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The relation between a polygon containment problem

and the problem of sorting X+Y

Antonio Hernandez Barrera

Hiroshima University

The polygon containment problem is the problem of deciding whether a given
polygon P, which is allowed to have some kind of motions, can be placed into
another fixed Q. We show that the polygon containment problem in case of rec-
tilinearly convex polygons under translation, the problem of sorting X + Y, and
.the problem of sorting sums of consecutive numbers are equivalent.



1 Introduction

1.1 An overview of polygon con-

tainment problems

The polygon containment problem is the prob-
lem of deciding whether a given polygon P,
which is allowed to have some kind of motions,
can be placed into another fixed Q. It hasbeen
studied extensively in the last ten years and it
has been attacked using several assumptions
about the kind of polygons and motions al-
lowed. Here we briefly mention some of these

results.

Suppose P and @ are m-gon and n-gon
respectively; P can move while Q remains
fixed. If we do not explicitly say anything
about them, they will be considered any sin-
gle polygon in what follows. In 1983 Chazelle
(ICH]) proposed an O(mn?) algorithm for the
case where @ is convex and it is possible
for P to translate and rotate, and gave an
O(m + n) procedure valid if P is restricted
to translate. Also assuming only translations
appeared in [BFM] an algorithm that runs
in O(mn log m) when both P and Q are
rectilinearly convex polygons. The problem
considering P convex and under translation
was solved in [F] using O(mn log mn). For
both P and Q being non convex and even not

connected, Avnaim and Boissonnat proposed

in [AB] an O(m?n? log mn) algorithm and -

showed that the method can be generalized to
an O(m®n® log mn) procedure when rotations

are also possible.

1.2 What this paper is about

If the size of the output in each specific case is
taken into account, it might be said that most
of the above-mentioned results are nearly op-
timal. For example, when both P and Q are
rectilinearly convex polygons, it was proved in
[BFM] that the boundary of the set of feasible
placements of P inside Q is a rectilinearly con-
vex polygonal region that could reach }(mn)
edges, while the algorithm used there to ob-
tain that region is O(mn log m). Except for
the case in which Q is convex and P can only
translate, we are not aware of either the ex-
istence of an optimal in the worst case algo-
rithm for any of the above-stated problems or
a proof of the nonexistence of such optimal al-

gorithms.

The results we present here show that the
difficulty of the PCP (we will use “PCP" as an
abbreviation for “polygon containment prob-
lem”) under translation when both polygons
are rectilinearly convex ones is closely related
to the difficulty of sorting sets of numbers of
the form X 4+Y . More precisely, we prove that
these problems are equivalent.

Sorting X +Y, where X and Y are the sets
of real numbers (z; hi<i<n and (¥ h<i<cm Te
spectively, consists of sorting the sums (z; +
Yj ici<n,1<j<m- It has been studied before
([HPSS], [FR] and [LA]) but the question of
how much computation time is really needed
is still open, i.e. an optimal #(mn) has not
been found.

That equivalence relation means that any



algorithm which solves one problem in O(mn)
can be transformed into a corresponding al-
gorithm for solving the other one within the
same bound. In fact, our proof consists of giv-
ing these transformations. ‘

By using that relation and the results in

[LA], we also prove here that the PCP under

translation in case of rectilinearly convex poly-
gons and the problem of sorting the sums of

consecutive numbers

D ar/1<i<j<n},

k=3

(ai)i<i<n any sequence of real numbers, are

equivalent when m=n.

2 Preliminaries

2.1 Reductions ‘

When we say in this paper that a problem P
reduces to another Q, P — @, we mean that
an O(nm)+T(n,m) (n+m is the size of all of
the problems we will discuss as can be seen in
subsection 2.2) algorithm for solving P exists,
where T'(n,m) is the time complexity of Q.
In other words, the algorithm for P uses an
algorithm for Q. P is equivalent to Q, P «—s
Q,fP— Qand Q — P.

2.2 General definitions and nota-

tions

In what follows, we denote: the abscissae and
the ordinate of a point p as p.z and p.y respec-

tively. -

A polygon P is rectilinear if the edges of
its boundary are vertical or horizontal. P'is
rectilinearly convez if P is rectilinear and the
intersection of every horizontal or vertical line
with P is a connected (possibly empty) seg-
ment. See fig. 1.

(a) (b)

Figure 1: (a) Rectilinearly convex. (b) Non-

rectilinearly convex.

Suppose P and Q are m-gon and n-gon re-
spectively. Q is fixed in the coordinate system
with origin O, while P is in the coordinate
system with origin O, which can translate.

Problem P1 Find all placements of Op in
the fixed coordinate system so that P is con-
tained in Q.

It was proved in [BFM] that, when P and
Q are rectilinearly convex polygons, the set
of placements in which P is contained in Q
is a rectilinearly convex polygon with at most
That set of placements
will be denoted here by H(P,@) and it will
be always assumed that it is described by its

nm bounding edges.

vertices given in some order.

Let us think of A and B as staircase polyg-
onal lines as in figure 2. Suppose that A (B)
refers to the origin O4 (Op). We will consider

that B and its coordinate system are fixed and



A with its coordinate system can tramslate.
We suppose that the bottommost edge of B
(the topmost edge of A) is horizontal and its
left (right) extreme is in some point in the in-
finite. On the other hand, the rightmost edge
of B (the leftmost edge of A) is vertical and
its upper (lower) extreme is also in some point
in the infinite.

We assume that B is represented by vertices
by, ba, ..., by and A by vertices a1, ag, ..., am

as in figure 2.

%, B rf—F

B b Y a A

J—E:J : I ‘
-— by 1

Figure 2: The staircase polygonal lines A and
B

Problem 2 Find the vertices of the rectilin-
ear polygonal line that O4 would describe in
the fixed coordinate system as A slides along
the edges of B.

In other words, we want a description of all
the positions that O4 would reach if, begin-
ning in some point in the infinite with the top-
most edge of A "touching” the bottommost
edge of B, A translates to the right until it
is possible to go upward without intersecting
B, then A translates in that direction until
the distance between some pair of horizontal
segments is zero, etc. Notice that in essence,

what we want is to solve a polygon contain-

ment problem in which both regions are not

‘bounded. So we can call that rectilinear polyg-

onal line H (4, B).

For a certain position O of O 4 in the system
OB, the coordinates of the vertex a; (1< 7 <
m) in the fixed coordinate system are (O.x +
a;.z,0.y +a;j.y) that we will denote as af.

Problem P3 Sort X + Y, where X and
Y are the sets of real numbers (z;)i<i<a and
(5 1<j<m Tespectively, i.e. sort the sums (z;+
Yihgign 1igm

We will use in some parts of this paper the
term X — Y instead of X + 7Y, because it is
clearer with respect to’ the situation we are
discussing. Obviously sorting X +7Y is equiv-
alent to sorting X — Y.

3 The PCP reduces to sort
X+Y

First we prove P2 — P3.

A contact between a; and b; is the intersec-
tion between A and B which arises when a; is
slid along b; (figure 3). Notice that a contact
between two vertices does not always arise as
A slides along the edges of B.

Initially suppose O4 is placed in a position
O so that there is contact between 4, and ay,,
that is, a9, =b;.

Let's consider the sets Xy = {bi-vhici<n
and Yy = {a,;?.y}lsjs,n. Let’s denote the dif-
ference b;.y — aj.y as (Giv. So Xy - Yy =
{(G,iWw/1<i<n, 1< 7 <m}. For the sake

of simplicity we assume now that no two pairs



Figure 3: A contact between a; and b;

there is not
1,7,78, 1< 1,7 <n, 1<7, s <m,such that
Giw =0,s)v.

in Xy — Yy are the same, i.e.

Loosely speaking, our algorithm computes
all contacts, in the order they take place, be-
tween vertices in B and vertices in A as thelat-
ter translates. Note that, if for a certain loca-
tion of O 4, p, a; contacts b;, and we know that
the next contact as A slides first upward and
after to the right is b, and ay, then the next
two positions of O 4 are (p.z, p.y +(b,.y—a?.y))
and (p.z + (b;.z — a®.z),p.y + (b,.y — al.y)),
where the last one is the position for O4 in
which b, contacts a,. This obseryation tell us
how to oBta.in all the positions of O4.

So, the problem is to obtain b, and a,. Let
(Xv — Yv )* be the sorted set Xy — Yy .

Lemma 3.1

If b; touchesa; (1< i <n, 1< 7 < m)
for a certain location p of O4 then, the next
contact as A slides upward and to the right is
between b, and a, if, (r, s )y is the next pair in

(Xv — Yy )* following (7, j)v on the condition

that b,.z — a2.z > 0.

Thus, to compute the set of points which
O4 can be at, it is only necessary to scan the
sequence (Xvy —Yy )* asking for the pairs which
satisfy the condition of the lemma.

It should be noticed that the running time of
this algorithm would be dominated by sorting.
The rest could be done in O(nm). If we use
a standard sorting algorithm an O (nm log m)
upper bound would be obtained, which equals
the one showed in [BFM]. Could Xy — Yy be
sorted in less time, taking into consideration
the particular structure of this set?. We al-
ready said that for this problem of sorting,
the question of how much computation time
is really needed is still open. It was proved in
[LA] that, for two given sequences of numbers
(zih<icn and (y; Ji<i<n, there exists an algo-
rithm to compute the N? sums (z; +y; Ji<i,i<N
in O(N?) comparisons. In fact, such an algo-
rithm was presented there, but unfortunately,
its performance was analized just in terms of
comparisons and the existence of an algorithm
with a similar bound in the case of a more gen-
eral study remains still unknown.

Thus, we have proved the following theorem:

Theorem 3.2 P2 —s P3.

Now we are ready to prove the main result
of this section:

Theorem 3.3 P1 —» P3.

Proof The algorithm described in [BFM] to
compute the set of placements of P so that P
is contained in @ consists of three parts:

(1) Divide P and Q each into four quadrant
parts. The lower right quadrant for example,



consists of the bottommost edge, the steps up
and to the right and the rightmost edge. In
a similar way we can describe the lower left,
upper right and upper left quadrants.

(2) Determine the placements for matching
quadrant parts (with open edges extended to
rays). :

(3) Intersect the four regions of step (2), giv-
ing the set of possible positions of P inside Q.

As it was shown in [BFM], (1) can be done
in O(m +n) while (3) requires O(mn). The
algorithm designed for the second step took
Then, the whole algorithm
complexity depends on (2). It is straightfor-

O(mn log m).

ward to recognize in the quadrant parts the
 staircase polygonal lines defined in the prob-
lem P2. So P1 — P2. It {ollows from Theo-
rem 3.2 that P1 — P3. O

4 Sorting X +Y reduces to
solve the PCP

In this chapter we prove that P3 — P1.
Let’s make some assumptions in relation
with the problem of sorting X — Y. They
do not result in any loss of generality. We
will consider X and Y two sorted sets of
numbers on the real line (it can be done in
O(max(nlogn, mlogm))), ie. 23 < 23 < ... £
< Ym. We also assume
ym = z1 (otherwise we can get sorted X — Y
by sorting X — {y; — a/y;eY}, o such that

Ym — @ =IT1). -

Toy, 1 < y2 < .

Figure 4: Generation of the polygonal lines

used in the proof of theorem 4.1

Theorem 4.1 P3 — P2.

Proof Using the set Y, we construct the
staircase polygonal line A. Let’s generate the
vertices a;, 1 < j < m in such a way that all
of them lie on the same line L. Let’s consider
that the clockwise angle between this line and

the abscissae axis, measured from L, is some

#,0 < 8§ < 90°. We consider that, for every j,
1< 5 £ m,aj.x =y;. The bottommost edge
extends to aray to the left while the rightmost
edge extends to a ray upward. We construct
the polygonal line B in a similar way, assuming
that every vertex b;, 1< i < n,lies on L. See
figure 4. These constructions can be done in
O(n +m). »

Let’s suppose that an algorithm for deter-
mining H (A, B) (the path O 4 describes as O 4
translates along the edges of B)is known. Let
ho, h1,..., hx be the list of its vertices, where
ho is a vertex with its ordinate in the infinite.

Then we have these lemmas:’



Lemma 4.2 Vv,1 < v < k, hy.z — ho.7 is

equal to one, or more, sums x; — ¥y, 1 <4<
n,1<7 <m.
Lemma 4.3 Vi,j, 1 < i < 2,1 < j <

m,3v, 1 < v < k such that z; -y = hyx —
ho.x.

Lemma 4.2 and lemma 4.3 tell us that the
elements of X — Y can be got sorted from
H(A,B). O

Therefore,

Theorem 4.7 P3 — P1

5 Yet another equivalent

problem

The results we present in this section derive
from those in [LA]. There, the following prob-
lem was considered: Let a1,a2,...,an be n

numbers and let’s definefor 1<i<j<n

J
ol,i) = a
k=i

Problem P4 Sort the set of numbers A* =
{e(i,5) 1<i<j<n}

Theorem 5.1 If we consider that in the
problem of sorting X + Y, the size of both
sets X and Y is the same, i.e. n = m, then
P3 — P4,

Proof See the explanation in [LA] about
how an algorithm to sort A* can be adapted
to sort (x; +yf)15‘:15” 0

Theorem 5.2 P4 —s P3

Proof Suppose we are given n numbers
a1, a2, ..., Gy . Without loss of generality we as-
sume n odd. Let’s take N = "—2+—1- Following a

e(1,IN - 1)

N

o(1,3N ~32) &(2,3N ~1)

N N\

(1,3N ~3) o(2,2N ~3) o(3,3N ~ 1)
*
*
*

«(1,32)

P

e(1,1)  (2,3)

o(IN - 2,3N - 1)

N

e(IN - 2,IN - 3) o(3N —1,3N -1

Figure 5: Representation of A™

similar idea to that in [LA], we will define the
2N values z1,z2,...,ZN, ¥1,¥2, ..., yn as fol-

lows:
YN = any real number

YN—i = YN-i+1 — G 1<i<N-1
Iy = aN -y
Ti = aNn4i-1 + T 2<i<N

The set A* can be represented like in figure
5. o

Therefore, the set A* can be also repre-
sented in the way figure 6 shows.

If we take a look at the three regions indi-
cated in the pyramid of figure 9, we can under-
stand that actually, the central one is X + Y,
the region on the left is the set {vi —y;/1<
J <1 < N} and the region on the right is the
set {z; —z;/1<j<i<N}.

The last two sets are subsequences of ¥/ — Y
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Figure 6: Another way of seeing A

and X — X respectively. Hence, an algorithm
for sorting X +Y may be used to sort each
region. By merging the three sorted sets, set
AT will be finally sorted. O

6 Conclusions

The main result of this paper is a proof of the
equivalence between the polygon containment
problem in case of rectilinearly convex poly-
gons under traslation, the problem of sorting
X +Y and the problem of sorting sums of con-

secutive numbers.
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