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Synchronized alternating automaton is a generalization of an alternating automaton enabling a simple, natural
form of communications among parallel processes in an alternating computation. This paper handles two types
of synchronized alternating automata. One is a synchronized alternating real-time one-way multicounter ma-
chine (1sartmem), and the other is a synchronized alternating finite automaton whose number of processes is
bounded by a constant (safacl). We firstly shows a hierarchy based on the number of counters of a lsartmem
whose number of synchronizations is bounded by some function. A multiprocessor finite automata, (mpfa) is one
of the simplest parallel computation devices. We then examine the relationships between the accepting powers
of mpfa’s and safacl’s, since the structures of mpfa’s and safacl’s are very similar.



1 Introduction

Alternating Turing machines were proposed in [4] as a
model of parallel computation. Informally, an alternating
Turing machine is a generalization of a nondeterministic
Turing machine which can, at some point during a compu-
tation, split into several processes working in parallel and
independently; an input is accepted if all parallel processes
finish in accepting configurations. However, the alternat-
ing Turing machine is not a realistic model for real-world
computers, because it does not allow any communications
among its processes.

Synchronized alternating Turing machine was introduced
in [6] as a generalization of alternating Turing machine en-
abling a simple, natural form of communication among par-
allel processes in an alternating computation. The synchro-
nized alternating machine is an alternating machine with a
special subset of internal states called synchronized state.
Each synchronizing state is associated with a synchronizing
symbol. If during the course of computation some process
enters a synchronizing state, then it has to wait until each of
all other processes enters an accepting state or a synchroniz-
ing state with the same synchronizing symbol. When this
happens, all processes in synchronizing states are allowed
to continue this computation.

A very interesting property of one-way finite antomata
is that neither two-way motion nor alternation helps to in-
crease their computational powers [4]. In comparison with
this fact, by adding synchronized alternation to two-way
finite automata, we jump exactly two steps in Chomsky hi-
erarchy. That is, two-way synchronized alternating finite
automata recognize exactly context-sensitive languages [5].

This paper handles two types of synchronized alternat-
ing automata. One is a synchronized alternating real-time
one-way multicounter machine, and the other is a leaf-size
bounded synchronized alternating finite automaton.

Section 2 mainly shows a hierarchy based on the number
of counters of a synchronized alternating real-time one-way
multicounter machine whose number of synchronizations is
bounded by some function. “Synchronization bounded al-
ternating computation” is introduced in (8] as a new com-
plexity measure, and the paper established an infinite hier-
archy among classes of sets accepted by one-way synchro-
nized alternating Turing machines with space and synchro-
nization bounded between loglogn and logn.

_In Section 3, we investigate the relationships between the
accepting powers of multiprocessor finite automata (mpfa’s)
and synchronized alternating finite automata with constant
leaf-sizes (safacl’s) . An mpfa was introduced by Buda [2],
and it can be considered as one of the simplest parallel
computation devices. An safacl is a synchronized alternat-
ing finite automaton whose number of parallel processes is
bounded by a constant. An mpfa and an safacl have a sim-
ilar structure, so it is natural to investigate a relationships
between these two types of automata.

2 Real-Time Multicounter Ma-
chines

In [11], several properties of one-way alternating multi-
counter machines which operate in real-time are investi-
gated and the following results are shown:

(1) For each & > 1, one-way alternating k-

counter machines (lacm(k)’s) which operate in real-

time (lacm(k,real)’s) are less powerful than lacm(k +

1,real)’s.

(2) For each k > 2, lacm(k, real)’s are less powerful than

lacm(k)’s which operate in linear-time.
On the other hand, in [6], a synchronized alternating de-
vice was introduced as a generalization of alternating de-
vice. The synchronized alternation enables the communica-
tion among parallel processes in alternating computations.
Hromkovi¢ and Inoue [9] introduced real-time synchro-
nized alternating one-way multicounter machines and show
that synchronized alternating one-way k-counter machines
(1sacm(k)’s) which operate in real-time (1sacm(k, real)’s)
are more powerful than lacm(k, real)’s and 1sacm(1, real)’s
are more powerful than one-way synchronized alternating
finite automata which operate in real-time.

However, it is still unknown whether or not such results
as (1) and (2) above hold for synchronized alternation cases.
That is,

1. Are lsacm(k + 1,real)’s powerful than

1sacm(k, real)’s ?

more

2. Are 1sacm(k)’s which operate in linear-time more pow-
erful than 1sacm(k,real)’s 7

Partial solutions of these problems were given in [13], that
is, the above problems positively hold for ‘leaf-size bounded -
1sacm(k)’. This section gives another partial solutions of
these problems, that is, the above problems positively hold
for ‘synchronization bounded lsacm(k)’.

A one-way multicounter machine is a one-way multipush-
down machine whose pushdown stores operate as counters,
i.e. have a single-letter alphabet. (See [1] for formal defini-
tions of one-way multicounter machines.)

An alternating one-way multicounter machine (lamem)
{11} M is a generalization of a one-way nondeterministic
multicounter machine in such a sense as in [4]. That is, the
state set of M is divided into two-disjoint sets, the set of
universal states and the set of ezistential states. Of course,
M has a specified set of accepting states. We assume that
a lamcm has the right endmarker ‘$’ on the input tape.
We also assume that-in one step a lamcm can make an
increment or a decrement in the contents of each counter
by at most one.

A synchronized alternating one-way multicounter ma-
chine (1samecm) M is a lamcm some states of which have
synchronizing symbols (sync symbols) from some given fi-
nite set. That is, an internal state of a lsamcm can be
either an internal state of M or a pair (internal state of
M, sync symbol). The latter is called a synchronizing state
(sync state), and the instantaneous descriptions (IDs, see




below) in the correspondence to the sync state are called
the synchronizing instantaneous descriptions (sync IDs).

For each k > 1, we denote a synchronized alternating
one-way k-counter machine by lsacm(k).

An instantaneous description (ID) of a Isacm(k) M is an
element of

T*x N x Sum

where I (§ ¢ X) is the input alphabet of M, N denotes the
set of all positive integers and Spy=Q x (N U {0})* (where
Q is the set of states of the finite control of M). The first
and second components z and 7 of ID I=(z,1,(q, (J1, -, Jx)))
represent the input string and the input head position, re-
spectively. ! The third component (g, (51, ...,Jx)) of I rep-
resents the state of the finite control and the contents of the
k counters. An element of Sy is called a storage state of M.
If ¢ is the state associated with an ID I, then T is said to be
a universal (ezistential, accepting) ID if ¢ is a universal (ex-
istential, accepting) state. The initial ID of M on =z € &*
is Iny(z) = (2,1, (40, (0,...,0))), where g is the initial state
of M. We write I I' and say that I’ is a successor of
Iif an ID I’ follows from an ID I in one step, according
to the transition function of M. A sequence of IDs of M
Ioy b, oy Iy (m > 0), is called a sequential computation of
Mif Ik pdy bpg e - byl I g = Iy(z) for some z, we call
this sequence a computation path (sometimes called “pro-
cess”) of M on z. Let I be a sequential computation of M
and Ih, I, ..., I, be a subsequence of T which consists of all
sync IDs in I. For each j (1 < j < r), let S; be the sync
symbol in ;. Then the sequence S1,5,,...,.5, is called the
synchronizing sequence (sync sequence) of I.

A computation tree of M is a finite, nonempty labeled
tree with the following properties:

1. Each node v of the tree is labeled with an ID £(v).

2. If v is an internal node (a non-leaf) of the tree, £(v)
is universal and {I | €(v)Fpl}={I1,..., I}, then v has
exactly k children vy, ..., vy such that £(v) =L (1 <i <
k).

3. If vis an internal node of the tree and £(v) is existential,
then v has exactly one child u such that £(v) Farf(u).

4. For any two sync sequences S = S5y,...,5, and T =
Ti, ..., T; corresponding to two paths of the tree begin-
ning at the root, it must be satisfied that S; = T; for
each i € {1,2,...,min{p,r}}.

A computation tree of M on input z is a computation
tree of M whose root is labeled with In(z). An accepting
computation tree of M on z is a computation tree of M on
z whose leaves are all labeled with accepting IDs. We say
that M accepts z if there is an accepting computation tree
of M on z. Define T(M)={xz € * | M accepts z}.

A lsacm(k) M operates in time t(n) if for each input z
accepted by M, there is an accepting computation tree of
M on z such that the length of each computation path of

1We note that 1 < i < |z|+ 2, where for any string w, |w| denotes
the length of w. ‘1’, ‘lz|+1" and ‘|z|+2’ represent the positions of
the leftmost symbol of z, the right endmarker ‘®’, and the immediate
right to ‘9.

the tree is at most ¢(]z|). M operates in real-time (linear-
time) if t(n) = n+ 1 ({(n) = cn for some positive constant

c).

In order to avoid misunderstandings, we give a precise
definition of an accepting computation of a real-time syn-
chronized alternating machine M. “Real-time” means that
the machine moves its input head on an input to the right
in each computation step. We assume that the right end-
marker ‘§’ is attached to the right of an input of M, and
the input head of M fall off the right endmarker ‘8’ after
reading it.

We next give the definitions of synchronization bounded
Isacm(k).

Let f: N — R be a function. We say that a 1sacm(k) is
f(n) synchronization bounded if for each n > 1 and for each
input w (accepted by M) of length n, there is an accepting
computation tree T' of M on w such that the length of the
longest sync sequence of T is bounded by [f(n)].

We use the following notations to represent different
kinds of 1samem’s.

1sacm(k,real, f(n))  f(n) synchronization bounded
1sacm(k) which operates in

real-time

1sacm(k, linear, f(n)) f(n) synchronization bounded
Isacm(k) which operates in
linear-time

1sucm(k,real, f(n)) lsacm(k,real, f(n)) with only

universal states

1suem(k, linear, f(n)) lsacm(k,linear, f(n)) with only
universal states

Define
1SACM(k, redl, f(n))

il

{T | T=T(M) for some
1sacm(k,real, f(n)) M }

{T | T=T(M) for some
1sacm(k, linear, f(n)) M }

Similarly, we let 1SUCM(k, real, f(n)) (1SUCM(k,
linear, f(n))) denote the class of sets accepted by lsucm(k
real, f(n))’s (1sucm(k, linear, f(n))’s)

1SACM(k, linear, f(n))

il

We show the several hierarchies based on the number of
counters of synchronized alternating multicounter machines
when the number of synchronizations is bounded by some
function of the input size.

We need some definitions. For each storage state
(¢ (J1,--- 7)) of M and each w € T%, let a (g, (1, .-, J&))-
computation tree of M on w be a computation tree
of M whose root is labeled with the configuration
(w,1,(¢, (15, 3%))- A (g, (J1, - Jk))-accepting computa-
tion tree of M on w is a (q, (1, ..., Jk))-computation tree
of M on w whose leaves are all labeled with accepting IDs.

Theorem 1 Let f : N — R be any function such thai
limyeco [f(n)/logn] = 0 and f(n) > 0. Then, for cach
k> 1, LSACM(k,real, f(n)) C 1SACM(k+1, real, f(r)).



Proof. For each integer k > 1, let

Ti(k) = {#F wwidwd - #w, € {0,1,#}7 |
n>1&we {0,1}* & lwl=n & r=(n+1)* &
Vil <i < r)wi € {0,1}F & lwif=n] &
3i(1 < < ko = i)

It is shown in [11] that Ty(k) is accepted by a one-way
alternating k + 1 counter machine which operates in real-
time. Thus, we can get that T3(k) € 1SACM (k+1,real,0).

We next show that Ty (k) € LSACM(k,real, f(n)). Sup-
pose that there exists a 1sacm(k,real, f(n)) that accepts
Ty(k). For each n > 1, let

V(n) = {# wwifwift - #wym) |
Vi(l €1 < g(n)wi € {0,1}F & |wi] =n] &
3j(1 £ < g(n))lw = w;l} S Tu(k),

where g(n) = (n +1)* and

W(n) = {FuiFwft - H#wym |
Vi(l <1 < g(n))w; € {0,1}* & |w;] =n]}.

Note that for each z = # wHuiFw.H# - H#wym) €
V(n),

1. |z| = 2n + (n + 1)*** = r(n), and

2. there exists an accepting computation tree of M on «
which has the following properties:

(a) for each computation path p from the root to a
leaf, the length of p is |¢8] = r(n) + 1 and p rep-
resents a computation in which the input head
moves one square to the right in each step and,
thus,

(b) for each node  labeled with an ID which M en-
ters just after the input head has read the initial
segment ##"w of z, the contents of each counter

in £(r) is bounded by 2n,

() the length of the sync sequence of the tree is
bounded by f(r(n)),

since M operates in real-time and we assume that M can
enter an accepting state only when falling off the right end-
marker ‘§’.

Let Q be the set of all the storage states (g, (J1,.-Jx))
with Vi(1 < i < k)[0 < j; < 2n], and S be the set of all
the sequences of sync symbols (of M) of length at most
[f(#(n))]- Then, for each y in W(n), let the mapping M, :
Q — 25 be defined as follows : for each (g, (j1,..-,Jx)) € @,

* 0 € M,y(g,(J1, -, k) ¢ there exists a (g, (j1, s Jr))-
accepting computation tree of M on y such that for
each computation path p from the root to a leaf, the
length of p is [y$] = r(n) + 1 — 2n and p represents a
computation in which the input head moves one square
to the right in each step, and the longest sync sequence
of the tree is o,

o M,(q,(j1,--1Jx)) = ¢ < for any sync sequence o
with the length at most f(r(n)), there exists no
(g, (j1, -~ Jk))-accepting computation tree of M on y
such that the sync sequence is & and for each compu-
tation path p from the root to a leaf, the length of p is
|y$] = r(n)+1—2n and p represents a computation in
which the input head moves one square to th right in
each step.

For any two strings ¥,z in W(n), we say that y and z
are M-equivalent if for each storage state (g, (J1, ..., Jx)) of
M with 0 < j;i < 2n (1 < i < k), My(q,(jr, s 08)) =
M.(q,(j1,..., 7). Clearly, M-equivalence is an equivalence
relation on strings in W(n), and there are at most

E(n) = (zc(n))t(2n+l)"

M-equivalence classes, where ¢(n) = 1+a-+a®+- - -+a/ )
(where @ is the number of sync symbols of M) and t denotes
the number of states of the finite control of M. We denote
these M-equivalence classes by c1, ¢g, ..., CE(n)- For each y =
#wl#wZ# e #wy(n) in VV(TL), let b(y) = {u € {01 1}+ l
F(1 < i < g(n))[u = w;]}. Furthermore, for each n 2 1,
let R(n) = {b(y) | Iy € W(n)}. Then,

2" 2“ 2“
= (7)+ (5) ++ (o)

Trom the assumption that lim,...o[f(n)/logn] = 0, it
follows that limu—co[f(r(n))/ log n] = 0. Therefore, we have
|R(n)| > E(n) for large n. For such n, there must be some
U,U'(U # U") in R(n) and some ¢; (1 <1 < E(n)) such
that the following statement holds:

o There are two strings y,z € W(n) such that

(i) 8(y) = U # U’ = b(z) and
(i) y, 2z € ¢; (i-e. y and z are M-equivalent).

Because of (i), we can, without loss of generality, assume
that there is some string w € {0, 1}* such that |w| = n and
w € b(y) — b(z). Clearly, it implies that y’ = #™wy € Ta(k)
and 2’ = #"wz € T1(k). But because of (ii), ' is accepted
by M iff 2’ is accepted by M, which is a contradiction. This
completes the proof of the theorem. ]

Finally, we show that for lsamcm’s bounded in
the number of synchronization f(n) such that limp..
[f(n)/logn] = 0 and f(n) > 0, linear-time is more pow-
erful than real-time.

Theorem 2 Let f : N — R be any function such that
lim,_oo[f(n)/logn] = 0 and f(r) > 0 (n > 1). Then for
each k> 2,
(1) 1SACM (k,real, f(n)) C 1SACM (k, linear, f(n)),
(2) 1SUCM(k,real, f(n)) ¢ LSUCM(k, linear, f(n)),
() Ungreo 1SACM (r,real, f(n))
G Uigreoo LSACM(r, linear, f(n)), and
(4) U15r<oo ISUCM(T,T'CGI, f(n))
C Uscr oo LSUCM(r, linear, f(n)).

e




Proof. Let

Ty = {wh0™ 0™ 4. 407 |we {0,1}* &
r21&Vi(l<i<n)mi>1]&
(1 <5 < r)[mj = N(w) +1]},

where N(w) denotes the integer represented by w as a bi-
nary number (with the least significant bit in the right most
position). It is shown in [11] that T3 can be accepted by a
one-way deterministic 2-counter machine which operates in
linear-time.

We show below, by using the same technique as in the
proof of Theorem 1, that T2 & Uigrcoo ISACM(r,real,
f(n)) for any function f(n) such that im,_.c[f(n)/logn] =
0.

Suppose that for some k& > 1, there exists a
1sacm(k,real,f(n)) M which accepts T,. For each n > 1,
let

Vin) = {wh0™ #0707 | | =n &
we (0,1} & Vi(l <i < gl < m; <2 &
3(1 <5 < gln))m; = N(w) + 1)} € T,

where g(n) = 2" and

W(n) = {#Orru #Omz# . #Om’(") |
Vi(l <1< g(n))l <m; <2°]).

Similarly, as in the proof of Theorem 4, we can divide W(n)
into at most

E(n) — (zc(n))t(n+1)k

M-equivalence classes, where ¢(n) = 1+a+a?+- - - +aft()
(where a is the number of sync symbols of M) and ¢ denotes
the number of states of the finite control of M.

For each y = #0™ #0724 .. . #0™stm € W(n), let

by) = {meN|3(l1<i<gn)[m=mi}

Furthermore, for each n > 1, let R(n) = {d(y) | Iy €
W(n)}. Then

<21n> * (2)2“) ot (rj:ﬁ) =Fn

From the assumption that lim,_..[f(n)/logn] = 0, it fol-
lows that lim,_.[f(g(n))/n] = 0. Therefore, we have
|R(n)] > E(n) for large n. Now the proof of T3 ¢
Ui<reco LSACM(r,real, f(n)) can be completed in the
same way as in the proof of Theorem 4. =]

|B(n)] =

3 Multiprocessor Automata and
Synchronized Alternating Fi-
nite Automata

A multiprocessor finite automaton (mpfa) was introduced

in [2] and it can be considered as one of the simplest paral-
lel computation devices; it consists of more than one finite

automata, called ‘processors’, reading information from the
input string simultaneously, and the switching function that
determines whether each processor does the action accord-
ing to the transition functions or takes a rest.

On the other hand, Hromkovi¢ et.al. studied the par-
allel complexity classes of synchronized alternating finite
automata by introducing these automata with a constant
number of processes (i.e., constant leaf-size) in [7]. They
nicely characterized these leaf-size bounded automata in
terms of multihead nondeterministic finite automata, and
thus obtained tight hierarchies of these machines on the
number of processes.

The mpfa has a structure similar to the synchronized al-
ternating finite automaton with constant leaf-sizes, so it
is natural to investigate a relationship between these au-
tomata.

A one-way deterministic k-processor finite automaton is
a device M = (k, @, E,g,h,vo), where k is the number of
finite automata called processors, @ is a finite set of states,
E is an input alphabet, g is a mapping from @ x (EU{¢,$})
to @ x {0,1} called the transition function, h is a mapping
from {1,2, ..., k} x @* to {0, 1} called the switching function
and vo € QF is the k-tuple of the initial states. E does not
contain ‘¢’ and ‘§’, which are the left and right endmarkers,
respectively. For all p,p' € @, g(p,¢) = (¢, d) implies that
d >0, and ¢{p,$) = (¢',d) implies that d = 0.

M is a one-way nondeterministic k-processor finite au-
tomaton, if g maps from @ x (E U {£,$}) to 29%01} M
is a two-way deterministic k-processor finite automaton if
g maps from @ x (E U {¢,$}) to @ x {-1,0,1}. Misa
two-way nondeterministic k-processor finite automaton if g
maps from Q x (E U {£,$}) to 29x{-101},

An input to mpfa M is a string z = zy32--- 2, (n >
0 & Vi(1 < ¢ < n){z; € E]) which is written on the read
only tape. We say that the position of the head of a pro-
cessor is : if and only if the head is on the i-th symbol of
¢z8 (¢ is the first symbol). A configuration of M is a 2k-
tuple (g1, ksi1, -, %), Where ¢ € @, 1 < 4 < |2| +2
for all 1 < I < k. The configuration of M represents the
states of processors and the positions of heads. An ini-
tial configuration of M is Co = (gd,..-,¢8,1,...,1), where
vo = (g, .-, g5). The configuration at time 0 is the initial
configuration. Let C; = (py, ..., Pk, %1, .-, %) be a configu-
ration at time ¢ (£ > 0). Then, for each [ (1 <1 < k),
the configuration Cyyq = (g1, .-, G&y J1, ---, Jx) ab time t 41 is
defined as:

(rvil + d) h(l,Ph'..,pk) =1, (T, d) = g(pheix)x
re@,1<i<|z]+2, and ¢, is th
symbol of ¢z§,

h(lvplv"';pk) =0.

{qn,31) =
(piy &)

The relationship of this transition is denoted C; Fp,
Ci41, and the reflexive and transitive closure of Fjs ;. is de-
noted +3,,. A configuration C = (g1, ..., k21, ---, ) is an
accepting configuration if and only if h(l, q1,...,qx) = 0 for
all I = 1,..,k. We say that M accepts an input z € E* if
and only if there exists an accepting configuration C such
that Co 3y, C.



The mpfa’s above are sometimes called ‘halting type
mpfa’s’ in particular. In addition to this type of mpfa’s,
we introduce another type of mpfa’s called ‘accepting type
mpfa’s’. That is, we define an accepting type mpfa by
changing the accepting condition of an mpfa as follows: ‘an
mpfa accepts an input if and only if all the processes enter
accepting states’.

An accepting type one-way deterministic k-processor fi-
nite automaton is a device M = (k, @, E, g, h, vo, F'), where
F(C Q) is a set of accepting states. Other components are
the same as the halting type mpfa. The configuration, the
initial configuration Co, the relations of configurations tpsx
and 3, can be defined as the above.

A configuration C' = (g1, ..., @ks %1, .-, ) s an accepting
configuration if and only if ¢ € F for all [ = 1,2,..., k. We
say that M accepts an input z € E* if and only if there
exists an accepting configuration C such that Co F3. C.

We below show the notations which are used in this pa-

per.

1dp(k)fa one-way deterministic halting type
k-processor finite automaton

1np(k)fa one-way nondeterministic halting type
k-processor finite automaton

2dp(k)fa two-way deterministic halting type
k-processor finite automaton

2np(k)fa two-way nondeterministic halting type
k-processor finite automaton

Furthermore, 1da(k)fa, 1na(k)fa, 2da(k)fa, and 2na(k)fa
represent accepting type mpfa’s which correspond to the
above halting type mpfa’s.

For an mpfa M, let T(M) = {z € E* | M accepts z}.
The class of sets accepted by 1dp(k)fa’s which is defined
by {T(M) | M is a 1dp(k)fa} is denoted 1DP(k)FA. Simi-
larly, classes INP(k)FA, 2DP(k)FA, 2NP(k)FA, 1IDA(k)FA,
INA(k)FA, 2DA(k)FA, and 2NA(k)FA are defined.

A synchronized alternating one-way finite automaton
(1safa) can be defined as the lsacm(k) in the previous sec-
tion. That is, a lsafa is a 1sacm(k) which has no coun-
ters. A synchronized alternating two-way finite automaton
(2safa) is the same as the 1safa except that the input head
of the 2safa can move in two directions.

We then introduce ‘leaf-size’ for 1safa’s and 2safa’s. Let
L : N — R be a function. For each tree t, let LEAF(t)
denote the leaf-size of ¢ (i.e., the number of leaves of t). We
say that a lsafa (2safa) M is L(n) leaf-size bounded if, for
each n and for each input z of length n, if z is accepted
by M, then there is an accepting computation tree ¢ of
M on z such that LEAF($)< [L(n)]. An L(n) leaf-size
bounded 1safa (2safa) is denoted 1safa(L(n)) (2safa(L(n))).
In this paper, we only consider lsafa’s and 2safa’s which
have constant leaf-sizes. We use the following notations.

1safa(k) k leaf-size bounded synchronized alternating one-
way finite automaton

2safa(k) k leal-size bounded synchronized alternating two-
way finite automaton

1sufa(k) lsafa(k) with only universal states

2sufa(k) 2safa(k) with only universal states

‘We then investigate the relationships between multipro-
cessor finite automata and synchronized alternating finite
automata with constant leaf-sizes. We first consider the
case when nondeterministic actions are permitted.

Theorem 3 For each k > 1,
INP(k)FA=1SAFA (k) and
ONP(k)FA=2SAFA (k).

Proof. For each Xe {1,2}, let XNH(k)FA denote the
class of sets accepted by X-way nondeterministic k-head
finite automata. It is known that

o XNP(k)FA=XNH(k)FA (3]
o XNH(k)FA=XSAFA (k) (7]

for each X€ {1,2}. From these facts, we can see that the.
theorem holds. O

We next consider the case when nondeterministic actions
are not permitted.

Lemma 1 1DP(2)FA~Uscicoo 2SUFA(k)# ¢

Proof. Let T3 = {w2vw' |w # v’ & w,uw’ € {0,1}*}. We
can show that 7' €1DP(2)FA by using the same technique
as in the proof of Theorem 4 in [12]). On the other hand,
in Lemma 3.4 in [10], it is shown that the set T5 can not
be accepted by any S(n) space bounded two-way Turing
machines with only universal states. Thus, we can get that
Ts & Urckeoo2SUFA(R). o

Theorem 4
U15k<m15UFA(k)g Ui gk<oo IDP(k)FA and
Un<k<oo 2SUFA (k)G Urcreoo 2DP (k) FA.

Proof. It is shown in Corollary 1 in [12] that
Us<k<oo I DP(E)FA=U, ck<0o IDA(K)FA. Similarly, we can
show that Ucrcoo2DP(E)FA=U;<rcoo2DA(E)FA. From
these facts and the lemma above, it is sufficient to show that
Usr<kecooXSUFA(K)C Uscrcoo XDA(K)FA for each Xe {1,2}.

Let M be a 1sufa(k), k > 2. We construct a 1da(2*1)fa
N which simulates M. Without loss of generality, we as-
sume that each node of a computation tree of M labeled
with a universal configuration has exactly two children.
Each processor of N contains the distinct number from 0 to
2%-1 _ 1 as a component of a state, and the processor with
the component : is denoted P;. Furthermore, each proces-
sor of N has another number sn as a component of a state
called threshold number. At the beginning of a computa-
tion of N, the threshold numbers of all processors are set
to sn = 2F2 — 1.

Until M firstly enters a universal state from an initial
state, all 2¥~! processors of N simulates the action of M.




After this (or the initial state of M is a universal state}, for
each 7 (1 <1 < 251), each processor P; such that i < sn
(=22 — 1) enters an ID of the left child of the node with
that universal state (called left ID), and each processor P;
such that 7 > sn enters an ID of the right child of the
node (called right ID). (That is, 2¥~? processors of N split
into two groups each of which consists of 2~ processors.)
Afterward, the threshold numbers of the processors in the
left ID are all reset to sn = sn — 2¥=3 and the threshold
numbers of the processors in the right ID are all reset to
sn = sn 4 2573,

For each £ (1 £ £ < k — 2), suppose that M enters an
£-th universal state numbered from an initial state. Then,
for each of 2¥~¢ processors of N simulating the action of M,
the threshold number of the processor P; such that j < sn
is reset to sm = sn — 2¥~¢, and the processor P; enters a
left ID. The threshold numbers of other processors (that is,
processors P;’s such that j > sn) are reset to sn = sn+2%~¢,
and each of these processors enters a right ID. (That is, 25~¢
processors of N split into two groups each of which consists
of 2¥=4-1 processors.)

Suppose that M enters a (k — 2)-th universal state. In
this case, it is easily seen that the number of processors of N
that simulate the actions of M is two. Then, one processor
P,, enters a left ID and the other processor P,,;; enters a
right ID. We must note that the number of universal IDs
in any computation path of M is at most k — 1, since the
leaf-size of M is k.

Suppose that M enters an accepting ID (rejecting ID) in
some computation path. Then, each processor of N simu-
lating the action of M in the computation path enters the
same accepting ID (rejecting ID) as the above.

Suppose that M enters a sync ID in some computation
path. Then, N makes each processor of N simulating the
action of M in the computation path inactive by the switch-
ing function. When some computation path of M enters a
sync ID with sync symbol s, the switching function of N
makes processors simulating the actions in sync IDs active
only if each of computation paths of M enters a sync ID
with the same sync symbol s or an accepting ID.

From the actions described above, it is easy to see that
all processors of NV enter accepting states only if all compu-
tation paths of M enter accepting IDs. It is obvious that N
accepts T(M). Thus, 1SUFA(k)C1DA(25-1)FA, it follows
that Usckcoo ISUFA(K)C U crcoo IDA(E)FA. m}

We next consider the problems such that
For each X€{1,2} and k > 2,

o Is XSUFA(k)cXDP(k)FA ?

o Is XSUFA(k)cXDA(K)FA ?

Unfortunately, we only know the proper inclusion only in
the case of k = 2 for accepting type mpfa’s. The proof of
the following theorem is left to readers.

Theorem 5
1SUFA(2)C1DA(2)FA and
2SUFA(2)c2DA(2)FA.

By combining the above theorem and Theorem 2 in [12],
we can prove the following theorem. (Theorem 2 in [12]
states only the case of one-way, but the theorem is applica-
ble to the two-way case.)

Theorem 6
ISUFA(2)c1DP(8)FA and
2SUFA(2)c2DP(3)FA.

4 Conclusion

We firstly showed that an additional counter increases the
accepting power of a synchronized alternating real-time
one-way multicounter machine (1sartmecm) whose the num-
ber of synchronizations is o(n). We also showed that a
linear-time machine is more powerful than a real-time ma-
chine for a synchronized alternating one-way multicounter
machine whose number of synchronizations is o(n). Simi-
lar results as the above could be found in [13], that is, the
paper states the proper inclusions as the above for leaf-size
bounded lsartmem’s. It is unknown whether or not the
similar inclusions hold for non-restricted Isartmem'’s.

We next investigated the relationships between the ac-
cepting powers of a multiprocessor finite automaton and
a synchronized alternating finite automaton with constant
leaf-size. We showed that the accepting powers of a non-
deterministic k-processor finite automaton and a k leaf-size
bounded synchronized alternating finite automaton are the
same. On the other hand, we also got a result that il we
exclude nondeterministic actions from the both automata,
a different situation occurs, that is, a deterministic multi-
processor finite automaton is more powerful than a leaf-size
bounded synchronized finite automaton with only universal
states. However, the following is left as an open problem.
“Is there a proper inclusion between the accepting pow-
ers of a deterministic k-processor finite automaton and a &
leaf-size bounded synchronized alternating finite automaton
with only universal states?”
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