus,
respectively) if A = 2 (A = 3), where G’ is a graph obtaincd



Figure 9: The cactus G; = (V3,E;) and I's C V4.

Figure 10: The condensation G3 = (V3, E;) of Gz and T, € V.

by shrinking each 2-component (3-component) S of G into an
individual vertex vg.

A trec is also a cactus, so we may only consider the case that a
structural graph is a cactus.

We first explain reduction of UW-(A + 1)ECA-SV into UW-(A +
1)ECA such that a minimum solution to one of the two problems
implies one to the other.

Let Gi = (i, E;) denote a structural graph of G. Let T, be a
vertex set of Vi, each of which corresponds to a (A + 1)-component.
containing a vertex of I. G, is shown in Fig. 8, where vertices in Ty
are denoted as black spots. G) is a cactus consisting of some cycles.
A cycle of G, is called a pendant cycle if it contains at most one
cutpoint. A pendant cycle is called a core pendant if it contains at
least one vertex of I, that is not a cutpoint. If G| has a cutpoint
and there is any pendant cycle that is not a core one then delete all
vertices except the cutpoint of this pendant, and repeat this procedure
as much as possible. Let G; = (V;, E;) denote the resulting cactus
(see Fig. .9). Clearly any pendant of G is a core onc and T, C V5.
The set V; — V; has a partition V; — Vo = Wi U---UW; (k> 15
WinW; =B ifi # j) such that, for each W;, there is a cutpoint
v; for which X; = W; U {v;} induces a v;-block of G;. Each X; and
v; are called an outer component of G and the attachment of X;,
respectively. Clearly G is obtained from G by shrinking each X; into
v, i = 1,...,k. If Gz has a (vq,v)-path of length n > 2 with inner
vertices v; € T’y and dg(vi) = 2,i =1,...,n — 1, then delete all inner
vertices vy,...,un_1 and add an edge (vo,v,). Repeat this procedure
as much as possible, and let x(G3) denote the resulting graph, which
is called the condensation of G;. Denote x(G2) as G3 = (V3, E) (Fig.
10). Note that Ty C V5 and any vertex » with dg, (v) = 2 belongs to
Ty. Let Ly = {v € V3]dg, (v) = 2} (C T,).

Now we describe an algorithm aug-sv’-1.

Algorithm aug_sv’-1

-

. construct a structural graph G = (W, E}) from G; let T, C V] be
the set of vertices, each of which represents a (A + 1)-component
containing at least one vertex of I';

I

find all outer components X1,..., Xy (k > 0) of Gy;

o«

. if k > 1 then construct G; = (V3, Ez) by shrinking cach outer
component X; into its attachment v;, i = 1,...,k;

S

. construct the condensation x(G2) and denote x(G:) as G3 =
(Va, Ea);

. solve UW-(X + 1)ECA for G (that is, find a set Ej of minimum
cardinality such that A(G3 + Ej) = 2 (= 3, respectively) if X is

o

odd (even) by means of an O(|V3] + |E;]) algorithm, denoted as
ATEC, proposed in [24, 25, 26] or [12];

6. define E' by

E' = {(u,v)|(v,v') € E} and u (v, respectively) is a vertex

contained in the (A + 1)-component represented by v’ (v)};

a

The relation among G, G and G3 are shown by the following two
lemmas. The point is that each vertex v with dg,(v) = 2 represents a
A-palm.

Lemma 5.1 There is an edge sei E' of minimum cardinarity such
that A(u,v; G+ E') > A+ 1 for Yu,v € T if and only if there is an edge
set Ey of minimum cardinarity such that A(uw',v'; Gy + Eb) > 2 (> 3,
respectively] if A is odd (even) for Vu',v' € Ty, where |E'| = [E}|. O

Lemma 5.2 There is an edge set Ej of minimum cardinality such
that A(w',v"; G2 + Ej) > 3 for Vu',v' € T's if and only if there is an
edge set Ey of minimum cardinality such that \(Gs + Ej) > 3, where
|E3| = | B3| o

‘We obtain the next theorem, since a structural graph of G is ob-
tained in O(|V]|log|V]| + |E|) by [4].

Theorem 5.1 This problem can be solued optimally by the algorithm
in O(|V|log|V| + |E|) time if \(G) = MT; G). o

6 Concluding Remarks

We propose an O(A2|V|(|V] + |T{log A) + |E}) (O(|V]|log|V] + |E]),
respectively) algorithm for UW-(X + 1)ECA-SV(*MA) if A > XG)
(if A = A(G)) and an O(X|V||[T'|log A + | E|) algorithm computing A
when I' C V, where A = A(T'; G).

Feature researches are proposing the following (1)-(3):

(1) an algorithm for UW-KECA-SV(* MA) with k = AI'; G) + 6 and
§>2

(2) an algorithm for UW-AECA-SV(*,SA);

(3) an approximation algorithm for W-kECA-SV, since W-kECA-SV
is known to be NP-complete {7].
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