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Abstract

A coterie, which is used to realize mutual exclusion in a distributed system, is an incomparable
family C of subsets such that any pair of subsets in C has at least one element in common. Associate
with a family of subsets C a positive Boolean function fe such that fo(z) = 1 if the Boolean vector z
is equal to or greater than the characteristic vector of some subset in C, and 0 otherwise. It is known
that C is a coterie if and only if f¢ is dual-minor, and is a non-dominated (ND) coterie if and only if
fc is self-dual. We study in this paper the decomposition of a positive self-dual function into smaller
positive self-dual functions, as it explains how to represent and how to construct the corresponding ND
coterie. A key step is how to decompose a positive dual-minor function f into a conjunction of positive
self-dual functions f1, fa, ..., fi. In addition to the general condition for this decomposition, we clarily

" the condition for the decomposition into two functions f; and fa, and introduce the concept of canonical
decomposition. Then we present an algorithm that determines a minimal canonical decomposition, and
a simple algorithm that usually gives a decomposition close to minimal.



1 Introduction

1.1 Motivation and Results

A coterie C, originally defined in {9, 6], is a family
of subsets of an underlying set {1,2,...,n}, such
that each pair of subsets in C has at least one el-
ement in common, and no subset in C contains
any other subset in C. It is used as a mechanism
to realize mutual exclusion [9, 6] in a distributed
system; a task can enter the critical section only
if it can get agreements from all the members in
a subset § € C, where members 1,2,...,n repre-
sent the sites in the distributed system. By the
intersecting property of a coterie C, it is guaran-
teed that at most one task can enter the critical
section at a time if each site is allowed to issue at
most one agreement (this property is called mutual
exclusion).

Associate with a family of subsets C a positive
Boolean function fg such that fo(z) = 1 if and
only if the Boolean vector z € {0,1}™" is equal to
or greater than the characteristic vector of some
subset in C. It is known [8] that C is a coterie
if and only if fo is dual-minor, and is a non-
dominated (ND) coterie if and only if f¢ is self-
dual (see Section 1.2 for the definitions of these
terms). Self-dual functions play an important role
also in threshold logic [10}, regular Boolean func-
tions {12, 4], circuit theory and other areas of
Boolean functions.

The class of positive self-dual functions is closed
under compositions. Therefore one of the funda-
mental questions in this field is how to decompose
a given positive self-dual function into smaller pos-
itive self-dual functions, as it explains how to rep-
resent and how to construct the corresponding co-
terie by using simpler elements. It was shown in
[8] that any positive self-dual function can be de-
composed into a set of basic majority functions
(the basic majority function is the only self-dual
function containing three variables). However, the
argument in [8] was only to show the existence of
such a decomposition, and the resulting decompo-
sition may be far from the minimum. Other types
of decompositions are also found in [11, 8}.

In this paper, which is an abbreviated version of
[1], we systematically study the decomposition of

a positive self-dual function. A key step is how to
decompose a given positive dual-minor function f
into a conjunction of positive self-dual functions:

f=hfa fi

We first derive in Section 2.2 the general condition
for this decomposition, and then give in Section 2.3
a necessary and sufficient condition for the decom-
position into two functions f; and f,. The concept
of canonical decomposition is then introduced in
Section 3.1, and an algorithm to find a minimal
canonical decomposition is given in Section 3.2.
The complexity issues related to these problems
are mentioned in the last section. All the above
algorithms are of polynomial time in the length

.of input and output if dualization of a positive

Boolean function can be done in time polynomial
in the length of input and output. However, the
latter problem is still not solved, and it is related to
other well-known open problems such as deciding
the NDness of a coterie [6] and 2-coloring a simple
hypergraph [5]. More detailed discussion can be
found in the accompanying paper [2].

1.2 Definitions and Basic Properties
Coteries

Let C be a non-empty family of subsets of the non-
empty finite set {1,2,...,n}. Then C is called a
coterie if the following conditions are satisfied for
all 5,8 € C:

(i) S¢S (minimality)
(if) SN S’ # O (intersection property).

A coterie C dominates a coterie D if C # D and for
each § € D there exists a §' € C such that §' C S.
A coterie C is called non-dominated (ND) if no co-
terie dominates C. ND coteries are important in
practice, since those are the coteries with maximal
efficiency when implemented to realize mutual ex-
clusion.

Positive Boolean functions

A Boolean function, or in short a function is a map-
ping f : {0,1}* — {0,1}. Let z € {0,1}" be a
Boolean vector, or in short a vector. If f(z) =1



(resp. 0), then z is called a true (resp. false) vec-
tor of f. The set of all true vectors is denoted by
T(f). For a function f, the minimal elements in
T(f) are called the minimal true vectors of f, and
the set of all minimal true vectors is denoted: by
minT(f). A function f is called positive or mono-
tone if = < y always implies f(z) < f(y). It is
known that a positive function f is uniquely deter-
mined by minT(f), and that f has the unique min-
imal disjunctive form (MDF) consisting of all the
prime implicants of f, in which all the literals of
each prime-implicant are uncomplemented. There
is a one-to-one correspondence between minT(f)
and the set of all prime implicants of f, such that
a vector v corresponds to the monomial m, defined
by m, = 24,2, - -3, fv; =1,7=1,2,...,k and
v; = 0 otherwise. For example, vector (101) corre-
sponds to monomial z;z3. The MDF of a positive
function such as f = 212 + zo23 + 232; is usually
represented by a simplified form f = 12+ 23 + 31,
by using only the subscripts of literals, where the
operator + is used as an alias for the Boolean-or
operator V. The functions f with T(f) = @ and
F(f) = 0 are respectively denated L and T in this
paper.

Dual-comparable functions

The dual of f, denoted f¢, is defined by
fd(z) = f(i)w

where f and Z denote the complement of f and
z, respectively. As is well-known, the MDF ex-
pression defining f¢ is obtained from that of f by
exchanging 4 (or) and - (and), as well as the con-
stants 0 and 1. Denote f < g if these functions
satisfy f(z) < g(z) for all z € {0,1}™. It is easy to
see that (f + ¢)? = fig?, (fg)? = fi+¢% f<yg
implies f¢ > g%, and so on. A function is called
dual-minor if f < f¢ and dual-major if f > f9.
[ is called dual-comparable if f < f¢ or f > f¢
holds, and self-dual if f¢ = f.

For example, f = 123 is dual-minor since f4 =
1+ 2+ 3 satisfies f < f%. Similarly, the dual of
f=124234+31is

fA=1+2)2+3)3+1)=12+23+31.

This function f is self-dual, and is called the ba-
sic majority function. This is known to be the
only positive self-dual function containing three
variables. The basic majority function of three
variables z,y,2 is sometimes denoted by [z,y,2]
in the subsequent discussion. There is no positive
self-dual function of two variables. However, each
function f = z; is a positive self-dual function of
one variable.

Coteries and Boolean functions

Let C be a family of subsets of {1,2,..., n} satisfy-
ing the minimality condition (i). With C we asso-
ciate a positive function fo defined by fo(z) =1
if and only if there exists a subset § € C such
that cv(S) < =z, where the characteristic vector
y = cv(5)of Sis defined by y; = 1if i € S and 0if
i ¢ 5. The correspondence C « minT(f¢), where
S € C corresponds to y = cv(§) € minT(f¢), is
one-to-one. Furthermore it is known [8] that C is
a coterie if and only if fc is dual-minor, and that
C is an ND-coterie if and only if f¢ is self-dual.

Contra-dual functions

The contra-dual f* of f is defined by
(=) = f(z).

For example, the contra-dual of f = 12 + 23 + 31
is f* = 12 + 23 + 31, where 7 stands for literal ;.
It is known (7] that the four operations: identity,
d, % and complementation - form Klein’s four-
group. This means that these operations commute,
are idempotent and satisfy the relation af = v,
where o, 8, v are three different operations: (FE =

=== =()=7
and so on.

The dual-minority can be checked in polynomial
time by the following lemma, though there is no
counterpart known for the dual-majority.

Lemma 1 Let f be a positive function, Then
f is dual-minor if and only if every pair of prime

-implicants m; and m; in its MDF has at least one

literal in common. 0O



2 Decomposition of Positive
Self-Dual Functions

2.1 Shannon’s Decomposition of Self-
Dual Functions

Shannon’s decomposition expands a given function
f on a variable z; as follows:

f = flz;=0)%; + f(zi=1)z:. (1)
If f is positive and self-dual, this becomes

(2)

where g = f(z; = 0) is positive and dual-minor,
and ¢¢ = (f(zi =0))? = f(zi=1) is positive and
dual-major [8]. It is also known that any positive
dual-minor function ¢ is the conjunction of positive
self-dual functions fi, f2,..., fi:

g= fifz: - fr (3)

In this case, g¢ can be given by

f =g+ g%,

@ =htfatt fee (4)

Let [z,y,2] denote the basic majority function
of three variables z,y,z. Then decomposition (2)
can be expressed by

f fifer St (it ottt fi)z
[z,fly[x7f'2)[' "[x.afk—l)fk] "']”; (5)

as easily proved by induction sté.rting from the case
of k=2

ffa+ (L + )z =[z,f, ]

Since the functions fy, f2,...,fr do not con-
tain the variable z, and are positive and self-dual,
these decompositions can be repeatedly applied to
the generated functions until only functions of one
variable remain. If we interpret each such decom-
position as (5), the entire process yields a tree
shaped decomposition of the original positive self-
dual function f into basic majority functions. This
is called the B-decomposition of f in (8], where B
stands for “binary tree”.

A key step in the B-decomposition is decompo-
sition (3) of a positive dual-minor function into

Il

1l

positive self-dual functions. Call the number &
in (3) the size of the decomposition. If the size
of each decomposition is small, the resulting B-
decomposition will become small. In the follow-
ing, therefore, we carry out a more careful study
so that decompositions (3) with small sizes can be
realized in a systematic manner.

2.2 Decomposition of a Dual-Minor
Function

For functions f and g, define the extension of f
with respect to g by

flg=r+r. (6)

If g is self-dual and f is dual-minor then f 1 g is
self-dual, since

(F1ef=fUf+a)=Ff+fl9=f1g

Expression (6) may be considered as an extension
of Shannon’s decomposition (2) in the sense that
the positive self-dual function z; in (2) is now re-
placed by a general positive self-dual function g.
It is also easy to see that if g is self-dual, then the
function f T ¢ is always dual-major, and that if f
is dual-major, then f T g = f. Obviously f T g is
positive if so are both f and g.

Theorem 2 Let f be a positive dual-minor
function. Then f can be decomposed into k posi-
tive self-dual functions (f 1 ¢i),1 =1,2,...,k:

f=(f19)(f T92)---(f T an)s (M

where ¢1,92,..-,0x are given positive self-dual
functions, if and only if

qigr-gx < f+ (8)
a
Example 1
f o= 12341244 134 +234
4 o= 12413414 +23+ 24 434
fr = 1234124 + 1344234,

where this f is positive and dual-minor, as easily
checked by Lemma 1. A set of positive self-dual



functions g¢1, g2, ..., g% satisfying condition (8) is
for example given by

g = 12423431
g2 = 4.
In fact,
fi = fla=f+fla=12+23+31
fa = flg2=14+24+34+4123

are both positive and self-dual, and it is immediate
tosee that f= fifs. O

2.3 Decomposition into Two Positive
Self-Dual Functions

Theorem 3 A positive dual-minor function f has
a decomposition f = fyf, into two positive self-
dual functions f; and f; if and only if set

M = minT(f%) \ minT(f). 9
has a partition into M; and M, such that neither

of them contains a pair of vectors z and y such
that z;y; =0 foralli. O

The existence of the above partition M; and M,
can be found by constructing an undirected graph
Gy = (V, E) such that

V = M )
E {(z: 9z, vy € M, ziyi = 0 for all 1}.

Corollary 4 A positive dual-minor function f
has a decomposition M; and M, of Theorem 3 if
and only if G is bipartite. O

Example 2 Consider the following f:

f 123 +125 + 134 + 145 + 2345
f4 = 12413414+ 15+ 24 + 35.

il

Its Gy is shown in Fig. 1, in which each vector z €
M is represented by the corresponding monomial.
This Gy is bipartite, and M has a partition into
the following two independent sets:

My = {12,14,24}, M, = {13,15,35}.

and let m = z;,z;, - -

Therefore, f has a decomposition f =
two positive self-dual functions

fife into

fi = 12414+ 24
fo = 13415435 O
M, M,

Tig. 1 Graph G of Example 2.

3 Canonical Decomposition of
‘Positive Self-Dual Functions

3.1 Canonical Decomposition

Recall that every variable z; itself is a positive
self-dual function. If .g; = z; are used for all
i=1,2,...,k, the decomposition (7) of f is called
a canonical decomposition. A canonical decompo-
sition is called minimal if none of its components
(f T zi) can be deleted.

Let f be a positive function. Any prime lmplx-
cant zj 25, ---z;, of f satisfies

55, zq, S f+ fT,

and this leads to the following theorem.

Theorem 5 Let f be positive and dual-minor,
-zj, be one of its prime impli-
cants. Then there is the corresponding canonical



decomposition:

f = fififiu
fi flzi, i=1,2,...,k O

I

Example 3 Consider a positive dual-minor
function and its dual:

f 123 4 234 + 235 + 145
f& = 124+13+24+25+34+35+ 145

Then, by Theorem 5, we have canonical decompo-
sitions

f=fffs= fifsfa= fafsfs = fifafs,

where f; = f T zj. However some of these are
not minimal, since there is another canonical de-
composition f = fafs, as easily checked (see also
Example 4). 0O

3.2 Minimal Canonical Decomposition

In order to derive a condition for minimal canonical
decompositions, we examine the condition (8) of
Theorem 2 more carefully. Since the function f 4
f* in (8) is not positive, we define the positive core
of f by

F=v{h|h < f+ f*, h: positive}. (10)

This f is the unique maximal positive function con-
tained in f 4+ f*. The dual of f is denoted by f,
and is called the positive closure of f.

Theorem 6 Let f be a positive dual-minor
function. Then f = f;, fj, - -+ fj, is a minimal de-
composition of f if and only if zjz,---2j, is a
prime implicant of f. O

To make use of this theorem, we now turn our
attention to how to compute f.

Theorem 7 Let f be a positive dual-minor
function. Then its positive closure f satisfies

minT(f) = minT(f?) \ minT(f). O

Noting that f is the dual of f, we now have the
following algorithm.

Algorithm POSITIVE-CORE

Input: A positive dual-minor function f.
Output: All prime implicants of f.

1. Dualize f to compute all prime implicants of
TA ‘

2. Remove 2ll prime implicants of f¢ that arc
also prime implicants of f (by Theorem 7, the re-
sulting set gives all prime implicants of f).

3. Dualize f. This yields all prime implicants of
fo o

Example 4 We apply this algorithm to the
positive dual-minor function f of Example 3:

f = 1234234+ 235+ 145
f4 o= 12413424425+ 34+35+145
f = 124+13424+25434435

f = 23+ 145.

Therefore, by Theorem 6, f has the following two
minimal canonical decompositions and no others.

f=fofs and f= fifafs. O

Before concluding this subsection, we apply Al-
gorithm POSITIVE-CORE to the function f of
Example 2. Then f = f%, and hence f = f.
Therefore, any minimal canonical decomposition
has at least three components. However, as we
have seen in Example 2, this f has a decomposi-
tion into two components, showing that canonical
decompoaositions do not generally contain a decom-
position into the smallest number of components.
The problem of finding a decomposition with the
smallest number of components appears to be very
difficult, except for the case of two components,
which was discussed in Section 2.3.

3.3 A Simple B-Decomposition Algo-
rithm

Given a positive self-dual function f, one of its
B-decomposition can be obtained by recursively
applying canonical decompositions. The entire
algorithm is described by two procedures SD{f)
and DM(f). SD(f) outputs a positive dual-minor
function g obtained by Shannon’s decomposition
(2) applied to f, where f is assumed without
loss of generality to contain at least three vari-
ables. Given a positive dual-minor function g,



DM(g) then computes a canonical decomposition
9 = fj, fi» - - - fj,, obtains positive dual-minor func-
tions g;; = fj;(z;;=0) = g(z;,=0),t = 1,2,...,k,
and then recursively calls DM(yg;,) if g5, # L.

Algorithm SD(f)

1. Choose a variable z of f.

2. Apply Shannon’s decomposition f = g+ ¢%z,
where g = f(z=0).

3. Call DM(g). (Note that g% in step 2 is not ex-
plicitly required, since only ¢ is used in this step.)
[}

Algorithm DM(g)
1. Find a monomial m = z;,z;, - -
m £ g, and compute

-z, such that

9= fifip-o fix
fii=g1z, i=1,2,,...,k.
2. For each of the positive dual-minor functions
gii = fi(z;=0)=¢

call DM(g;;) ifgj; # L. O

(zj;=0), i=1,2,,...,k,

Example 5 We compute a B-decomposition of

f = 123 +234+ 235+ 145+ 126 + 136

+246 + 256 + 346 + 356,

which is positive and self-dual. First execute
SD(f). In step 1 of SD(f), choose variable z = z¢,
and we have

g = f(ze = 0) = 123 + 234 + 235 4 145.

Then we execute DM(g). In step 1 of DM(g),
choose monomial m = 23 since it satisfies 23 < g,
as discussed in Example 4. This gives the canoni-
cal decomposition

9= fofs
fi=glzi, i=2,3
and
g2 = g(z2=0) = 145
g3 = 9(1320) = 1435.

In step 2 of DM(g), we first call DM(gz). In step
1 of DM(g2), choose mq = 145, i.e., g2 = fo1 fa4 fos
with f2; = ga T z:. Then

92(z1=0) = g2(z4=0) = go(z5=0) =

and no new call to DM is necessary. Since g3 = g2y
the call to DM(gs) gives the same result, and the
entire computation halts. The resulting decompo-
sition into basic majority functions is

([1,2,(4,2,5]],6,(1,3,[4,3,5]}]. O

In the above description, the selection rules in
step 1 of SD and DM are not specified. We may
employ the following heuristic rules.

(i) In step 1of SD(f), choose a variable z that is
not contained in all the shortest prime implicants
of f. (As aresult of this rule, g = f(z=0) contains
a shortest prime implicant of f, and it may then
be chosen in DM(g) to decompose.)

(it) In step 1 of DM(g), choose one of the short-
est prime implicants m of g.

The rule (ii) is attractive for its simplicity, since
the computation of a minimal canonical decompo-
sition, as described in Section 3.2, requires the du-
alization operation twice. On the contrary, compu-
tation with rule (ii) uses no dualization operation
but repeats the following two operations.

1. Find a shortest prime implicant m =
Z; Tj, -+ Tj, of a given function g (instead of §).
2. Compute g(zj; =0),i =1,2,,...,k.

Therefore, algorithm SD with rules (i) and (ii) runs
in polynomial time, and can be used as an efficient
heuristic algorithm for the decomposition.

4 Discussion

We have not discussed so far the complexity issues
of the following problems introduced in this paper.

1. To decide if a positive function f is self-dual
(i.e., if a coterie is non-dominated),
2. To compute the extension f T g of a positive

- dual-minor function f with respect to a positive

self-dual function g,



3. To construct graph Gy of a positive dual-
minor function f, defined in Section 2.3 (i.e., to
decide if there is a decomposition into two positive
self-dual functions),

4. To compute the positive core f of a
given positive dual-minor function (i.e., Algorithm
POSITIVE-CORE) in order to obtain a minimal
canonical decomposition.

It is obvious that these problems can be solved in
time polynomial in the length of input and output,
if dualization of a positive function is possible in
polynomial time with respect to the output length
|4} as well as the input length |f|, where | - | de-
notes the length of its MDF form. Unfortunately
it is not known yet whether this dualization can
be done in polynomial time or not. It is known
however that the dualization of a general Boolean
function is NP-hard, and that some special classes
of positive functions have polynomial time dualiza-
tion algorithms (e.g., [4, 12]). Problem 1 above is
also a well-known open problem, first stated in [6].
The reader may find many related topics on these
problems in such references as [2, 3, 4, 5, 6, 8, 12].

It is known, however, that deciding if a positive
function f'is dual-minor can be done in polyno-
mial time by using Lemma 1, and that decidingif a
positive function f is dual-major is coNP-complete
(e.g., [2]; equivalent results can also be found in
[6, 5] and others). Also, for general Boolean func-
tions, it is proved in [2] that the problem of de-
ciding whether a function is self-dual is coNP-
complete, and that the computation of f is NP-
hard. ‘
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