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We consider the following problem: “Given a graph G = (V,E) and a number K,
compute the subset of V, P, of cardinality K such that the total weight of a minimum
structure is mazimized.”

If the structure is “spanning tree”, the problem is named the MST-remote K- set
problem. If we maximize the minimum Steiner tree of P instead of the minimum spanning
tree, it is named the Steiner-remote K -set problem. Also, we consider TSP-remote K -set
maximizing the TSP tour of the subset.

We give: (1) NP-hardness and lower bounds of approximation ratios of the above
remote K-set problems. (2) tight analysis of the furthest-point greedy approximation
algorithm with an approximation ratio 4 for the MST-remote K -set problem when the
graph is metric (that is, when the edge weights satisfy the triangle inequality) (3) an
approximation algorithm computing MST-remote K-set with a performance ratio 2.25
for a graph induced from Euclidean distance of a set of points in a plane, and (4)
corresponding results for Steiner-remote and TSP-remote K -set problems.



1 Introduction

Let ¢ = (V, E) be a complete weighted undirected graph such that each weight is non-negative
(possibly infinity). Let P be a subset of V. A spanning tree of P is a subtree of G whose node set is
P. A Steiner tree of P is defined as a spanning tree of a superset of P. A subcircuit of G (regarding
an undirected edge as a pair of opposilely directed edges) whose node set is a superset of P is called
a tour of P. The minimum weight tour of P is often called a TSP tour of P.

Minimum weight spanning tree (in short, minimum spanning tree or MST), minimum Steiner
tree and TSP tour are famous combinatorial structures, which are not only useful in applications but
also rich source of research on exact and approximation algorithms.

We denote minimum spanning tree, minimum Steiner tree, and TSP tour of £ by MST(P),
St(P), and TSP(P) respectively.

The total weight of a tree (or a tour) T is denoted by {(T"). We consider the following problems:

MST-remote K-set problem: Find a subset P of cardinality & of V such that (M ST(P)) is
maximized. The set P is called the MST-remote K -set of G.

Steiner-remote K -set problem: Find a subset P of cardinality K of V such that I(St(P)) is
maximized. The set P is called the Sleiner-remote K -set of G.

TSP-remote K-set problem: Find a subset P of cardinality & of V' such that (TSP(P)) is
maximized. The set P is called the T'SP-remote K -set of G.

All of these problems find subsets (of the node-set of 4 weighted graph) maezimizing the weight
of minimum combinatorial structures constructed from the subsets.

If we consider a complete graph induced from a set of points in an Fuclidean space such that the
edge weights are given as the Euclidean distances, the problems can be regarded as computational
geometry problems. In computational geometry, the problem of finding a subset with cardinarity K
of a planar point set maximizing the perimeter or area of convex hull (minimum perimeter enclosing
polygon) of the subset was studied in literature [2, 3, 5]. However, the authors know no previous
results on problem of computing subsets maximizing other minimum structures.

The problem of finding subsets minimizing the minimum weight of a combinatoral strucure is
probably more popular{l, 7, 15, 10} In particular, the problem of finding the K-set minimizing the
weight of the minimum MST was recently studied by Ravi et al.[15] who proved NP-hardness, and
gave an O(K1/4) approximation algorithm for a graph induced from a set of points in a plane. Garg
and Hochbaum(10] improved the approximation ratio to O(log K).

From a practical point of view, the MST-remote (or Steiner-remote) K-set of a network can be
considered as the set of K nodes among which it is most expensive to communicate information.
Thus, the remote subsets can be applied to the evaluation of the communication performance of
networks.

They can also be applied to clustering problems. In particular, when G is a graph induced {rom
distances among a set of points in a plane (Figure 1), the problems are strongly related to geometric
clustering problems. Indeed, we originally faced these problems when we tried to obtain a good
“starting tour” of a large TSP instance (it was a circuit board drilling problem [12] which occured
at a manufacturing plant) with more than 10,000 non-uniformly distributed cities. For obtaining a
short approximate TSP tour by using a construction heuristics, it is effective to start with a subtour
(starting tour) consisting of relatively small number of sample cities, which effectively captures a
global structure of the point distribution [13]. For the purpose, random sampling is not suitable,
since it may miss some critical cities, and an approximate TSP tour constructed from the associated
starting tour is often a bad instance as an input of a local heuristics algorithm. The MST-remote
K-set and/or the TSP-remote K-set (or those approximate solutions) seem to give better starting
tours.

If we remove the cardinality condition from MST-remote K'-set problem, we have the following
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Figure 1: remote K -sets

problem:
MST-remote subset problem: Find a subset @ of V such that (M ST(Q)) is maximized.
The MST-remote subset problem can be considered as a inverse problem of the Steiner problem.
Whereas the Steiner problem find a superset Q' of P minimizing M ST(Q'), the MST-remote subset
problem find a subset @ of V' maximizing MST(Q).

We first show that remote K-set problems are NP-hard for general graphs. Moreover, it is NP-
hard to obtain a constant-ratio approximation algorithm for the MST-remote K-set problem. Here,
the approximation ratio is defined by the ratio of the weight of the optimal MST (resp. Steiner tree,
TSP) to that of the output MST (resp. Steiner tree, TSP).

However, in practical cases, it is possible to obtain constant-ratio approximation algorithms.
Indeed, we can usually assume the metric condition when we consider applications of MST. The
graph G is called metric if the weight of G satisfies the triangle inequality. That is, for any three
nodes u,v,w, d(u,v) + d{v,w) > d(u,w). Here, d(u,v) is the weight of the edge e(u,v) connecting u
and v, and often called distance when the graph is metric.

An example of a metric graph can be constructed as follows: Given a weighted graph G, we define
a complete graph D(G) with the same node set such that the edge weight of e(u,v) is defined to be
the weight of the minimum weight path between w and v of G. The graph D(G), which we called
the shortest-path distance graph, is metric. Graph G is sometimes called the seed of D((). Another
example of a metric graph is a graph induced from distances of set of points in a metric space.

If the graph G is metric, a constant-ratio approximation for the MST-remote K-set is possible.
We shall give an approximation algorithm with the approximation ratio 4 for metric cases, and
show that this ratio is tight for the algorithm. Furthermore, if the graph is induced from Euclidean
distances of a set of points in a plane, we give an approximation algorithm with the approximation
ratio 2.25.

Both algorithms are based on the greedy furthest-point algorithm, which constructs “K -central-
circle covering”, that was originally introduced by Feder and Greene [8] to obtain a 2-approximation
algorithm for the Euclidean K'-clustering problem.

The approximation ratios of both algorithms are analyzed by using a nice property of the K-
central-circle cover, in conjunction with well-known results concerning the Steiner ratios of metric
and Euclidean Steiner trees.

Steiner-remote K -set problem is NP-hard, and TSP-remote K-set problem is hard to approximate
within a factor of 4/3. We can give 3-approximation results for both problems.

We also give a linear time algorithm for computing Steiner-remote K-set if the set of edges with
non-infinity weights forms a tree in G.



2 Hardness results

The decision version of the MST-remote I -set problem (decide whether there exists a set of size
K whose MST has a weight more than a given threshold) is obviously in NP. Instead of showing
NP-hardness, we show the approximation-hardness. The approximation ratio of an algorithm for
computing a MST-remote K-set is the ratio of the weight of the MST for the optimal MST-remote
K-set to that for the output approximate MST-remote K-set.

Proposition 2.1 [t is NP-hard (o oblain an approzimate solution of the MST-remote K -set problem
within an approzimation factor n® for some € > 0.

Proof We consider a graph H = (V, E1) and its cograph H¢ = (V, E3) in the complete graph. We
give a weight 1 to each edge of E;, and give a sufficiently large weight @ > n to each edge of Fs.
Suppose that H is the graph of Arora et al.[4] such that it is hard to approximate an independent
set within a factor of ¥ = n for some ¢ unless P = NP. Let us consider G = (V, E; U E,). Suppose
Kop; is the size of the maximum independent set of H. If we have an approximate solution for the
remote K-set whose MST has a weight (sg — 1)a + (K — sk ), we can compute an independent
sel of H with size sg. Indeed, if we erase all edges in Fy from the MST, and select a node from
each connected component, it forms an independent set. Let $;,42 be the maximum of sx over all
K =1,2,..,n. Thus, we can construct an approximation algorithm for the independent set within
the factor of Kopt/Smaz, which is not larger than Kopi/sk,,.-

Thus, unless P = NP, Sk, may be smaller than 41 Kop- Hence, the ratio of (8K ppe — D +
(K — sg,,,) to the weight of MST of the optimal MST-remote (Kop — 1)-set may become smaller
than y~! + ™! < 4~1 4+ n~L. Thus, it is hard to obtlain an approximation ratio better than v. O

Similarly, it is NP-hard to approximate the MST-remote subset problem within a constant factor.
If the graph is metric, we can only have a constant lower bound for the MST-remote K-set
problem.

Proposition 2.2 It is NP-hard to obtain an approvimate solution of the MST-remote K -set problem
of a metric graph within an asymptolic factor less than 2.

Proof The proposition is similarly proved as Proposition2.1, setting e« = 2. a

For Steiner-remote K-set problem and TSP-remote K-set problems, one can always assume that
graph G is metric, since TSP and minimum Steiner tree of a node set P in G can be realized as those
of P in the shortest-path distance graph D(G). Hence, these problems look like easier to approximate
than MST-remote K-set problem.

Proposition 2.3 It is NP-hard to obtein an approzimation solution of the Steiner-remote K -set
problem within an asymptotic factor less than 4/3.

Proof Given graph G, we construct a graph H' as follows. Replace each edge of G by a path with
two-edges, and connect the middle vertices of the paths into a clique. The input to Steiner-remote
K-set problem is the distance graph D(H') of H'. If we consider two vertices in G, they will be of
distance 2 in H' if they are adjacent in G, and of distance 3 in H' if they are non-adjacent in G.
An independent set in G corresponds to a set of vertices in H' that have no neighbors in common.
Hence, the cost of the minimum Steiner tree of that set in D(H') is 2(K — 1). On the other hand,
given a K-set, we can easily find a Steiner tree that is minimal in the following sense: the Steiner
vertices adjacent to only one terminal each can not be reduced in that no two of the corresponding
terminals share a common neighbor. These terminals are all of pairwise distance 3 in H’, and thus
form an independent set in (G. Let I” be the number of those terminals. The cost of the Steiner tree




constructed will be at most 3/2(K — P —1)+2P = 3/2(K — 1)+ 1/2P, and that upper bound holds
naturally for the minimum Steiner tree as well.

If, now, we could guarantee finding a /K-set where the minimum Steiner tree is at least 3/2K +
1/2K<, it follows that P, the size of the independent set found in G, will be at least K. From 4],
this is NP-complete. O

Proposition 2.4 It is NP-hard to obtain an approximate solution of the TSP-remote K -set within
an asymptotic factor less than 2.

Proof Given an unweighted graph G, we construct a complete graph H, with the same vertex set,
and weight of an edge equal to 1 if the edge is in G and 2 otherwise. Clearly, this graph satisfies the
triangular inequality.

If G contains an independent set of size &, then any tour of that K-set in H will have cost 2.
On the other hand, suppose the algorithm finds a K-set S in H for which TSP(8) > K+ K*. Grow
a collection of disjoint paths in § using only edges of cost 1, until no endpoints of two paths can be
joined with a cost 1 edge. Let the number of paths be P, and thus the cost of any tour formed by
arbitrarily connecting the paths into a circuit is K + P — 1. Select one endpoint from each path;
any pair will be an edge of cost 2, hence they form an independent set in G of size P. The number
of paths P equals the cost of our tour less K — 1, which is at least TSP(S) — K + 1, which is by
assumption at least K. Hence, the algorithm has produced an approximation of Independent Set
proved to be NP-complete in [4]. O

The Steiner-remote K-set problem and TSP-remote K-set problem are in £2. We do not know
whether these problems are in NP or not. On the other hand, as is shown in the next section, there
are polynomial time constant-ratio approximate algorithms for these problems

3 Aproximation algorithms for Metric case

In this section, we assume that G = (V, E) is metric unless it is explicitly declared to be general. We
give an approximation algorithm for the MST-remote K -set problem.

K-central-circle covering: We find a set P of K nodes P1,-.-,PKk such that there exists
a real number r (called the radius of the circle covering) satisfying d(p;,p;) > r for ¢ # j and
Mini{d(v,p;}} <r for any node v € V. Such a node set P is called the set of centers of a K-central-
circle covering, and can be constructed by the greedy furthest-point algorithm.

Greedy furthest-point algorithm: We choose an arbitrary node (starting node) v of V, and
initially set P = {v}. The distance between a node u and the set P is the shortest distance between
u and nodes in P. We choose the furthest node ¢ in V — P from P, and insert ¢ into P until
the cardinality of P becomes K. Then, it is easy to see that the node set is a set of centers of a
K-central-circle covering. The radius r of the circle covering is half of the distance between the last
chosen node ¢ and P — {q}.

Theorem 3.1 The set P of centers of a K -central-circle covering is a 4-approximation of the optimal
MST-remote K-set. Similarly, P is a 3-approzimation of the optimal Steiner-remote K -set.

Proof Obviously, /(M ST(P)) is at least (K —1)r. Suppose @ is the optimal MST-remote K-set. Let
us consider a tree T(PUQ) formed by joining each point of Q to the nearest node of MST(P). Since
the length of each newly created edge is at most r, [(T(PU Q)) is at most (M ST(P))+ K. This tree
T(PUQ) is a (not necessarily minimum) Steiner tree of Q. Since the approximation ratio (Steiner
ratio) of a minimum Steiner tree to that of the MST is known to be 2AK - 1)/K, {MST(Q)) <
2K - DT(PUQ))/K < 2(K - 1)({MST(P)) + Kr)/K. The ratio (M ST(Q))/I{(MST(P)) <



AK-DUMST(P))+Kr)/KI(MST(P)) < (4K—2)/K. Thus, the approximation ratio is at most 4.
Similarly, {(St(P)) > Kr/2 because of the Steiner ratio, and {(S1(Q)) < I(St(PUQ)) < I(St(P))+KT;
thus {(St(Q)) < 3I(St{P)). o

Corollary 3.2 The Steiner-remote K -set of a general graph can be polynomially approzimated with
the approzimate ratio 3.

Proof St(P) of a set P of nodes in G can be realized as a minimum Steiner tree of P in the
shortest-path graph D(G). Since D(G) is metric, the corollary follows from Theorem 3.1. a

Corollary 3.3 The TSP-remole K -set of a general graph can be polynomially apprezimated with an
approzimate ratio 3.

Proof Let [(T'SP(P) be the length of the optimal TSP tour of the set P of centers of a central K
circles covering. Clearly, ((T'SP(P)) > Kr. Suppose Q is the optimal TSP-remote K-set. Connecting
each point of @ to its nearest point in P by a pair of directed edges (with different directions), we
can make a TSP tour of P U Q from TSP(P). Its length is at most I(T'SP(P)) + 2Kr. Thus,
3UTSP(P)) > (TSP(PUQ)) > UTSP(Q))- O

Intuitively, the analysis of the approximation ratio in Theorem 3.1 of the remote K-set generated
by the greedy furthest-point algorithm looks loose; however, it is asymptotically optimal.

Theorem 3.4 The approzimalion ratio of the MST-remote K-sel generated by the greedy furthest-
point algorithm for metric graphs can be as large as 4 — o(1).

Proof The lower bound construction is a little complicated, and omitted in this version. See [11].
O

Although the above lower-bound is applicable only to the set of centers of the K-central-circle
covering generated by the greedy furthest-first algorithm, we conjecture that 4, rather than 2 obtained
in Proposition 2.2, is an asymptotically tight approximation ratio of the problem itself.

4 Euclidean case

Let S be a set of n points {p;,...,pn} in the plane. Let us consider the complete graph G on n nodes
S whose edge (pi, p;) has as its weight the Euclidean distance d(pi,p;). We consider approximation
algorithms for computing the remote /-set and the Steiner-remote K-set of this graph.

The K -central-circle covering defined in the previous seciion gives a geometric covering of S
by K circles, each of which has a point of P as its center, and is of radius r. Since (St(P)) >
V3I(M ST(P))/2 (Du-Hwang [6]) for the Euclidean case, we immediately obtain the following.

Corollary 4.1 Suppose P is the set of centers of any K -central-circle covering. Then, MST(P) isa
ﬁ%—appmximation of the optimal MST-remote K -set, and St(P) is a gj—g(v—gﬁ_é;—;ﬁﬂppmzimation

of the optimal Steiner-remote K -sel.

Thus, the approximation ratios are asymptotically at most 4/4/3 == 2.309 for the MST-remote K-set
problem, and (2 + V3)/+/3 =~ 2.155 for the Steiner-remote K-set problem. Unlike in the metric case,
it seermns that the approximation ratio depends on the choice of the K-central-circle covering. For
the example in Figure 3, the worst central-circle covering has a (23 4+ 4)/3) ~ 2.448 approximation
ratio, which is near to the upper bound 14/3/3 =~ 2.694 for the MST-remote 4-set.

However, if we consider the central-circle covering created by the greedy furthest-point algorithm,
we can obtain a slightly better analysis (which we omit due to the space limitation) than Corollary
4.1. A key difference from the metric case is that the length of a minimum Steiner tree of m points
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The worst circle covering leads Approximation by a greedy
us to a 2.448 approximation circle covering is better

Figure 2: Approximation by circle covers

in a unit circle must be less than m —0.1(m —3) if m > 3 for the Euclidean case (we omit the proof).
We can further squeeze the approximation ratio by modifying the algorithm itself; indeed, this can
be attained by modifying the output of the greedy algorithm.

Theorem 4.2 There exists a polynomial time approzimation algorithm that hes an asymptotic ap-
prozimation ratio (1.95)(2/v/3) = 2.2517 for the remote K -sel problem. :

We omit the proof (because it is quite lengthy) of the above theorem in this version.

5 Tree case

In this section, we consider a graph in which the set of edges with finite weights forms a tree. Let T" be
a weighted tree on n nodes. We assign oo to each edge of the cograph T° of T in the complete graph
of order n, and define G(T') = T"U T*. We first give an O(n) time algorithm for the Steiner-remote
K-set of G(T).

Proposition 5.1 The Steiner-remote K-set of G(T') can be computed in O(n) time.

Proof Obviously, we should select K leaves. If K exceeds the number of leaves of T, every set of
K nodes containing all leaves makes the optimal Steiner-remote K-set. If K = 2, the problem is the
diameter path problem on a tree, and can be solved in linear time. We can apply the incremental
strategy developed by Peng et al. [14] for computing the K-tree core. A key fact is that any optimal
Steiner-remote (K — 1)-set must be contained in an optimal Steiner-remote K-set. A direct mod-
ification of the algorithm of Peng et al. [14] runs in O(min{&n,nlogn}) time, and the one of the
improved algorithm of Shioura and Uno [16] runs in O(n) time. O
The MST-remote K-set problem (with respect to MST) of G(T') is a nonsence problem, since we
can almost always find a subset P whose MST has infinity weight. If we modify the definition of
the remote K-set P so that (M ST(P)) is maximized on the condition that I(MST(P)) # co (we
call it connectivity condition), M ST'(P) must be the induced subtree of P in T thus, the problem
becomes a special case (where all edge weights are non-positive) of the weighted (K — 1)-cardinality
tree problem’defined by Fischetti et al. [9] if we reverse the sign of all weights of T. We can thus
apply Fischetti et al’'s O(/{%n) time dynamic programming algorithm. Moreover, we can improved
it to O(A'n) {omitted in this version). The same algorithm can compute MST-remote K-sets (with
connectivity condition) of decomposable graphs, such as series parallel graphs, in O(Kn) time.

6 Concluding remarks

Immediate open problems are: proving (or disproving) ©.%-hardness of Steiner-remote K -set problem,
proving NP-hardness of the Euclidean remote K-set problem, and giving better bounds for the
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approximation ratios for each problem. In particular, a good approximation algorithm for the Steiner-
remote I{-set problem will be very useful in applications. Also, a fast approximation algorithm is
needed; when we apply approximate TSP-remote K -sets to large-scale-TSP heuristics, subquadratic
time algorithm is definitely required.

Among several other minimum strucrures than those dealed with in this paper, for example, the

problem of computing the K-set maximizing the minimum weight matching looks interesting.
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